Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics
Abstract
:1. Introduction
2. Phenolic Composition
2.1. Chemical Classification of Phenolic Compounds
Class | Subclass | Basic Skeleton | Basic Structure |
---|---|---|---|
Phenolic acids | Hydroxybenzoic acids | C6–C1 | |
Hydroxycinnamic acids | C6–C3 | ||
Coumarins | – | C6–C3 | |
Flavonoids | Flavonols | C6–C3–C6 | |
Flavones | C6–C3–C6 | ||
Isoflavones | C6–C3–C6 | ||
Flavanones | C6–C3–C6 | ||
Flavanols | C6–C3–C6 | ||
Anthocyanins | C6–C3–C6 | ||
Chalcones | C15 | ||
Stilbenes | – | C6–C2–C6 | |
Lignans | – | (C6–C3)2 | |
Tannins | – | (C6–C3–C6)n |
- Phenolic acids are phenols with one carboxylic acid group and may be present in plants in free and bound forms. Phenolic acids are divided into two subgroups, the hydroxybenzoic and hydroxycinnamic acids and derivatives thereof. Hydroxybenzoic acids have in common the C6–C1 structure, and the hydroxycinnamic acids have aromatic compounds with a three-carbon side chain (C6–C3). The different phenolic acids differ in the number and position of the hydroxyl and methoxyl groups attached to the aromatic ring.
- Coumarins, or chromones, are a class of secondary metabolites of plants derivatives from cinnamic acid by cyclization of the side chain of the o-coumaric acid [16]. Commonly, they are present as glycosides.
- Flavonoids are the largest group of plant phenols and the most studied. The structure consists of 15 carbon atoms (C6–C3–C6). The aromatic ring A is derived from the acetate/malonate pathway, and ring B is derived from phenylalanine through the shikimate pathway [17]. Variations in substitution patterns to ring C (oxygenation, alkylation, glycosylation, acylation or sulfation) result in 13 flavonoid classes, being the most important flavonols, flavones, isoflavones, flavanones, flavanols (also called flavan-3-ols) and anthocyanidins or anthocyanins [18]. The chalcones are intermediate in the biosynthesis of flavonoids.
- Stilbenes are a small group of phenylpropanoids characterized by a 1,2-diphenylethylene backbone. Most plant stilbenes are derivatives of the basic unit trans-resveratrol (3,5,4′-trihydroxy-trans-stilbene). In plants that naturally produce stilbenes, these metabolites are generally accumulated in both free and glycosylated forms [19].
- Lignans are formed of two phenylpropane units, which are commonly present in fruits, seeds, grains, trees and vegetables. Secoisolariciresinol and matairesinol were the first plant lignans identified, and later pinoresinol, lariciresinol and others [20].
- Tannins are phenolic compounds of molecular weight between 500 and 3000 D and may be subdivided into: hydrolysable, esters of gallic acid (gallo- and ellagitannins), condensed tannins (also known as proanthocyanidins), polymers of polyhydroxyflavan-3-ol monomers, and phlorotannins, found in brown seaweeds.
2.2. Phenolic Compounds in Grapes Products and Byproducts
3. Activities
3.1. Ultraviolet Radiation Protection
3.2. Antioxidant and Antiaging
3.3. Depigmenting
3.4. Anti-Inflammatory Action
3.5. Wound Healing
3.6. Irritation
3.7. Antimicrobial
3.8. Antiobesity
4. Activities
4.1. Permeation
4.2. Safety
4.3. Encapsulation and Delivery
4.4. Examples of Products
Compounds | Activity | Cosmetic Use |
---|---|---|
Anthocyanins, gallic acid, catechin, epicatechin, conjugated flavonoids, proanthocyanidins, resveratrol, melanin | Antioxidant and radical scavenging Stimulation of cell growth | Antiaging Reaffirming Preservatives |
Ferulic acid, caffeic acid, gallic acid, proanthocyanidins, resveratrol | Photoprotector | Sun protectors After-sun Lip balm protectors |
Tartaric acid | Exfoliating Depigmenting pH regulation | Chemical and physical exfoliating agent Antibrowning pH corrector |
Oleic, linoleic and linolenic acids Vitamins C and E | Antioxidant Nutritive | Antiaging Day and night creams |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saraf, S.; Kaur, C. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn. Rev. 2010, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chanchal, D.; Swarnlata, S. Novel approaches in herbal cosmetics. J. Cosmet. Dermatol. 2008, 7, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, B.J.; Nasreen, R. Cosmeceuticals: A revolution in cosmetic market. Int. J. Pharm. Technol. 2012, 4, 3925–3942. [Google Scholar]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds: A review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of Vitis vinifera (Grape)-derived ingredients as used in cosmetics. Int. J. Toxicol. 2014, 33, 48–83. [Google Scholar] [CrossRef] [PubMed]
- Delmas, D. Resveratrol: Sources, Production and Health Benefits; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2013. [Google Scholar]
- Pezzuto, J.M.; Kondratyuk, T.P.; Ogas, T. Resveratrol derivatives: A patent review (2009–2012). Expert Opin. Ther. Pat. 2013, 23, 1529–1546. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-SanJosé, M.L.; del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Domínguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; García-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Naczk, M. Food Phenolics: Sources, Chemistry, Effects, Applications; Technomic Publishing Company Inc.: Lancaster, PA, USA, 1995. [Google Scholar]
- Reis Giada, M.L. Food phenolic compounds: Main classes, sources and their antioxidant power. In Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; Morales González, J.A., Ed.; InTech Publisher: Rijeka, Croatia, 2013; pp. 87–112. [Google Scholar]
- Matern, V.; Lüer, P.; Kreusch, D. Biosynthesis of coumarins. In Comprehensive Natural Products Chemistry: Polyketides and other Secondary Metabolites Including Fatty Acids and Their Derivatives; Barton, D., Nakanishi, K., Meth-Cohn, O., Sankawa, U., Eds.; Pergamon Press: Oxford, UK, 1999; pp. 623–637. [Google Scholar]
- Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.H.; Katan, M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. [Google Scholar] [CrossRef]
- Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009, 117, 143–155. [Google Scholar] [CrossRef]
- Holmbom, B.; Eckerman, C.; Eklund, P.; Hemming, J.; Nisula, L.; Reunanen, M.; Sjöholm, R.; Sundberg, A.; Sundberg, K.; Willför, S. Knots in trees—A new rich source of lignans. Phytochem. Rev. 2003, 2, 331–340. [Google Scholar] [CrossRef]
- Sytar, O.; Brestic, M.; Rai, M.; Shao, H.B. Plant phenolic compounds for food, pharmaceutical and cosmetics production. J. Med. Plants Res. 2012, 6, 2526–2539. [Google Scholar]
- Teissedre, P.L.; Chervin, C. Grape. In Health-Promoting Properties of Fruits and Vegetables; Terry, L.A., Ed.; CABI Press: Oxford, UK, 2011; Volume 487, pp. 154–170. [Google Scholar]
- Saewan, N.; Jimtaisong, A. Natural products as photoprotection. J. Cosmet. Dermatol. 2015, 14, 47–63. [Google Scholar] [CrossRef] [PubMed]
- França, K.; Cohen, J.L.; Grunebaum, L. Cosmeceuticals for recurrence prevention after prior skin cancer: An overview. J. Drugs Dermatol. 2013, 12, 516–518. [Google Scholar] [PubMed]
- Potapovich, A.I.; Kostyuk, V.A.; Kostyuk, T.V.; de Luca, C.; Korkina, L.G. Effects of pre- and post-treatment with plant polyphenols on human keratinocyte responses to solar UV. Inflammat. Res. 2013, 62, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Xuan, M.; Leung, V.Y.L.; Cheng, B. Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Res. Rev. 2015, 19, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Furiga, A.; Lonvaud-Funel, A.; Badet, C. In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract. Food Chem. 2009, 113, 1037–1040. [Google Scholar] [CrossRef]
- Zhou, K.; Raffoul, J.J. Potential anticancer properties of grape antioxidants. J. Oncol. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Kyselova, Z. Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip. Toxicol. 2011, 4, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Cornacchione, S.; Sadick, N.S.; Neveu, M.; Talbourdet, S.; Lazou, K.; Viron, C.; Renimel, I.; de Quéral, D.; Kurfurst, R.; Schnebert, S.; et al. In vivo skin antioxidant effect of a new combination based on a specific Vitis vinifera shoot extract and a biotechnological extract. J. Drugs Dermatol. 2007, 6, 8–13. [Google Scholar]
- Nolan, K.A.; Marmur, E.S. Over-the-counter topical skincare products: A review of the literature. J. Drugs Dermatol. 2012, 11, 220–224. [Google Scholar] [PubMed]
- Sharma, B.; Sharma, A. Future prospect of nanotechnology in development of anti-ageing formulations. Int. J. Pharm. Sci. 2012, 4, 57–66. [Google Scholar]
- Cohen-Letessier, A. Cosmetics in skin aging. Ann. Dermatol. Venereol. 2009, 136, 367–371. [Google Scholar] [CrossRef]
- Lorencini, M.; Brohem, C.A.; Dieamant, G.C.; Zanchin, N.I.T.; Maibach, H.I. Active ingredients against human epidermal aging. Ageing Res. Rev. 2014, 15, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Akhtar, N.; Khan, M.S.; Menaa, A.; Menaa, B.; Khan, B.A.; Menaa, F. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat Hamburg black grape seed extract. Int. J. Cosmet. Sci. 2015, 37, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, V.; Sandoval, C.; Franco, C. An evaluation of polyphenol release from cosmetic formulations. Ars. Pharm. 2008, 49, 309–320. [Google Scholar]
- Ratz-Lyko, A.; Arct, J.; Majewski, S.; Pytkowska, K. Influence of polyphenols on the physiological processes in the skin. Phytother. Res. 2015, 29, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Kusumawati, I.; Indrayanto, G. Natural antioxidants in cosmetics. Stud. Nat. Prod. Chem. 2013, 40, 485–505. [Google Scholar]
- Bombardelli, E.; Morazzoni, P. Vitis vinifera L. Fitoterapia 1995, 66, 291–317. [Google Scholar]
- Cronin, H.; Draelos, Z.D. Top 10 botanical ingredients in 2010 anti-aging creams. J. Cosmet. Dermatol. 2010, 9, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Skovgaard, G.R.L.; Jensen, A.S.; Sigler, M.L. Effect of a novel dietary supplement on skin aging in post-menopausal women. Eur. J. Clin. Nutr. 2006, 60, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Korkina, L.; de Luca, C.; Pastore, S. Plant polyphenols and human skin: Friends or foes. Ann. N. Y. Acad. Sci. 2012, 1259, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Ávila, L.M.; Torres, C.; Ponce, L.F.; Baena, Y.; Aristizábal, F.A. Stem cells, corners stone of rejuvenescence. Clarifying concepts. Med. Cután. Iber. Lat. Am. 2012, 40, 3–10. [Google Scholar]
- Korkina, L.G.; de Luca, C.; Kostyuk, V.A.; Pastore, S. Plant polyphenols and tumors: From mechanisms to therapies, prevention and protection against toxicity of anti-cancer treatments. Curr. Med. Chem. 2009, 16, 3943–3965. [Google Scholar] [CrossRef] [PubMed]
- Korkina, L.G.; Pastore, S.; Dellambra, E.; de Luca, C. New molecular and cellular targets for chemoprevention and treatment of skin tumors by plant polyphenols: A critical review. Curr. Med. Chem. 2013, 20, 852–868. [Google Scholar] [PubMed]
- Bernard, P.; Berthon, J.Y. Resveratrol: An original mechanism on tyrosinase inhibition. Int. J. Cosmet. Sci. 2000, 22, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Yun, J.; Lee, C.K.; Lee, H.; Min, K.R.; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 2002, 277, 16340–16344. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, J.H.; Suh, H.J.; Lee, I.C.; Koh, J.; Boo, Y.C. Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis. Arch. Dermatol. Res. 2014, 306, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Fisk, W.A.; Agbai, O.; Lev-Tov, H.A.; Sivamani, R.K. The use of botanically derived agents for hyperpigmentation: A systematic review. J. Am. Acad. Dermatol. 2014, 70, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Korkina, L.; Kostyuk, V.; de Luca, C.; Pastore, S. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Rev. Med. Chem. 2011, 11, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Biasi, F.; Deiana, M.; Guina, T.; Gamba, P.; Leonarduzzi, G.; Poli, G. Wine consumption and intestinal redox homeostasis. Redox Biol. 2014, 2, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, C.; Nigam, Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis 2013, 16, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Fehér, J.; Lengyel, G.; Lugasi, A. The cultural history of wine—Theoretical background to wine therapy. Cent. Eur. J. Med. 2007, 2, 379–391. [Google Scholar] [CrossRef]
- Friedman, M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J. Agric. Food Chem. 2014, 62, 6025–6042. [Google Scholar] [CrossRef] [PubMed]
- Baydar, N.G.; Sagdic, O.; Ozkan, G.; Cetin, S. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. Int. J. Food Sci. Technol. 2006, 41, 799–804. [Google Scholar] [CrossRef]
- Molva, C.; Baysal, A.H. Antimicrobial activity of grape seed extract on Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT-Food Sci. Technol. 2015, 60, 238–245. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Oral malodour and active ingredients for treatment. Int. J. Cosmet. Sci. 2010, 32, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Delgado Adámez, J.; Gamero Samino, E.; Valdés Sánchez, E.; González-Gómez, D. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 2012, 24, 136–141. [Google Scholar] [CrossRef]
- Smullen, J.; Finney, M.; Storey, D.M.; Foster, H.A. Prevention of artificial dental plaque formation in vitro by plant extracts. J. Appl. Microbiol. 2012, 113, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, I.; Thurnheer, T.; Bartolomé, B.; Moreno-Arribas, M.V. Red wine and oenological extracts display antimicrobial effects in an oral bacteria biofilm model. J. Agric. Food Chem. 2014, 62, 4731–4737. [Google Scholar] [CrossRef] [PubMed]
- Zillich, O.V.; Schweiggert-Weisz, U.; Hasenkopf, K.; Eisner, P.; Kerscher, M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int. J. Cosmet. Sci. 2013, 35, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Abla, M.J.; Banga, A.K. Quantification of skin penetration of antioxidants of varying lipophilicity. Int. J. Cosmet. Sci. 2013, 35, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Reinoso, B.; Gomes, A.; Freitas, M.; Fernandes, E.; Nogueira, D.R.; González, J.; Moure, A.; Levoso, A.; Vinardell, M.P.; Mitjans, M.; et al. Valuable polyphenolic antioxidants from wine vinasses. Food Bioproc. Technol. 2012, 5, 2708–2716. [Google Scholar] [CrossRef]
- Balboa, E.M.; Soto, M.L.; Nogueira, D.R.; González-López, N.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crop. Prod. 2014, 58, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Korkina, L.G.; Pastore, S.; de Luca, C.; Kostyuk, V.A. Metabolism of plant polyphenols in the skin: Beneficial versus deleterious effects. Curr. Drug. Metabolism. 2008, 9, 710–729. [Google Scholar] [CrossRef]
- Tavano, L.; Muzzalupo, R.; Picci, N.; de Cindio, B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Colloid Surf. B Biointerfaces 2014, 114, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Martí, M.; Martínez, V.; Rubio, L.; Parra, J.L.; Coderch, L. Antioxidant cosmeto-textiles: Skin assessment. Eur. J. Pharm. Biopharm. 2013, 84, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Armijo Valenzuela, M.; San Martín Bacaicoa, J. Curas balnearias y climáticas. Talasoterapia y Helioterapia. Available online: http://dspace.ceu.es/handle/10637/2351 (accessed on 15 July 2015). (In Spanish)
- Carbajo, J.M.; Mestre, J.; del Tío, R.; Ruiz Manso, R. Estética Hidrotermal; Videocinco: Madrid, Spain, 2007; pp. 181–186. (In Spanish) [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics 2015, 2, 259-276. https://doi.org/10.3390/cosmetics2030259
Soto ML, Falqué E, Domínguez H. Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics. 2015; 2(3):259-276. https://doi.org/10.3390/cosmetics2030259
Chicago/Turabian StyleSoto, María Luisa, Elena Falqué, and Herminia Domínguez. 2015. "Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics" Cosmetics 2, no. 3: 259-276. https://doi.org/10.3390/cosmetics2030259
APA StyleSoto, M. L., Falqué, E., & Domínguez, H. (2015). Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics, 2(3), 259-276. https://doi.org/10.3390/cosmetics2030259