Cydonia oblonga: A Comprehensive Overview of Applications in Dermatology and Cosmetics
Abstract
1. Introduction
2. Taxonomy, Botany, and Bioactive Compounds of Cydonia oblonga
2.1. Taxonomy
2.2. Botany
2.3. Active Compounds
3. Dermatological Effects of Cydonia oblonga
3.1. Antioxidant and UV-Protective Effects
Cydonia oblonga Formulation | Effect | Model | Material | Dosage/ Concentration | Mechanism | Study |
---|---|---|---|---|---|---|
Peel, pulp, and seed extract | Antioxidant activity | DPPH and AAPH methods | Human erythrocytes | 25 µL | Free radical scavenging and increasing the red blood cell resistance to oxidative stress | Magalhães et al. [22] |
Leaf extract | Antioxidant activity | DPPH, AAPH, and Folin–Ciocalteu method | Human erythrocyte suspensions and hemolysis assay | 25 µL | Interruption of the free radical chain reaction and erythrocyte membrane damage, inhibitory effects of hemolysis | Costa et al. [23] |
Fruit extract | Antioxidant activity | FRAP method | Supernatants of the whole and peeled fruits | No information | Free radical scavenging | Papp et al. [24] |
Peel, pulp, and seed extract | Antioxidant activity | DPPH method, superoxide anion radical, and molybdenum reducing capacity assessment | Human hepatoblastoma cell line (HepG2), lung epithelial cell line (A549), and cervical carcinoma cell line (HeLa) | 5–500 mg/mL | Free radical scavenging, oxidative stress reduction and apoptosis induction | Pacifico et al. [25] |
Leaf extract | UV-protective activity | in vivo animal study | fish specimen Clarias gariepinus | 20 mL | Antioxidant activity and improvement in the pathological alterations recorded in red blood cells, skin, and liver. | Sayed et al. [28] |
Peel and pulp extract | UV-protective activity | in vitro determination of the SPF | minimal erythema dose (MED) on protected skin | 1%, 2.5%, 5% | Photoprotective activity of the present carotenoids and flavonoids | Lasota et al. [29] |
3.2. Anti-Inflammatory and Anti-Allergic Activity
3.3. Other Dermocosmetic Effects
Cydonia oblonga Formulation | Effect | Model | Material | Dosage/ Concentration | Mechanism | Study |
---|---|---|---|---|---|---|
Peel and pulp extract | Antimicrobial and antioxidant activity | Agar diffusion method, determination of MIC and MBC | Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella species, Candida albicans, Aspergillus niger strains | 100 µL | Bactericide and bacteriostatic activity | Fattouch et al. [36] |
Fruit and seed extract | Antibacterial activity | Muller-Hinton agar media method, determination of MIC and MBC | E. coli, Klebsiella pneumoniae, S. aureus, and Enterobacter aerogenes strains | 80 µL | Inhibition of the bacterial growth | Alizadeh et al. [37] |
Seed extract | Antibacterial activity | Agar diffusion method | S. aureus, S. epidermidis, Klebsiella pneumoniae, E. coli, and Moraxella spp. strains | 125–500 mg/mL | Prevention of the development of microorganisms by precipitating microbial protein | Al-khazraji et al. [38] |
Leaf extract | Antifungal activity | Agar diffusion method, Broth macrodilution assay, determination of MIC and MFC | Aspergillus niger strains | 25–800 mg/mL | Inhibition of the fungal growth | Hamed et al. [39] |
Seed mucilage | Wound-healing activity | in vitro study in the fibroblast cell line | human skin fibroblasts | 50–400 µg/mL | stimulation of fibroblast proliferation | Ghafourian et al. [42] |
Seed mucilage incorporated into a Eucerin-based cream | Wound-healing activity | in vivo study in the animal model | male Iranian rabbits | 5–20% | elevation of hydroxyproline content, increase in tissue tensile strength, and concentrations of key growth factors | Pari et al. [43] |
Seed mucilage incorporated into a Eucerin-based cream | Wound-healing activity | in vivo study in the animal model | New Zealand rabbits | 5–15% | activation of growth factors, increase in collagen production, neutralizing dermal toxicity | Hemmati et al. [44] |
Peel and pulp extract | Tyrosinase inhibition | in vitro study in enzyme assays | mushroom tyrosinase and murine tyrosinase | 1–5% | synergistic inhibition of tyrosinase activity by flavonoids and phenolic acids | Lasota et al. [29] |
Peel extract | Tyrosinase inhibition | in vitro study in enzyme assays | tyrosinase solution | 10 mg/mL | inhibition of tyrosinase activity by phenolic compounds | Wang et al. [47] |
Purified seed protein | Tyrosinase inhibition | in vitro study in enzyme assays | mushroom tyrosinase | 100 μL | inhibition of tyrosinase activity by arginine residue | Deng et al. [48] |
Fruit extract incorporated into an emulgel | Moisturizing effect, effects against skin erythema | in vivo study in healthy volunteers | Human skin | 4% | Control of the TEWL | Khiljee et al. [51] |
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO | Cydonia oblonga |
SM | secondary metabolites |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
AAPH | 2,2′-azobis(2-amidinopropane) dihydrochloride |
FRAP | ferric reducing antioxidant power |
TPC | total phenolic content |
UV | ultraviolet |
SPF | Sun Protective Factor |
LPO | lipid peroxidation |
NO | nitric oxide |
IL | interleukin |
TNF-α | tumor necrosis factor-alpha |
GSH | reduced glutathione |
CAT | catalase |
CST | glutathione S-transferase |
LPS | lipopolysaccharide |
MIC | minimum inhibitory concentrations |
MBC | minimum bactericidal concentrations |
TEWL | transepidermal water loss |
References
- Gubitosa, F.; Fraternale, D.; De Bellis, R.; Gorassini, A.; Benayada, L.; Chiarantini, L.; Albertini, M.C.; Potenza, L. Cydonia oblonga Mill. Pulp Callus Inhibits Oxidative Stress and Inflammation in Injured Cells. Antioxidants 2023, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.U.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N. Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. Front. Pharmacol. 2016, 7, 163. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’nEill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed Central]
- Lee, H.S.; Jung, J.I.; Hwang, J.S.; Hwang, M.O.; Kim, E.J. Cydonia oblonga Miller fruit extract exerts an anti-obesity effect in 3T3-L1 adipocytes by activating the AMPK signaling pathway. Nutr. Res. Pract. 2023, 17, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Abed, S.N.; Bibi, S.; Jan, M.; Talha, M.; Islam, N.U.; Zahoor, M.; Al-Joufi, F.A. Phytochemical Composition, Antibacterial, Antioxidant and Antidiabetic Potentials of Cydonia oblonga Bark. Molecules 2022, 27, 6360. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants 2024, 13, 71. [Google Scholar] [CrossRef]
- Bell, R.L.; Leitao, J. Cydonia. In Wild Crop Relatives: Genomic and Breeding Resources; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–16. [Google Scholar] [CrossRef]
- Webster, A.D. Cydonia oblonga quince. In Encyclopedia of Fruit and Nuts; Janick, J., Paull, R.E., Eds.; CABI: Wallingford, UK, 2008; pp. 634–642. [Google Scholar]
- Sabir, S.; Qureshi, R.; Arshad, M.; Amjad, M.S.; Fatima, S.; Masood, M.; Saboon; Chaudhari, S.K. Pharmacognostic and clinical aspects of Cydonia oblonga: A review. Asian Pac. J. Trop. Dis. 2015, 5, 850–855. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The medical importance of Cydonia oblonga—A review. IOSR J. Pharm. 2016, 6, 87–99. [Google Scholar]
- Rop, O.; Balík, J.; ŘEZNÍČEK, V.; Juríková, T.; Škardová, P.; Salaš, P.; SOCHOR, J.; MLČEK, J.; Kramářová, D. Chemical characteristics of fruits of some selected quince (Cydonia oblonga Miller) cultivars. Cazech J. Food Sci. 2011, 29, 65–73. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Phenolic profile of quince fruit (Cydonia oblonga Miller) (Pulp and Peel). J. Agric. Food Chem. 2002, 50, 4615–4618. [Google Scholar] [CrossRef]
- Benzarti, S.; Hamdi, H.; Lahmayer, I.; Toumi, W.; Kerkeni, A.; Belkadhi, K.; Sebei, H. Total phenolic compounds and antioxidant potential of quince (Cydonia oblonga Miller) leaf methanol extract. Int. J. Inov. Appl. Stud. 2015, 13, 518–526. [Google Scholar]
- Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentao, P.; Seabra, R.M.; Silva, B.M. Phenolic profile of Cydonia oblonga Miller leaves. J. Agric. Food Chem. 2007, 55, 7926–7930. [Google Scholar] [CrossRef]
- Erdogan, T.; Gonenç, T.; Hortoglu, Z.S.; Demirci, B.; Baser, K.H.C.; Kıvçak, B. Chemical composition of the essential oil of quince (Cydonia oblonga Miller) leaves. Med. Aromat. Plants 2012, 1, 134. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Seabra, M.R.; Oliveira, M.B.; Margarida, A.F. Composition of Quince (Cydonia oblonga Miller) seeds: Phenolics, organic acids and free amino acids. Nat. Prod. Res. 2005, 19, 275–281. [Google Scholar] [CrossRef]
- Ferreres, F.; Silva, B.M.; Andrade, P.B.; Seabra, R.M.; Ferreira, M.A. Approach to the study of C-glycosyl flavones by ion trap HPLC-PADESI/MS/MS: Application to seeds of Quince (Cydonia oblonga). Phytochem. Anal. 2003, 14, 352–359. [Google Scholar] [CrossRef]
- Ghopur, H.; Usmanova, S.K.; Ayupbek, A.; Aisa, H.A. A new chromone from seeds of Cydonia oblonga. Chem. Nat. Compd. 2012, 48, 562–564. [Google Scholar] [CrossRef]
- Wei, J.J.; Wang, W.Q.; Song, W.B.; Xuan, L.J. Three new dibenzofurans from Cydonia oblonga Mill. Nat. Prod. Res. 2020, 34, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Fazeenah, A.H.A.; Quamri, M.A. Behidana (Cydonia oblonga Miller)—A review. World J. Pharm. Res. 2016, 5, 79–94. [Google Scholar]
- Cvetkovska, K.; Bauer, B. Ethnopharmacological and toxicological review of Cydonia oblonga M. Maced. Pharm. Bull. 2018, 64, 3–16. [Google Scholar] [CrossRef]
- Magalhães, A.S.; Silva, B.M.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 2009, 47, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M.; Silva, B.M. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 2009, 47, 860–865. [Google Scholar] [CrossRef]
- Papp, N.; Szabó, T.; Szabó, Z.; Nyéki, J.; Stefanovits-Bányai, É.; Hegedûs, A. Antioxidant capacity and total polyphenolic content in quince (Cydonia oblonga Mill.) fruit. J. Int. J. Hortic. Sci. 2013, 19, 33–35. [Google Scholar] [CrossRef]
- Pacifico, S.; Gallicchio, M.; Fiorentino, A.; Fischer, A.; Meyer, U.; Stintzing, F.C. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chem. Toxicol. 2012, 50, 4130–4135. [Google Scholar] [CrossRef]
- Yilmaz, D.C.; Seyhan, S.A. Antioxidant potential of Cydonia oblonga Miller leaves. Istanb. J. Pharm. 2017, 47, 9–11. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.H.; Abdel-Tawab, H.S.; Abdel Hakeem, S.S.; Mekkawy, I.A. The protective role of quince leaf extract against the adverse impacts of ultraviolet—A radiation on some tissues of Clarias gariepinus (Burchell, 1822). J. Photochem. Photobiol. B. 2013, 119, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lasota, M.; Lechwar, P.; Kukula-Koch, W.; Czop, M.; Czech, K.; Gawel-Beben, K. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts. Molecules 2024, 29, 1133. [Google Scholar] [CrossRef]
- Boo, Y.C. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants 2020, 9, 637. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Bastawy, S. Evaluation of antiinflammatory properties and possible mechanism of action of Egyptian quince (Cydonia oblonga) leaf. Egypt. J. Biochem. Mol. Biol. 2014, 32, 190–205. [Google Scholar]
- Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem. Biophy. Res. Commun. 2012, 418, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Iizuka, T. Inhibitory effect of hot-water extract of quince (Cydonia oblonga) on immunoglobulin E-dependent late-phase immune reactions of mast cells. Cytotechnology 2011, 63, 143–152. [Google Scholar] [CrossRef]
- Gründemann, C.; Papagiannopoulos, M.; Lamy, E.; Mersch-Sundermann, V.; Huber, R. Immunomodulatory properties of a lemon-quince preparation (Gencydo®) as an indicator of anti-allergic potency. Phytomedicine 2011, 18, 760–768. [Google Scholar] [CrossRef]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial Activity of Tunisian Quince (Cydonia oblonga Miller) Pulp and Peel Polyphenolic Extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef]
- Alizadeh, H.; Rahnema, M.; Semnani, S.; Hajizadeh, N. Detection of Compounds and Antibacterial Effect of Quince (Cydonia oblonga Miller) Extracts in vitro and in vivo. J. Biol. Act. Prod. Nat. 2013, 3, 303–309. [Google Scholar] [CrossRef]
- Al-khazraji, S.K. Phytochemical screening and antibacterial activity of the crude extract of Cydonia oblonga seeds. Glob. Adv. Res. J. Microbiol. 2013, 2, 137–140. [Google Scholar]
- Hamed, A.; Mehdi, R.; Shahrzad, N.S.; Ajalli, M. Synergistic antifungal effects of quince leaf’s extracts and silver nanoparticles on Aspergillus niger. J. Appl. Biol. Sci. 2014, 8, 10–13. [Google Scholar]
- Baran, M.F. Synthesis, characterization and investigation of antimicrobial activity of silver nanoparticles from Cydonia oblonga leaf. Appl. Ecol. Environ. Res. 2019, 17, 2583–2592. [Google Scholar] [CrossRef]
- Stortelers, C.; Kerkhoven, R.; Moolenaar, W. Multiple actions of LPA on fibroblasts revealed by transcriptional profiling. BMC Genom. 2008, 9, 387. [Google Scholar] [CrossRef]
- Ghafourian, M.; Tamri, P.; Hemmati, A. Enhancement of human skin fibroblasts proliferation as a result of treating with quince seed mucilage. Jundishapur J. Nat. Pharm. Prod. 2015, 10, e18820. [Google Scholar] [CrossRef] [PubMed]
- Pari, T.; Aliasghar, H.; Mehri Ghafourian, B. Wound healing properties of quince seed mucilage:In vivoevaluation in rabbit full-thickness wound model. Int. J. Surg. 2014, 12, 843–847. [Google Scholar] [CrossRef]
- Hemmati, A.A.; Kalantari, H.; Jalali, A.; Rezai, S.; Zadeh, H. Healing effect of quince seed mucilage on T-2 toxin-induced dermal toxicity in rabbit. Exp. Toxicol. Pathol. 2012, 64, 181–186. [Google Scholar] [CrossRef]
- Jafari, M.; Baniasadi, H.; Rezvanpour, A.; Lotfi, M. Fabrication and characterisation of a wound dressing composed of polyvinyl alcohol and quince seed mucilage. J. Wound Care 2021, 30, XIIIi–XIIIx. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Wang, P.; Lv, W.; Wang, H. Effects of freeze-hot air drying on physicochemical properties and anti-tyrosinase activity of quince peels. Food Chem. 2025, 463, 141507. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Liu, L. Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crops Prod. 2020, 148, 112331. [Google Scholar] [CrossRef]
- Raminelli, A.C.P.; Romero, V.; Semreen, M.H.; Leonardi, G.R. Nanotechnological Advances for Cutaneous Release of Tretinoin: An Approach to Minimize Side Effects and Improve Therapeutic Efficacy. Curr. Med. Chem. 2018, 25, 3703–3718. [Google Scholar] [CrossRef]
- Purnamawati, S.; Indrastuti, N.; Danarti, R.; Saefudin, T. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin. Med. Res. 2017, 15, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Khiljee, T.; Akhtar, N.; Khiljee, S.; Khiljee, B.; Rasheed, H.M.; Ansari, S.A.; Alkahtani, H.M.; Ansari, I.A. Gauging Quince Phytonutrients and Its 4% Emulgel Effect on Amplifying Facial Skin Moisturizing Potential. Gels 2023, 9, 934. [Google Scholar] [CrossRef]
- Alexander, H.; Brown, S.; Danby, S.; Flohr, C. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool. J. Investig. Dermatol. 2018, 138, 2295–2300.e1. [Google Scholar] [CrossRef] [PubMed]
- Abdlaty, R.; Hayward, J.; Farrell, T.; Fang, Q. Skin erythema and pigmentation: A review of optical assessment techniques. Photodiagnosis Photodyn. Ther. 2021, 33, 102127. [Google Scholar] [CrossRef] [PubMed]
Cydonia oblonga Formulation | Effect | Model | Material | Dosage/ Concentration | Mechanism | Study |
---|---|---|---|---|---|---|
Leaf extract | Anti-inflammatory activity | Arachidonic acid-induced ear edema, carrageenan-induced hind paw edema | Albino rats | 25 mg/kg; 50 mg/kg; 100 mg/kg | Antioxidative and free radical scavenging activities, enhancing the levels of GSH; suppression of the production of pro-inflammatory mediators (NO, IL-6, TNF-α) | Ahmed et al. [32] |
Peel extract | Anti-inflammatory activity | LPS-induced inflammation | Human myelomonocytic cell line THP-1 | 20 µg/mL | Suppression of the TNF-α and IL-8 production, increased production of the IL-10, inhibition of the LPS-mediated activation of NF-κB, pγ8MAPK, and Akt | Essafi-Benkhadir et al. [33] |
Fruit extract | Anti-allergic activity | in vitro study in the Ig E antigen-stimulated cell cultures | mast cell-like RBL-2H3 cell line, mouse bone marrow-derived mast cells | 50 μg/mL, 500 μg/mL | Inhibition of the IL-13 TNF-α expression level in Ig E antigen; inhibition of the leukotriene C4 and prostaglandin D2 production; reduction in the COX-2 expression | Kawahara et al. [34] |
Fruit extract in combination with Citrus limon juice | Anti-allergic activity | in vitro study in the Ig E-stimulated basophilic cell line, β-Hexosaminidase and histamine release assay | RBL-2H3 (rat basophilic cells), human mast cells HMC-1, lung epithelial BEAS-2B cells | 0.2 mg/mL, 0.4 mg/mL, 0.8 mg/mL | inhibition of the degranulation and histamine, cytokine, and chemokine release of basophilic cells and mast cells, modulation of the chemokine production from lung epithelial cells | Gründemann et al. [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamovic, A.; Tomovic, M.; Andjic, M.; Dimitrijevic, J.; Glisic, M.; Adamovic, M. Cydonia oblonga: A Comprehensive Overview of Applications in Dermatology and Cosmetics. Cosmetics 2025, 12, 187. https://doi.org/10.3390/cosmetics12050187
Adamovic A, Tomovic M, Andjic M, Dimitrijevic J, Glisic M, Adamovic M. Cydonia oblonga: A Comprehensive Overview of Applications in Dermatology and Cosmetics. Cosmetics. 2025; 12(5):187. https://doi.org/10.3390/cosmetics12050187
Chicago/Turabian StyleAdamovic, Ana, Marina Tomovic, Marijana Andjic, Jovana Dimitrijevic, Miona Glisic, and Miljan Adamovic. 2025. "Cydonia oblonga: A Comprehensive Overview of Applications in Dermatology and Cosmetics" Cosmetics 12, no. 5: 187. https://doi.org/10.3390/cosmetics12050187
APA StyleAdamovic, A., Tomovic, M., Andjic, M., Dimitrijevic, J., Glisic, M., & Adamovic, M. (2025). Cydonia oblonga: A Comprehensive Overview of Applications in Dermatology and Cosmetics. Cosmetics, 12(5), 187. https://doi.org/10.3390/cosmetics12050187