Pharmacological Potential of Agave sisalana Plant Residue: Antioxidant and Antifungal Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Source
2.2. Preparation of the Aqueous Extract and Its Alcoholic Fraction from Sisal Juice
2.3. Evaluation of the Antifungal Activity of the Sisal Aqueous Extract and Its Alcoholic Fraction
2.3.1. Microorganisms Used
2.3.2. Isolation and Preservation of Microorganisms
2.3.3. Microorganism Activation
2.3.4. Standardization of Microorganisms
2.3.5. Minimum Inhibitory Concentration (MIC)
2.4. Evaluation of the Antioxidant Activity of the Aqueous Extract and Its Alcoholic Fraction
2.5. Phytochemical Analysis of the Sisal Aqueous Extract and Its Alcoholic Fraction
2.5.1. Total Phenolic Quantification
2.5.2. Total Flavonoid Quantification
2.5.3. Saponin Quantification
2.6. Cell Viability of the Sisal Aqueous Extract
2.7. Data Analysis
3. Results
3.1. Antifungal Activity
3.2. Antioxidant Activity
3.3. Phytochemical Analysis
3.4. Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Soriano, A.; Honore, P.M.; Puerta-Alcalde, P.; Garcia-Vidal, C.; Pagotto, A.; Gonçalves-Bradley, D.C.; Verweij, P.E. Invasive candidiasis: Current clinical challenges and unmet needs in adult populations. J. Antimicrob. Chemother. 2023, 78, 1569–1585. [Google Scholar] [CrossRef]
- Rhimi, W.; Theelen, B.; Boekhout, T.; Otranto, D.; Cafarchia, C. Malassezia spp. yeasts of emerging concern in fungemia. Front. Cell. Infect. Microbiol. 2020, 10, 370. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Osset-Trénor, P.; Pascual-Ahuir, A.; Proft, M. Fungal drug response and antimicrobial resistance. J. Fungi 2023, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.F.; Yap, V.L.; Rajagopal, M.; Wiart, C.; Selvaraja, M.; Leong, M.Y.; Tan, P.L. Plant as an alternative source of antifungals against Aspergillus infections: A review. Plants 2022, 11, 3009. [Google Scholar] [CrossRef]
- Zhou, X.; Zeng, M.; Huang, F.; Qin, G.; Song, Z.; Liu, F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl. Microbiol. Biotechnol. 2023, 107, 4471–4482. [Google Scholar] [CrossRef]
- Aboody, M.S.A.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.S.; Silva, M.C.J.; Santos, E.N.; Lima, F.L.O.; Costa, M.S.F. Atividades biológicas de Agave sisalana com ênfase para a ação antimicrobiana: Uma revisão da literatura. Res. Soc. Dev. 2021, 10, e2510312734. [Google Scholar] [CrossRef]
- Raya, F.T.; Carvalho, L.M.; José, J.; Cruz, L.P.; Almeida, R.L.; Delevatti, H.A.A.; Silveira, N.M.; Silva, S.F.; Pissolato, M.D.; Oliveira, A.B.; et al. Rescuing the Brazilian agave breeding program: Morphophysiological and molecular characterization of a new germplasm. Front. Chem. Eng. 2023, 5, 1218668. [Google Scholar] [CrossRef]
- Duarte, E.A.A.; Damasceno, C.L.; Oliveira, T.A.S.; Barbosa, L.O.; Martins, F.M.; Silva, J.R.Q.; Lima, T.E.F.; Silva, R.M.; Kato, R.B.; Bortolini, D.E.; et al. Putting the mess in order: Aspergillus welwitschiae (and not A. niger) is the etiological agent of sisal bole rot disease in Brazil. Front. Microbiol. 2018, 9, 1227. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.D.; Barreto, D.W.; Coelho, M.A.Z. Use of micellar extraction and cloud point preconcentration for valorization of saponins from sisal (Agave sisalana) waste. Food Bioprod. Process. 2015, 94, 601–609. [Google Scholar] [CrossRef]
- Costa, L.T.S.; Fracasso, J.A.R.; Guarnier, L.P.; Brito, G.R.; Fumis, D.B.; Bittencourt, R.A.C.; Guiotti, A.M.; Barbosa, D.B.; Camargo, I.C.C.; Souza, E.B.; et al. Toxicity and anti-inflammatory effects of Agave sisalana extract derived from agroindustrial residue. Plants 2023, 12, 1523. [Google Scholar] [CrossRef]
- Jones, R.N.; Barry, A.L.; Gavan, T.L.; Washington, J.A., II. Susceptibility tests: Microdilution and macrodilution broth procedures. In Manual of Clinical Microbiology; Lennette, E.H., Balows, A., Hausler, W.J., Jr., Truant, J.P., Eds.; American Society for Microbiology: Washington, DC, USA, 1985; pp. 972–977. [Google Scholar]
- Di Mambro, V.M.; Fonseca, M.J.V. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts. J. Pharm. Biomed. Anal. 2005, 37, 287–295. [Google Scholar] [CrossRef]
- Khodaie, L.; Bamdad, S.; Delazar, A.; Nazemiyeh, H. Antioxidant, total phenol and flavonoid contents of two Pedicularis L. species from eastern Azerbaijan, Iran. Bioimpacts 2012, 2, 47–53. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Medica 1976, 29, 116–122. [Google Scholar] [CrossRef]
- Fracasso, J.A.R.; Sikina, I.Y.G.; Costa, L.T.S.; Guarnier, L.P.; Ribeiro-Paes, J.T.; Ferreira, F.Y.; Almeida, L.V.C.; Castro Silva, B.; Barbosa, D.B.; Ximenes, V.F.; et al. Toxicological profile and anti-inflammatory effect of mucoadhesive gel from residues of Agave sisalana and Punica granatum. Gels 2023, 9, 942. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.D.; Do, L.T.K.; Dang, T.N.D.; Pham, V.D.; Hoang, V.C. Recovery of saponins, phenolic compounds and antioxidant capacity from Curculigo orchioides Gaertn rhizomes by different extraction methods. Appl. Sci. 2024, 14, 7535. [Google Scholar] [CrossRef]
- Iatta, R.; Cafarchia, C.; Cuna, T.; Montagna, O.; Laforgia, N.; Gentile, O.; Rizzo, A.; Boekhout, T.; Otranto, D.; Montagna, M.T. Bloodstream infections by Malassezia and Candida species in critical care patients. Med. Mycol. 2013, 52, 264–269. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2021, 13, 89–121. [Google Scholar] [CrossRef]
- Chryssanthou, E.; Broberger, U.; Petrini, B. Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr. 2001, 90, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Chen, H.F.; Yeh, Y.C.; Xue, Y.P.; Lan, C.Y. The transcription factor Sfp1 regulates the oxidative stress response in Candida albicans. Microorganisms 2019, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Herrero, E.; Ros, J.; Bellí, G.; Cabiscol, E. Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta Gen. Subj. 2008, 1780, 1217–1235. [Google Scholar] [CrossRef] [PubMed]
- Al-Sweih, N.; Ahmad, S.; Joseph, L.; Khan, S.; Khan, Z. Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Med. Mycol. Case Rep. 2014, 5, 9–11. [Google Scholar] [CrossRef]
- Rodríguez-Valdovinos, K.Y.; Salgado-Garciglia, R.; Hernández-García, A.; Saavedra-Molina, A.; Río-Torres RENdel López-Meza, J.E.; Monribot-Villanueva, J.L.; Guerrero-Analco, J.A.; Medina-Medrano, J.R. Antioxidant and antifungal activities and characterization of phenolic compounds using UPLC-MS of aqueous extracts and fractions from Verbesina sphaerocephala stems. Plants 2024, 13, 2791. [Google Scholar] [CrossRef]
- Kaur, N.; Bains, A.; Kaushik, R.; Dhull, S.B.; Fogarasi, M.; Chawla, P. A review on antifungal efficiency of plant extracts entrenched polysaccharide-based nanohydrogels. Nutrients 2021, 13, 2055. [Google Scholar] [CrossRef]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.M.; Moldovan, C.; Oniga, I. Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii. Front. Pharmacol. 2018, 9, 7. [Google Scholar] [CrossRef]
- Esmaeili, A.; Saleh, I.; Abu-Dieyeh, M.H. Antifungal potential of plant-based extracts against Candida species: Values, safety concerns, and possible applications. Phytochem. Rev. 2025. ahead of print. [Google Scholar] [CrossRef]
- Liu, R.H.; Shang, Z.C.; Li, T.X.; Yang, M.H.; Kong, L.Y. In vitro antibiofilm activity of eucarobustol E against Candida albicans. Antimicrob. Agents Chemother. 2017, 61, e02707-16. [Google Scholar] [CrossRef]
- Dantas, T.S.; Machado, J.C.B.; Ferreira, M.R.A.; Soares, L.A.L. Bioactive plant compounds as alternatives against antifungal resistance in the Candida strains. Pharmaceutics 2025, 17, 687. [Google Scholar] [CrossRef]
- Hendra, R.; Agustha, A.; Frimayanti, N.; Abdulah, R.; Teruna, H.Y. Antifungal potential of secondary metabolites derived from Arcangelisia flava. Molecules 2024, 29, 2373. [Google Scholar] [CrossRef] [PubMed]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef] [PubMed]
- Pelczar, M.J.; Chan, E.C.S.; Krieg, N.R. Microbiologia: Conceitos e Aplicações; McGraw-Hill: Columbus, OH, USA, 2005. [Google Scholar]
- Santos, J.D.G.; Branco, A.; Silva, A.F.; Pinheiro, C.S.R.; Uetanabaro, A.P.T.; Queiroz, S.R.O.D.; Osuna, J.T.A. Antimicrobial activity of Agave sisalana. Afr. J. Biotechnol. 2009, 8, 6181–6184. [Google Scholar] [CrossRef]
- Hammuel, C.; Yebpella, G.G.; Shallangwa, G.A.; Magomya, A.M.; Agbajp, A.S. Phytochemical and antimicrobial screening of methanol and aqueous extracts of Agave sisalana. Acta Pol. Pharm. 2011, 68, 535–539. [Google Scholar] [PubMed]
- Almeida, E.C.S.L. Ação Antifúngica do Resíduo Líquido Integral e Fracionado do Desfibramento da Folha do Sisal (Agave sisalana). Master’s Thesis, UNESP, São Paulo, Brazil, 2013. [Google Scholar]
- Duarte-Almeida, J.M.; Santos, R.J.; Genovese, M.I.; Lajolo, F.M. Evaluation of the antioxidant activity using the β-carotene/linoleic acid system and the DPPH scavenging method. Food Sci. Technol. 2006, 26, 446–452. [Google Scholar] [CrossRef]
- Koleva, I.I.; Van Beek, T.A.; Linssen, J.P.H.; Groot, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Zuanazzi, J.A.S.; Montanha, J.A.; Limberger, R.P. Flavonoides. In Farmacognosia: Da Planta ao Medicamento; Simões, C.M.O., Schenkel, E.P., Gosmann, G., de Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; UFRGS/UFSC: Farroupilha, Brazil, 2003; pp. 577–614. [Google Scholar]
- Rawat, M.; Varshney, A.; Kandpal, R.; Choudhary, A.; Gupta, A.K.; Pratiksha Naik, B.; Kumar, V.; Kumar, A.; Kheto, A.; Bhatt, S.; et al. Exploration of compositional, functional, nutraceutical, and metabolites of Ram kandmool (Agave sisalana Perrine). Int. J. Biol. Macromol. 2025, 307, 142095. [Google Scholar] [CrossRef]
- Daher, C.C. Uso do Resíduo Industrial do Sisal (Agave sisalana Perrine) em Produtos Cosméticos Sustentáveis com Atividades Antioxidante e Fotoprotetora. Ph.D. Thesis, UFRN, Natal, Brazil, 2022. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Martins, C.C.; Rodrigues, R.C.; Mercali, G.D.; Rodrigues, E. New insights into non-extractable phenolic compounds analysis. Food Res. Int. 2022, 157, 111487. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Xu, Q.; Shikov, A.N.; Pozharitskaya, O.N.; Flisyuk, E.V.; Liu, M.; Li, H.; Vargas-Murga, L.; Duez, P. Flavonoids and saponins: What have we got or missed? Phytomedicine 2023, 109, 154580. [Google Scholar] [CrossRef]
- Qin, X.; Lu, Y.; Peng, Z.; Fan, S.; Yao, Y. Systematic chemical analysis approach reveals superior antioxidant capacity via the synergistic effect of flavonoid compounds in red vegetative tissues. Front. Chem. 2018, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Trdá, L.; Janda, M.; Macková, D.; Pospíchalová, R.; Dobrev, P.I.; Burketová, L.; Matułinsky, P. Dual mode of the saponin aescin in plant protection: Antifungal agent and plant defense elicitor Front. Plant Sci. 2019, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Karima, G.; Khan, M.; Shin, J.; Kim, J. Therapeutic effects of saponins for the prevention and treatment of cancer. Int. J. Mol. Sci. 2022, 23, 10665. [Google Scholar] [CrossRef]
- Barreto, S.M.A.G.; Cadavid, C.O.M.; Moura, R.A.O.; Silva, G.M.M.; Araújo, S.V.F.; Silva Filho, J.A.A.; Rocha, H.A.O.; Oliveira, R.P.; Giordani, R.B.; Ferrari, M. In vitro and in vivo antioxidant activity of Agave sisalana agro-industrial residue. Biomolecules 2020, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Araldi, R.P.; Santos, M.O.; Barbon, F.F.; Manjerona, B.A.; Meirelles, B.R.; Oliva Neto, P.; Silva, P.I.; Santos, L.; Camargo, I.C.C.; Souza, E.B. Analysis of antioxidant, cytotoxic and mutagenic potential of Agave sisalana Perrine extracts. Biomed. Pharmacother. 2018, 98, 873–885. [Google Scholar] [CrossRef]
- Mazo, G.S.; Fracasso, J.A.R.; Costa, L.T.S.; Ximenes, V.F.; Zoppe, N.A.; Viel, A.M.; Guarnier, L.P.; Silva, B.C.; Almeida, L.V.C.; Santos, L. Development of an antioxidant, anti-aging, and photoprotective phytocosmetic from discarded Agave sisalana Perrine roots. Cosmetics 2024, 11, 104. [Google Scholar] [CrossRef]

| Sample | Concentration (μg/mL) | % Inhibition |
|---|---|---|
| Nystatin | 25 | 99% |
| Nystatin | 12.5 | 99% |
| Nystatin | 6.3 | 99% |
| Nystatin | 3.1 | 99% * |
| Nystatin | 1.6 | 96% |
| Nystatin | 0.8 | 88% |
| Aqueous extract | 1400 | 99% |
| Aqueous extract | 700 | 99% |
| Aqueous extract | 350 | 99% |
| Aqueous extract | 175 | 99% |
| Aqueous extract | 87 | 99% * |
| Aqueous extract | 43 | 46% |
| Sample | Concentration (μg/mL) | % Inhibition |
|---|---|---|
| Ketoconazole | 1800 | 99% |
| Ketoconazole | 900 | 99% |
| Ketoconazole | 450 | 99% |
| Ketoconazole | 225 | 99% |
| Ketoconazole | 112 | 99% * |
| Ketoconazole | 56 | 89% |
| Aqueous extract | 1400 | 99% * |
| Aqueous extract | 700 | 70% |
| Aqueous extract | 350 | 23% |
| Aqueous extract | 175 | 19% |
| Aqueous extract | 87 | 18% |
| Aqueous extract | 43 | 16% |
| Sample | (%) Antioxidant Activity |
|---|---|
| Negative Control | 0.00 ± 0.00 |
| Positive Control | 97.17 ± 0.00 * |
| Aqueous extract 100 μg/mL | 48.98 ± 0.00 * |
| Aqueous extract 250 μg/mL | 72.34 ± 0.00 * |
| Aqueous extract 500 μg/mL | 75.89 ± 0.00 * |
| Aqueous extract 1000 μg/mL | 87.94 ± 0.00 * |
| Alcoholic fraction 100 μg/ml | 2.20 ± 0.02 |
| Alcoholic fraction 250 μg/ml | 5.48 ± 0.00 |
| Alcoholic fraction 500 μg/ml | 38.84 ± 0.03 * |
| Alcoholic fraction 1000 μg/ml | 54.23 ± 0.05 * |
| Sample (μg/mL) | Phenolics GAE | Flavonoids QE | Saponins ES |
|---|---|---|---|
| Aqueous extract | 28.38 ± 0.12 | 0.07 ± 0.01 | 30.28 ± 0.75 |
| Alcoholic fraction | 8.02 ± 0.85 | 0.82 ± 0.09 | 28.48 ± 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, L.T.S.; Fracasso, J.A.R.; Gonçalves, R.P.; Martins, W.R.P.; Oliveira, F.A.A.D.; Coelho, E.B.; Barbosa, G.O.; Zoppe, N.A.; Miyashiro, K.A.A.; Gomes, J.P.; et al. Pharmacological Potential of Agave sisalana Plant Residue: Antioxidant and Antifungal Activities. Cosmetics 2025, 12, 259. https://doi.org/10.3390/cosmetics12060259
da Costa LTS, Fracasso JAR, Gonçalves RP, Martins WRP, Oliveira FAAD, Coelho EB, Barbosa GO, Zoppe NA, Miyashiro KAA, Gomes JP, et al. Pharmacological Potential of Agave sisalana Plant Residue: Antioxidant and Antifungal Activities. Cosmetics. 2025; 12(6):259. https://doi.org/10.3390/cosmetics12060259
Chicago/Turabian Styleda Costa, Luísa Taynara Silvério, Julia Amanda Rodrigues Fracasso, Ryan Peixoto Gonçalves, Wellington Ricardo Pereira Martins, Fernando Augusto Araújo Donangelo Oliveira, Eduardo Bergamaschi Coelho, Giacomo Odorizzi Barbosa, Natalia Alves Zoppe, Kássia Aiko Asano Miyashiro, Julia Pereira Gomes, and et al. 2025. "Pharmacological Potential of Agave sisalana Plant Residue: Antioxidant and Antifungal Activities" Cosmetics 12, no. 6: 259. https://doi.org/10.3390/cosmetics12060259
APA Styleda Costa, L. T. S., Fracasso, J. A. R., Gonçalves, R. P., Martins, W. R. P., Oliveira, F. A. A. D., Coelho, E. B., Barbosa, G. O., Zoppe, N. A., Miyashiro, K. A. A., Gomes, J. P., Silva, B. d. C., Barbosa, D. B., Ximenes, V. F., Neto, P. d. O., & Santos, L. d. (2025). Pharmacological Potential of Agave sisalana Plant Residue: Antioxidant and Antifungal Activities. Cosmetics, 12(6), 259. https://doi.org/10.3390/cosmetics12060259

