Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps
Abstract
1. Introduction
2. Materials and Methods
2.1. Applying the Methodi Ordinatio
2.2. Applying VOSviewer Software
2.3. Applying MAXQDA Software
3. Results and Discussion
3.1. Portfolio Developed Using the Methodi Ordinatio
3.2. Main Research Areas
3.3. Authors, Countries, Journals, and Institutions
3.4. Main Articles on Bioactive Compounds in Jaboticaba Peel
3.5. Extraction Methods
3.6. Analytical Methods
3.7. Antioxidant Activity Assessment Methods
3.8. Photoprotective Efficacy Assessment Methods
3.9. Evidence of the Use of Jaboticaba Peel Extracts in Photoprotective Dermocosmetics
3.10. Perspectives for the Development of Jaboticaba Peel Extracts with Antioxidant and Photoprotective Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Nº | Reference | Article | InOrdinatio |
---|---|---|---|
1 | [44] | Coffee by-products in topical formulations: A review. | 412 |
2 | [53] | Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. | 301 |
3 | [19] | Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jaboticaba (Myrciaria jaboticaba) peel and seed. | 264 |
4 | [69] | Plant-based active photoprotectants for sunscreens. | 251 |
5 | [16] | Flavonols and ellagic acid derivatives in peels of different species of jaboticaba (Plinia spp.) identified by HPLC-DAD-ESI/MS. | 249 |
6 | [37] | Ferulic acid photoprotective properties in association with UV filters: multifunctional sunscreen with improved SPF and UVA-PF. | 238 |
7 | [70] | Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. | 232 |
8 | [33] | Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. | 221 |
9 | [71] | Cyanobacteria and red macroalgae as potential sources of antioxidants and UV radiation-absorbing compounds for cosmeceutical applications. | 218 |
10 | [72] | Characterization and quantification of tannins, flavonols, anthocyanins and matrix-Bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. | 215 |
11 | [73] | Anti-photoaging and potential skin health benefits of seaweeds. | 212 |
12 | [20] | Extraction of antioxidant compounds from jaboticaba (Myrciaria cauliflora) skins: yield, composition and economical evaluation. | 211 |
13 | [74] | Development of alginate beads with encapsulated jaboticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. | 209 |
14 | [6] | Identification and quantification of phenolic composition from different species of jaboticaba (Plinia spp.) by HPLC-DAD-ESI/MS. | 207 |
15 | [75] | Comparative study of chemical and phenolic compositions of two species of jaboticaba: Myrciaria jaboticaba (Vell.) Berg and Myrciaria cauliflora (Mart.) O. Berg. | 207 |
16 | [2] | Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. | 197 |
17 | [43] | Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action. | 193 |
18 | [67] | Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. | 189 |
19 | [3] | Composition and potential health effects of dark-colored underutilized Brazilian fruits–A review. | 186 |
20 | [21] | Influence of different types of acids and pH in the recovery of bioactive compounds in Jaboticaba peel (Plinia cauliflora). | 179 |
21 | [76] | Ultrasound-assisted extraction of bioactive compounds from palm pressed fiber with high antioxidant and photoprotective activities. | 178 |
22 | [39] | SPF enhancement provided by rutin in a multifunctional sunscreen. | 174 |
23 | [68] | Functional photostability and cutaneous compatibility of bioactive UVA sun care products. | 169 |
24 | [30] | In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species. | 164 |
25 | [31] | The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. | 155 |
26 | [77] | Artemisia sieversiana Ehrhart ex Willd. Essential Oil and Its Main Component, Chamazulene: Their Photoprotective Effect against UVB-Induced Cellular Damage and Potential as Novel Natural Sunscreen Additives. | 154 |
27 | [18] | Sustainable production of bioactive compounds from jaboticaba (Myrciaria cauliflora): A bibliometric analysis of scientific research over the last 21 years. | 150 |
28 | [78] | Phenolic contents and in vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. | 149 |
29 | [79] | Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. | 145 |
30 | [80] | Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant. | 139 |
31 | [81] | Photoprotective, antioxidant, anticholinesterase activities and phenolic contents of different Algerian Mentha pulegium extracts. | 136 |
32 | [59] | Cynara scolymus L.: A promising Mediterranean extract for topical antiaging prevention. | 134 |
33 | [82] | Vitamin and bioactive compound diversity of seven fruit species from south Brazil. | 132 |
34 | [83] | Hyaluronic acid/polyphenol sunscreens with broad-spectrum UV protection properties from tannic acid and quercetin. | 116 |
35 | [84] | Antiproliferative activity on human colon adenocarcinoma cells and in vitro antioxidant effect of anthocyanin-rich extracts from peels of species of the Myrtaceae family. | 110 |
36 | [40] | Phyto-cosmeceutical gel containing curcumin and quercetin loaded mixed micelles for improved antioxidant and photoprotective activity. | 109 |
37 | [85] | Jaboticaba (Plinia peruviana) extract nanoemulsions: development, stability, and in vitro antioxidant activity. | 108 |
38 | [86] | Evaluation of Dispersive Solid-Phase Extraction (d-SPE) as a Clean-up Step for Phenolic Compound Determination of Myrciaria cauliflora Peel. | 108 |
39 | [87] | A novel approach in skin care: by-product extracts as natural UV filters and an alternative to synthetic ones. | 108 |
40 | [88] | Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species. | 107 |
41 | [89] | Phenolic composition of peels from different Jaboticaba species determined by HPLC-DAD-ESI/MSn and antiproliferative activity in tumor cell lines. | 106 |
42 | [90] | Formulation and optimization of phytosomes of ethanolic extract of Viola tricolor flowers using design of experiment (DOE) to evaluate in vitro photoprotective potential as sunscreen cream. | 106 |
43 | [91] | Exploring Mycosporine-like Amino Acid UV-Absorbing Natural Products for a New Generation of Environmentally Friendly Sunscreens. | 105 |
44 | [49] | Phenolic compounds from leaves and flowers of Hibiscus roseus: Potential skin cosmetic applications of an under-investigated species. | 102 |
45 | [57] | In vitro study of the antioxidant, photoprotective, anti-tyrosinase, and anti-urease effects of methanolic extracts from leaves of six Moroccan Lamiaceae. | 102 |
46 | [58] | Photoprotection and Antiaging Activity of Extracts from Honeybush (Cyclopia sp.)—In vitro wound healing and inhibition of the skin extracellular matrix enzymes: tyrosinase, collagenase, elastase and hyaluronidase. | 99 |
47 | [92] | Process optimization of phytoantioxidant and photoprotective compounds from carob pods (Ceratonia siliqua L.) using ultrasonic assisted extraction method. | 93 |
48 | [64] | Rutin increases critical wavelength of systems containing a single UV filter and with good skin compatibility. | 92 |
49 | [93] | Antioxidant activity, sun protection activity, and phytochemical profile of ethanolic extracts of Daemonorops acehensis resin and its phytosomes. | 90 |
50 | [94] | Factors affecting SPF in vitro measurement and correlation with in vivo results. | 90 |
51 | [95] | Brazilian berry extract (Myrciaria jaboticaba): A promising therapy to minimize prostatic inflammation and oxidative stress. | 89 |
52 | [96] | Brazilian agro-industrial wastes as a potential resource of bioactive compounds and their antimicrobial and antioxidant activities. | 86 |
53 | [62] | Jaboticaba (Myrciaria jaboticaba) peel as a sustainable source of anthocyanins and ellagitannins delivered by phospholipid vesicles for alleviating oxidative stress in human keratinocytes. | 85 |
54 | [97] | Milk thistle extracts could enhance the UV-protection efficiency and stability of mineral filters in sunscreen formulations. | 85 |
55 | [65] | Utilization of colored extracts for the formulation of ecological friendly plant-based green products. | 84 |
56 | [36] | Investigation of photoprotective, anti-inflammatory, antioxidant capacities and LC-ESI-MS phenolic profile of Astragalus gombiformis Pomel. | 82 |
57 | [98] | Efficient extraction of total polyphenols from apple and investigation of its SPF properties. | 80 |
58 | [99] | Potential of the ethyl acetate fraction of Padina boergesenii as a natural UV Filter in sunscreen cream formulation. | 78 |
59 | [100] | Efficiency of different solvents in the extraction of bioactive compounds from Plinia cauliflora and Syzygium cumini fruits as evaluated by paper spray mass spectrometry. | 78 |
60 | [17] | Jaboticaba, a Brazilian jewel, source of antioxidant and wound healing promoter. | 78 |
61 | [34] | Optimization of ultrasound-assisted extraction of bioactive compounds from jaboticaba (Myrciaria cauliflora) fruit through a Box-Behnken experimental design. | 77 |
62 | [26] | Sustainable extraction of phenolics and antioxidant activities from Prinsepia utilis byproducts for alleviating aging and oxidative stress. | 76 |
63 | [101] | Photoprotective, antioxidant potential and DNA damage protection assay of leaf methanolic extract of Holoptelea integrifolia (Roxb) Planch and determination of some bioactive phenolic compounds by RP-HPLC. | 76 |
64 | [27] | Valorization of wastes from the juice passion fruit production industry: extraction of bioactive compounds from seeds, antioxidant, photoprotective and antiproliferative activities. | 75 |
65 | [63] | In vitro solar protection factor, antioxidant activity, and stability of a topical formulation containing Benitaka grape (Vitis vinifera L.) peel extract. | 73 |
66 | [102] | Plinia cauliflora (Mart.) Kausel: toxicological assays, biological activities, and elemental analysis of organic compounds. | 71 |
67 | [103] | Labdanum resin from Cistus ladanifer L.: A natural and sustainable ingredient for skin care cosmetics with relevant cosmeceutical bioactivities. | 70 |
68 | [54] | Protective role of jaboticaba Plinia peruviana peel extract in copper-induced cytotoxicity in Allium cepa. | 65 |
69 | [22] | Anthocyanin extraction from jaboticaba skin (Myrciaria cauliflora Berg.) using conventional and non-conventional methods. | 65 |
70 | [104] | Freeze-dried jaboticaba (Myrciaria jaboticaba) peel powder, a rich source of anthocyanins and phenolic acids, mitigates inflammation-driven colorectal cancer in mice. | 59 |
71 | [7] | Extraction methods, chemical characterization, and in vitro biological activities of Plinia cauliflora (Mart.) Kausel peels. | 54 |
72 | [61] | A comprehensive review of the molecular mechanisms driving skin photoaging and the recent advances in therapeutic interventions involving natural polyphenols. | 53 |
73 | [32] | Glycerol extraction of bioactive compounds from Thanaka (Hesperethusa crenulata) bark through LCMS profiling and their antioxidant properties. | 52 |
74 | [105] | Spondias purpurea L. stem bark extract: antioxidant and in vitro Photoprotective Activities. | 49 |
75 | [14] | Photoprotective activity and HPLC-MS-ESI-IT profile of flavonoids from the barks of Hymenaea martiana Hayne (Fabaceae): development of topical formulations containing the hydroalcoholic extract. | 45 |
76 | [106] | The Cosmetic Potential of The Medicinal Halophyte Tamarix gallica L. (Tamaricaceae) growing in the eastern part of Algeria: photoprotective and antioxidant activities. | 44 |
77 | [23] | Thermal stability of total phenolic compounds and antioxidant activities of jaboticaba peel: Effect of solvents and extraction methods. | 44 |
78 | [55] | Industrial solid wastes from Ganoderma lucidum extract production: chemical characterization and investigation of antioxidant, photoprotective and cytotoxic activities. | 42 |
79 | [107] | Bioactivity profile of three types of seaweed as an antioxidant, UV-protection as sunscreen and their correlation activity. | 41 |
80 | [15] | Exploring the potential of Cytisus purgans as a source of bioactive molecules: In vitro pharmacological evaluation. | 37 |
81 | [108] | Valorization of peel-based agro-waste flour for food products: a systematic review on proximate composition and functional properties. | 34 |
82 | [109] | Modulating the photostability of (E)-resveratrol in grape cane extract formulations. | 33 |
83 | [60] | Antioxidant, UV protection, and antiphotoaging properties of anthocyanin-pigmented lipstick formulations. | 30 |
84 | [110] | Recovery of bioactive compounds from an agro-industrial waste: extraction, microencapsulation, and characterization of jaboticaba (Myrciaria cauliflora Berg) pomace as a source of antioxidant. | 26 |
85 | [35] | Optimization of phenolic compounds extraction and a study of the edaphic effect on the physicochemical composition of freeze-dried jaboticaba peel. | 24 |
86 | [111] | Anthocyanin extraction from jaboticaba (Myrciaria cauliflora) skins by different techniques: economic evaluation. | 20 |
87 | [112] | Peel of pineapple (Ananas comosus) as a potential source of antioxidants and photoprotective agents for sun protection cosmetics. | 16 |
88 | [113] | Jaboticaba (Myrciaria jaboticaba) peel extracts induce reticulum stress and apoptosis in breast cancer cells. | 15 |
89 | [114] | In vitro photoprotective, antioxidant and antibacterial activity of Vernonia squarrosa (D. Don) Less. | 12 |
90 | [115] | Influence of drying temperature on the chemical constituents of jaboticaba (Plinia jaboticaba (Vell.) Berg) skin. | 10 |
References
- IBGE Produção de Jabuticaba. Instituto Brasileiro de Geografia e Estatística. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/jabuticaba/br (accessed on 12 February 2025).
- Inada, K.O.P.; Leite, I.B.; Martins, A.B.N.; Fialho, E.; Tomás-Barberán, F.A.; Perrone, D.; Monteiro, M. Jaboticaba berry: A comprehensive review on Its polyphenol composition, health effects, metabolism, and the development of food products. Food Res. Int. 2021, 147, 110518. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Seraglio, S.K.T.; Brugnerotto, P.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Composition and potential health effects of dark-colored underutilized brazilian fruits—A review. Food Res. Int. 2020, 137, 109744. [Google Scholar] [CrossRef]
- Araujo, N.M.P.; Berni, P.; Zandoná, L.R.; Toledo, N.M.V.; Silva, P.P.M.; Toledo, A.A.; Maróstica Junior, M.R. Potential of brazilian berries in developing innovative, healthy, and sustainable food products. Sustain. Food Technol. 2023, 2, 506–530. [Google Scholar] [CrossRef]
- Sanches, M.A.R.; Camelo-Silva, C.; Tussolini, L.; Tussolini, M.; Zambiazi, R.C.; Becker Pertuzatti, P.B. Determination of acetylcholinesterase and alpha-glucosidase inhibition by electrophoretically-mediated microanalysis and phenolic profile by HPLC-ESI-MS/MS of fruit juices from brazilian Myrtaceae Plinia cauliflora (Mart.) Kausel and Eugenia uniflora L. Food Res. Int. 2022, 11, 154–159. [Google Scholar] [CrossRef]
- Neves, N.D.; Stringheta, P.C.; da Silva, I.F.; Garcia-Romero, E.; Gomez-Alonso, S.; Hermosin-Gutierrez, I. Identification and quantification of phenolic composition from different species of jaboticaba (Plinia spp.) by HPLC-DAD-ESI/MSn. Food Chem. 2021, 355, 129605. [Google Scholar] [CrossRef]
- Pinc, M.M.; Dalmagro, M.; da Cruz Alves Pereira, E.; Donadel, G.; Thomaz, R.T.; da Silva, C.; Macruz, P.D.; Jacomassi, E.; Gasparotto Junior, A.; Hoscheid, J.; et al. Extraction methods, chemical characterization, and In Vitro biological activities of Plinia cauliflora (Mart.) Kausel peels. Pharmaceuticals 2023, 16, 1173. [Google Scholar] [CrossRef] [PubMed]
- Dal Prá, V.; Lunelli, F.C.; Vendruscolo, R.G.; Martins, R.; Wagner, R.; Lazzaretti, A.P.; Freire, D.M.G.; Alexandri, M.; Koutinas, A.; Mazutti, M.A.; et al. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Chem. 2023, 3, 686–695. [Google Scholar] [CrossRef]
- Souza, Á.C.; Geraldi, M.V.; Marostica Junior, M.R. Jaboticaba berry: Metabolic benefits, bioactive compounds, and opportunities for commercialization. Trends Food Sci. Technol. 2025, 157, 104894. [Google Scholar] [CrossRef]
- Campos, E.A.R.; Pagani, R.N.; Resende, L.M.; Pontes, J. Construction and qualitative assessment of a bibliographic portfolio using the methodology Methodi Ordinatio. Scientometrics 2018, 116, 815–842. [Google Scholar] [CrossRef]
- Corsi, A.; Pagani, R.N.; Kovaleski, J.L.; Luiz da Silva, V. Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions. J. Clean. Prod. 2020, 245, 118522. [Google Scholar] [CrossRef]
- Eck, N.J.V.; Waltman, L.; Eck, N.J.V.; Waltman, L. Manual for VOSviewer Version 1.6.20. 2023. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf (accessed on 9 February 2025).
- VERBI Software. MAXQDA 2022 Online Manual. Available online: https://maxqda.com/help-max24/welcome (accessed on 10 February 2025).
- Oliveira, F.G.S.; Veras, B.O.; Silva, A.P.S.; Barbosa, D.C.S.; Silva, T.C.M.; Ribeiro, E.R.F.R.; Maia, M.M.L.; Júnior, U.P.S.; Lima, V.L.d.M.; Silva, M.V.D. Photoprotective activity and HPLC-MS-ESI-IT profile of flavonoids from the barks of Hymenaea martiana Hayne (Fabaceae): Development of topical formulations containing the hydroalcoholic extract. Biotechnol. Equip. 2021, 35, 504–516. [Google Scholar] [CrossRef]
- Chaira, S.; Bouzghaia, B.; Hanfer, M.; Kaddi, I.; Ben Moussa, M.T.; Pale, P.; Harkat, H. Exploring the potential of Cytisus purgans as a source of bioactive molecules: In Vitro pharmacological evaluation. Eur. J. Integr. Med. 2024, 67, 102349. [Google Scholar] [CrossRef]
- Neves, N.D.A.; Stringheta, P.C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Flavonols and ellagic acid derivatives in peels of different species of Jaboticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chem. 2018, 252, 61–71. [Google Scholar] [CrossRef]
- Cefali, L.C.; Franco, J.G.; Nicolini, G.F.; Santos, É.M.D.; Fava, A.L.M.; Figueiredo, M.C.; Ataide, J.A.; Foglio, M.A.; Mazzola, P.G. Jaboticaba, a brazilian jewel, source of antioxidant and wound healing promoter. Sustain. Chem. Pharm. 2021, 20, 100401. [Google Scholar] [CrossRef]
- Rosa, R.G.; Sganzerla, W.G.; Barroso, T.L.C.T.; Buller, L.S.; Berni, M.D.; Forster-Carneiro, T. Sustainable production of bioactive compounds from Jaboticaba (Myrciaria cauliflora): A bibliometric analysis of scientific research over the Last 21 Years. Sustain. Chem. Pharm. 2022, 27, 100656. [Google Scholar] [CrossRef]
- Inada, K.O.P.; Nunes, S.; Martinez-Blazquez, J.A.; Tomas-Barberan, F.A.; Perrone, D.; Monteiro, M. Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jaboticaba (Myrciaria jaboticaba) peel and seed. Food Chem. 2020, 309, 125794. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Extraction of antioxidant compounds from jaboticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. J. Food Eng. 2010, 101, 23–31. [Google Scholar] [CrossRef]
- Barros, H.D.F.Q.; Baseggio, A.M.; Angolini, C.F.F.; Pastore, G.M.; Cazarin, C.B.B.; Marostica-Junior, M.R. Influence of different types of acids and pH in the recovery of bioactive compounds in jaboticaba peel (Plinia cauliflora). Food Res. Int. 2019, 124, 16–26. [Google Scholar] [CrossRef]
- Mattos, G.N.; Santiago, M.; Chaves, A.; Rosenthal, A.; Tonon, R.V.; Cabral, L.M.C. Anthocyanin extraction from jaboticaba skin (Myrciaria cauliflora Berg.) using conventional and non-conventional methods. Foods 2022, 11, 885. [Google Scholar] [CrossRef]
- Marsiglia, W.I.M.L.; Oliveira, L.S.C.; Almeida, R.L.J.; Santos, N.C.C.; Neto, J.M.S.; Santiago, Â.M.; Melo, B.C.A.; Silva, F.L.H. Thermal stability of total phenolic compounds and antioxidant activities of jaboticaba peel: Effect of solvents and extraction methods. J. Indian Chem. Soc. 2023, 100, 100995. [Google Scholar] [CrossRef]
- Bohn, L.R.; Mibielli, G.M.; Teleken, J.G. Optimization of ultrasound-assisted extraction of phenolic compounds from wine production waste. In Open Science Research VIII; Editora Científica Digital: São Paulo, Brazil, 2022; pp. 1082–1095. [Google Scholar] [CrossRef]
- Sumere, B.R.; de Souza, M.C.; dos Santos, M.P.; Bezerra, R.M.N.; da Cunha, D.T.; Martinez, J.; Rostagno, M.A. Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrason. Sonochem. 2018, 48, 151–162. [Google Scholar] [CrossRef]
- Kewlani, P.; Singh, L.; Singh, B.; Bhatt, I.D. Sustainable extraction of phenolics and antioxidant activities from Prinsepia utilis byproducts for alleviating aging and oxidative stress. Sustain. Chem. Pharm. 2022, 29, 100791. [Google Scholar] [CrossRef]
- Santos, G.J.; Defendi, R.O.; Düsman, E.; Biffi, M.T.; Berton, G.H.; Tonin, A.P.P.; Meurer, E.C.; Suzuki, R.M.; Sípoli, C.C.; Tonin, L.T.D. Valorization of wastes from the juice passion fruit production industry: Extraction of bioactive compounds from seeds, antioxidant, photoprotective and antiproliferative activities. Waste Biomass Valorization 2023, 14, 1233–1250. [Google Scholar] [CrossRef]
- Velasco, M.V.R.; Balogh, T.S.; Pedriali, C.A.; Sarruf, F.D.; Pinto, C.A.S.O.; Kaneko, T.; Baby, A.R. Novas metodologias analíticas para avaliação da eficácia fotoprotetora (In Vitro)—Revisão. Rev. Cienc. Farm. Basica Apl. 2011, 32, 27–34. [Google Scholar]
- Donglikar, M.M.; Deore, S.L. Development and evaluation of herbal sunscreen. Pharmacogn. J. 2017, 9, 83–97. [Google Scholar] [CrossRef]
- Wroblewska, K.B.; Baby, A.R.; Guaratini, M.T.G.; Moreno, P.R.H. In Vitro antioxidant and photoprotective activity of five native brazilian bamboo species. Ind. Crops Prod. 2019, 130, 208–215. [Google Scholar] [CrossRef]
- Wawoczny, A.; Gillner, D. The most potent natural pharmaceuticals, cosmetics, and food ingredients isolated from plants with deep eutectic solvents. J. Agric. Food Chem. 2023, 71, 10877–10900. [Google Scholar] [CrossRef]
- Lim, M.W.; Quan Tang, Y.; Aroua, M.K.; Gew, L.T. Glycerol extraction of bioactive compounds from thanaka (Hesperethusa crenulata) bark through LCMS profiling and their antioxidant properties. ACS Omega 2024, 9, 14388–14405. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, S.; Durango-Zuleta, M.M.; Osorio-Tobon, J.F. Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food Bioprod. Process. 2020, 122, 111–123. [Google Scholar] [CrossRef]
- Fernandez-Barbero, G.; Pinedo, C.; Espada-Bellido, E.; Ferreiro-Gonzalez, M.; Carrera, C.; Palma, M.; Garcia-Barroso, C. Optimization of ultrasound-assisted extraction of bioactive compounds from jaboticaba (Myrciaria cauliflora) fruit through a Box-Behnken experimental design. Food Sci. Technol. 2019, 39, 1018–1029. [Google Scholar] [CrossRef]
- Pereira, L.D.; Ascheri, D.P.R.; Bastos, S.M.C.; Ascheri, J.L.R.; Santos, S.D. Optimization of phenolic compounds extraction and a study of the edaphic effect on the physicochemical composition of freeze-dried jaboticaba peel. Cienc. Agrotecnologia 2018, 42, 431–440. [Google Scholar] [CrossRef]
- Lekmine, S.; Boussekine, S.; Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, H.; Mekersi, N.; Bendjedid, S.; Bensouici, C.; et al. Investigation of photoprotective, anti-inflammatory, antioxidant capacities and LC-ESI-MS phenolic profile of Astragalus gombiformis pomel. Foods 2021, 10, 1937. [Google Scholar] [CrossRef]
- Peres, D.D.; Sarruf, F.D.; de Oliveira, C.A.; Velasco, M.V.R.; Baby, A.R. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B Biol. 2018, 185, 46–49. [Google Scholar] [CrossRef]
- Gadjalova, A.V.; Mihaylova, D.S. Ultrasound-assisted extraction of medicinal plants and evaluation of their biological activity. Food Res. 2019, 3, 530–536. [Google Scholar] [CrossRef]
- Tomazelli, L.C.; de Assis Ramos, M.M.; Sauce, R.; Cândido, T.M.; Sarruf, F.D.; de Oliveira Pinto, C.A.S.; de Oliveira, C.A.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. SPF enhancement provided by rutin in a multifunctional sunscreen. Int. J. Pharm. 2018, 552, 401–406. [Google Scholar] [CrossRef]
- Rao, M.R.P.; Gaikwad, P.; Misal, P.; Gandhi, S.V. Phyto-cosmeceutical gel containing curcumin and quercetin loaded mixed micelles for improved anti-oxidant and photoprotective activity. Colloids Surf. B Biointerfaces 2024, 237, 113837. [Google Scholar] [CrossRef] [PubMed]
- Candido, T.M.; Ariede, M.B.; Pinto, C.; Lima, F.V.; Magalhaes, W.V.; Pedro, N.M.E.; Padovani, G.; Sufi, B.D.; Rijo, P.; Velasco, M.V.R.; et al. Rosmarinic acid multifunctional sunscreen: Comet assay and In Vivo establishment of cutaneous attributes. Cosmetics 2022, 9, 141. [Google Scholar] [CrossRef]
- Candido, T.M.; Ariede, M.B.; Pinto, C.; Lourenco, F.R.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Prospecting In Vitro antioxidant and photoprotective properties of rosmarinic acid in a sunscreen system developed by QbD containing octyl p-methoxycinnamate and bemotrizinol. Cosmetics 2022, 9, 29. [Google Scholar] [CrossRef]
- Martínez-Inda, B.; Esparza, I.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Valorization of agri-food waste through the extraction of bioactive molecules. prediction of their sunscreen action. J. Environ. Manag. 2023, 325, 116460. [Google Scholar] [CrossRef] [PubMed]
- Santos, É.M.d.; Macedo, L.M.d.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.P.; Mazzola, P.G. Coffee by-products in topical formulations: A review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Morocho-Jacome, A.L.; Freire, T.B.; de Oliveira, A.C.; de Almeida, T.S.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. In Vivo SPF from multifunctional sunscreen systems developed with natural compounds-a review. J. Cosmet. Dermatol. 2021, 20, 729–737. [Google Scholar] [CrossRef]
- Zhang, K.-Q.; Lin, L.-L.; Xu, H. Research on antioxidant performance of diglucosyl gallic acid and its application in emulsion cosmetics. Int. J. Cosmet. Sci. 2022, 44, 177–188. [Google Scholar] [CrossRef]
- Xie, M.; Jiang, Z.; Lin, X.; Wei, X. Application of plant extracts cosmetics in the field of anti-aging. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100014. [Google Scholar] [CrossRef]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Effect of grape seed extract on skin fibroblasts exposed to UVA light and its photostability in sunscreen formulation. J. Cosmet. Dermatol. 2021, 20, 1271–1282. [Google Scholar] [CrossRef]
- Nascimento, L.B.S.; Gori, A.; Raffaelli, A.; Ferrini, F.; Brunetti, C. Phenolic compounds from leaves and flowers of hibiscus roseus: Potential skin cosmetic applications of an under-investigated species. Plants 2021, 10, 522. [Google Scholar] [CrossRef]
- Hübner, A.A.; Demarque, D.P.; Lourenço, F.R.; Rosado, C.; Baby, A.R.; Kikuchi, I.S.; Bacchi, E.M. Phytocompounds recovered from the waste of Cabernet Sauvignon (Vitis vinifera L.) vinification: Cytotoxicity (in normal and stressful conditions) and In Vitro photoprotection efficacy in a sunscreen system. Cosmetics 2023, 10, 2. [Google Scholar] [CrossRef]
- Ruscinc, N.; Morocho-Jácome, A.L.; Martinez, R.M.; Magalhaes, W.V.; Escudeiro, C.C.; Giarolla, J.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Vaccinium myrtillus L. Extract associated with octocrylene, bisoctrizole, and titanium dioxide: In Vitro and In Vivo tests to evaluate safety and efficacy. J. Cosmet. Dermatol. 2022, 21, 4765–4774. [Google Scholar] [CrossRef] [PubMed]
- Sarruf, F.D.; Sauce, R.; Candido, T.M.; Oliveira, C.A.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Butyrospermum parkii butter increased the photostability and In Vivo SPF of a molded sunscreen system. J. Cosmet. Dermatol. 2020, 19, 3296–3301. [Google Scholar] [CrossRef] [PubMed]
- Leite-Legatti, A.V.; Batista, A.G.; Dragano, N.R.V.; Marques, A.C.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Machado, A.R.T.; Carvalho-Silva, L.B.; Ruiz, A.; et al. Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. Food Res. Int. 2012, 49, 596–603. [Google Scholar] [CrossRef]
- Franscescon, F.; Mazon, S.C.; Bertoncello, K.T.; Boligon, A.A.; Sachett, A.; Rambo, C.L.; Rosemberg, D.B.; Magro, J.D.; Siebel, A.M. Protective role of jaboticaba Plinia peruviana peel extract in copper-induced cytotoxicity in Allium cepa. Environ. Sci. Pollut. Res. 2018, 25, 35322–35329. [Google Scholar] [CrossRef]
- Veljović, S.; Petrović, M.; Jovanović, M.; Mitić-Ćulafić, D.; Semen, T.Ž.Z.; Kostić, M.; Natić, M.; Veljovic, S.; Petrovic, M.; Jovanovic, M.; et al. Industrial solid wastes from Ganoderma lucidum extract production: Chemical characterization and investigation of antioxidant, photoprotective and cytotoxic activities. J. Food Meas. Charact. 2023, 17, 3673–3682. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Mazzei, J.L.; Oliveira, C.G.; Evangelista, H.; Marques, M.R.C.; Ferraz, E.R.A.; Felzenszwalb, I. Protection against UV-induced toxicity and lack of mutagenicity of antarctic Sanionia uncinata. Toxicology 2017, 376, 126–136. [Google Scholar] [CrossRef] [PubMed]
- El Aanachi, S.; Gali, L.; Rammali, S.; Bensouici, C.; Aassila, H.; Dari, K. In Vitro study of the antioxidant, photoprotective, anti-tyrosinase, and anti-urease effects of methanolic extracts from leaves of six moroccan Lamiaceae. J. Food Meas. Charact. 2021, 15, 1785–1795. [Google Scholar] [CrossRef]
- Hering, A.; Stefanowicz-Hajduk, J.; Gucwa, M.; Wielgomas, B.; Ochocka, J.R. Photoprotection and antiaging activity of extracts from honeybush (Cyclopia sp.)-In Vitro wound healing and inhibition of the skin extracellular matrix enzymes: Tyrosinase, collagenase, elastase and hyaluronidase. Pharmaceutics 2023, 15, 1542. [Google Scholar] [CrossRef]
- Marques, P.; Marto, J.; Goncalves, L.M.; Pacheco, R.; Fitas, M.; Pinto, P.; Serralheiro, M.L.M.; Ribeiro, H. Cynara scolymus L.: A promising mediterranean extract for topical anti-aging prevention. Ind. Crops Prod. 2017, 109, 699–706. [Google Scholar] [CrossRef]
- Westfall, A.; Sigurdson, G.T.; Giusti, M.M. Antioxidant, UV protection, and antiphotoaging properties of anthocyanin-pigmented lipstick formulations. J. Cosmet. Sci. 2019, 70, 63–76. Available online: https://pubmed.ncbi.nlm.nih.gov/31125306 (accessed on 8 February 2025).
- Sharma, P.; Dhiman, T.; Negi, R.S.; OC, A.; Gupta, K.; Bhatti, J.S.; Thareja, S. A comprehensive review of the molecular mechanisms driving skin photoaging and the recent advances in therapeutic interventions involving natural polyphenols. South Afr. J. Bot. 2024, 166, 466–482. [Google Scholar] [CrossRef]
- Castangia, I.; Manca, M.L.; Allaw, M.; Hellström, J.; Granato, D.; Manconi, M. Jaboticaba (Myrciaria jaboticaba) peel as a sustainable source of anthocyanins and ellagitannins delivered by phospholipid vesicles for alleviating oxidative stress in human keratinocytes. Molecules 2021, 26, 6697. [Google Scholar] [CrossRef] [PubMed]
- Cefali, L.C.; Ataide, J.A.; Sousa, I.M.d.O.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Foglio, M.A.; Mazzola, P.G. In Vitro solar protection factor, antioxidant activity, and stability of a topical formulation containing benitaka grape (Vitis vinifera L.) peel extract. Nat. Prod. Res. 2020, 34, 2677–2682. [Google Scholar] [CrossRef] [PubMed]
- Peres, D.A.; de Oliveira, C.A.; da Costa, M.S.; Tokunaga, V.K.; Mota, J.P.; Rosado, C.; Consiglieri, V.O.; Kaneko, T.M.; Velasco, M.V.R.; Baby, A.R. Rutin increases critical wavelength of systems containing a single UV filter and with good skin compatibility. Ski. Res. Technol. 2016, 22, 325–333. [Google Scholar] [CrossRef]
- Adeel, S.; Habiba, M.; Kiran, S.; Iqbal, S.; Abrar, S.; Hassan, C.M. Utilization of colored extracts for the formulation of ecological friendly plant-based green products. Sustainability 2022, 14, 1758. [Google Scholar] [CrossRef]
- Hübner, A.; Sobreira, F.; Neto, A.V.; Pinto, C.; Dario, M.F.; Diaz, I.E.C.; Lourenco, F.R.; Rosado, C.; Baby, A.R.; Bacchi, E.M. The synergistic behavior of antioxidant phenolic compounds obtained from winemaking waste’s valorization, increased the efficacy of a sunscreen system. Antioxidants 2019, 8, 530. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Peres, D.D.; Graziola, F.; Chacra, N.A.B.; Araujo, G.L.B.; Florido, A.C.; Mota, J.; Rosado, C.; Velasco, M.V.R.; Rodrigues, L.M.; et al. Cutaneous Biocompatible Rutin-Loaded Gelatin-Based Nanoparticles Increase the SPF of the Association of UVA and UVB Filters. Eur. J. Pharm. Sci. 2016, 81, 1–9. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Peres, D.D.; Rugno, C.M.; Kojima, M.; Pinto, C.A.S.O.; Consiglieri, V.O.; Kaneko, T.M.; Rosado, C.; Mota, J.; Velasco, M.V.R.; et al. Functional photostability and cutaneous compatibility of bioactive UVA sun care products. J. Photochem. Photobiol. B Biol. 2015, 148, 154–159. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-based active photoprotectants for sunscreens. Int. J. Cosmet. Sci. 2016, 38, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-B.; Long, C.L.; Kennelly, E. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from brazil. Food Res. Int. 2013, 54, 148–159. [Google Scholar] [CrossRef]
- Vega, J.; Bonomi-Barufi, J.; Gómez-Pinchetti, J.L.; Figueroa, F.L. Cyanobacteria and red macroalgae as potential sources of antioxidants and uv radiation-absorbing compounds for cosmeceutical applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef]
- Quatrin, A.; Pauletto, R.; Maurer, L.H.; Minuzzi, N.; Nichelle, S.M.; Carvalho, J.F.C.; Maróstica, M.R.; Rodrigues, E.; Bochi, V.C.; Emanuelli, T. Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. J. Food Compos. Anal. 2019, 78, 59–74. [Google Scholar] [CrossRef]
- Pangestuti, R.; Shin, K.-H.; Kim, S.-K. Anti-photoaging and potential skin health benefits of seaweeds. Mar. Drugs 2021, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Dallabona, I.; de Lima, G.G.; Cestaro, B.I.; Tasso, I.D.S.; Paiva, T.S.; Laureanti, E.J.G.; Jorge, L.M.D.; Silva, B.J.G.; Helm, C.V.; Mathias, A.L.L. Development of alginate beads with encapsulated jaboticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. Int. J. Biol. Macromol. 2020, 163, 1421–1432. [Google Scholar] [CrossRef]
- Alezandro, M.R.; Dubé, P.; Desjardins, Y.; Lajolo, F.M.; Genovese, M.I. Comparative study of chemical and phenolic compositions of two species of jaboticaba: Myrciaria jaboticaba (Vell.) Berg and Myrciaria cauliflora (Mart.) O. Berg. Food Res. Int. 2013, 54, 468–477. [Google Scholar] [CrossRef]
- Dal Pra, V.; Lunelli, F.C.; Vendruscolo, R.G.; Martins, R.; Wagner, R.; Lazzaretti, A.P.; Freire, D.M.G.; Alexandri, M.; Koutinas, A.; Mazutti, M.A.; et al. Ultrasound-assisted extraction of bioactive compounds from palm pressed fiber with high antioxidant and photoprotective activities. Ultrason. Sonochem. 2017, 36, 362–366. [Google Scholar] [CrossRef]
- Zhou, Y.; He, L.; Wang, W.; Wei, G.; Ma, L.; Liu, H.; Yao, L. Artemisia sieversiana Ehrhart Ex Willd. essential oil and its main component, chamazulene: Their photoprotective effect against UVB-induced cellular damage and potential as novel natural sunscreen additives. ACS Sustain. Chem. Eng. 2023, 11, 17675–17686. [Google Scholar] [CrossRef]
- El Aanachi, S.; Gali, L.; Nacer, S.N.; Bensouici, C.; Dari, K.; Aassila, H. Phenolic contents and In Vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. Biocatal. Agric. Biotechnol. 2020, 29, 101819. [Google Scholar] [CrossRef]
- Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Reboredo-Rodriguez, P.; Cianciosi, D.; Mezzetti, B.; Quiles, J.L.; Bompadre, S.; Battino, M.; Giampieri, F. Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. Nutrients 2017, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; De Oliveira, C.A.; Sarruf, F.D.; Parise-Filho, R.; Maurício, E.; De Almeida, T.S.; Velasco, M.V.R.; Baby, A.R. Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Yakoubi, R.; Megateli, S.; Hadj Sadok, T.; Gali, L. Photoprotective, antioxidant, anticholinesterase activities and phenolic contents of different algerian Mentha pulegium Extracts. Biocatal. Agric. Biotechnol. 2021, 34, 102038. [Google Scholar] [CrossRef]
- Schmidt, H.D.O.; Rockett, F.C.; Pagno, C.H.; Possa, J.; Assis, R.Q.; de Oliveira, V.R.; da Silva, V.L.; Flôres, S.H.; Rios, A.D.O. Vitamin and bioactive compound diversity of seven fruit species from south Brazil. J. Sci. Food Agric. 2019, 99, 3307–3317. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, D.; Park, S.A.; Park, J.J.; Park, W.H. Hyaluronic Acid/Polyphenol Sunscreens with broad-spectrum UV protection properties from tannic acid and quercetin. Int. J. Biol. Macromol. 2024, 257, 128585. [Google Scholar] [CrossRef]
- Frauches, N.S.; Montenegro, J.; Amaral, T.; Abreu, J.P.; Laiber, G.; Junior, J.; Borguini, R.; Santiago, M.; Pacheco, S.; Nakajima, V.M.; et al. Antiproliferative activity on human colon adenocarcinoma cells and In Vitro antioxidant effect of anthocyanin-rich extracts from peels of species of the Myrtaceae family. Molecules 2021, 26, 564. [Google Scholar] [CrossRef]
- Mazzarino, L.; da Silva Pitz, H.; Lorenzen Voytena, A.P.; Dias Trevisan, A.C.; Ribeiro-Do-Valle, R.M.; Maraschin, M. Jaboticaba (Plinia peruviana) extract nanoemulsions: Development, stability, and In Vitro antioxidant activity. Drug Dev. Ind. Pharm. 2018, 44, 643–651. [Google Scholar] [CrossRef]
- Senes, C.E.R.; Nicácio, A.E.; Rodrigues, C.A.; Manin, L.P.; Maldaner, L.; Visentainer, J.V. Evaluation of dispersive solid-phase extraction (d-SPE) as a clean-up step for phenolic compound determination of Myrciaria cauliflora peel. Food Anal. Methods 2020, 13, 155–165. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Gomes, S.M.; Santos, L. A Novel approach in skin care: By-product extracts as natural UV filters and an alternative to synthetic ones. Molecules 2023, 28, 2037. [Google Scholar] [CrossRef]
- Gasparotto Junior, A.; de Souza, P.; Lívero, F.A.D.R.; Junior, A.G.; de Souza, P.; Livero, F.A.D. Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely brazilian species. J. Ethnopharmacol. 2019, 245, 112169. [Google Scholar] [CrossRef]
- Paludo, M.C.; de Oliveira, S.B.P.; de Oliveira, L.F.F.; Colombo, R.C.C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; Prata, R.; Lima, A.F.F.; Filho, J.T.; Ballus, C.A.A.; et al. Phenolic composition of peels from different jaboticaba species determined by HPLC-DAD-ESI/MSn and antiproliferative activity in tumor cell lines. Curr. Plant Biol. 2022, 29, 100233. [Google Scholar] [CrossRef]
- Ameri, A.; Khazaeli, P.; Behnam, B.; Mehrabani, M.; Forootanfar, H. Formulation and optimization of phytosomes of ethanolic extract of Viola tricolor flowers using design of experiment (DOE) to evaluate In Vitro photoprotective potential as sunscreen cream. Ind. Crops Prod. 2024, 209, 118057. [Google Scholar] [CrossRef]
- Rosic, N.; Climstein, M.; Boyle, G.M.; Thanh Nguyen, D.; Feng, Y. Exploring mycosporine-like amino acid UV-absorbing natural products for a new generation of environmentally friendly sunscreens. Mar. Drugs 2023, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Ayad, R.; Ayad, R.; Bourekoua, H.; Lefahal, M.; Makhloufi, E.H.; Akkal, S.; Medjroubi, K.; Nieto, G. Process optimization of phytoantioxidant and photoprotective compounds from carob pods (Ceratonia siliqua L.) using ultrasonic assisted extraction method. Molecules 2022, 27, 8802. [Google Scholar] [CrossRef]
- Sari, R.K.; Prayogo, Y.H.; Rozan, S.A.; Rafi, M.; Wientarsih, I. Antioxidant activity, sun protection activity, and phytochemical profile of ethanolic extracts of Daemonorops acehensis resin and its phytosomes. Sci. Pharm. 2022, 90, 10. [Google Scholar] [CrossRef]
- Cvetkovska, A.D.; Manfredini, S.; Ziosi, P.; Molesini, S.; Dissette, V.; Magri, I.; Scapoli, C.; Carrieri, A.; Durini, E.; Vertuani, S. Factors affecting SPF In Vitro measurement and correlation with In Vivo results. Int. J. Cosmet. Sci. 2017, 39, 310–319. [Google Scholar] [CrossRef]
- Lamas, C.A.; Kido, L.A.; Hermes, T.A.; Nogueira-Lima, E.; Minatel, E.; Collares-Buzato, C.B.; Maróstica, M.R.; Cagnon, V.A. Brazilian berry extract (Myrciaria jaboticaba): A promising therapy to minimize prostatic inflammation and oxidative stress. Prostate 2020, 80, 859–871. [Google Scholar] [CrossRef]
- Valerio, A.; Avila, L.B.; Lacorte, D.H.; Martiny, T.R.; Rosseto, V.; Moraes, C.C.; Dotto, G.L.; Carreno, N.L.V.; da Rosa, G.S.; Filho, A.V.; et al. Brazilian agro-industrial wastes as a potential resource of bioative compounds and their antimicrobial and antioxidant activities. Molecules 2022, 27, 6876. [Google Scholar] [CrossRef]
- Erdoğan, Ü.; Gökçe, E.H.; Muhammed, M.T.; Önem, E.; Erten, A.A.; Süleymanoğlu, B. Milk thistle extracts could enhance the UV-protection efficiency and stability of mineral filters in sunscreen formulations. J. Photochem. Photobiol. A Chem. 2024, 450, 115460. [Google Scholar] [CrossRef]
- Opris, O.; Lung, I.L.K.; Soran, M.L.; Stegarescu, A.; Cesco, T.; Ghendov-Mosanu, A.; Podea, P.; Sturza, R. Efficient extraction of total polyphenols from apple and investigation of its SPF properties. Molecules 2022, 27, 1679. [Google Scholar] [CrossRef]
- Soleimani, S.; Yousefzadi, M.; Babaei Mahani Nezhad, S.; Pozharitskaya, O.N.; Shikov, A.N. Potential of the ethyl acetate fraction of Padina boergesenii as a natural UV filter in sunscreen cream formulation. Life 2023, 13, 239. [Google Scholar] [CrossRef] [PubMed]
- Correia, V.T.D.; Silva, V.D.M.; Mendonca, H.D.P.; Ramos, A.; Silva, M.R.; Augusti, R.; de Paula, A.; Ferreira, R.; Melo, J.O.F.; Fante, C.A. Efficiency of different solvents in the extraction of bioactive compounds from Plinia cauliflora and Syzygium cumini fruits as evaluated by paper spray mass spectrometry. Molecules 2023, 28, 2359. [Google Scholar] [CrossRef]
- Mondal, S.; Bandyopadhyay, A. Photoprotective, antioxidant potential and DNA damage protection assay of leaf methanolic extract of Holoptelea integrifolia (Roxb) planch and determination of some bioactive phenolic compounds by RP-HPLC. Biocatal. Agric. Biotechnol. 2023, 50, 102728. [Google Scholar] [CrossRef]
- Assis, P.M.; Dutra, R.C.; Amarante, C.B.; Chaves, A.; Moreira, C.; Brandao, M.; Raposo, N.R. Plinia cauliflora (Mart.) Kausel: Toxicological assays, biological activities, and elemental analysis of organic compounds. Nat. Prod. Res. 2021, 35, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- Frazão, D.F.; Martins-Gomes, C.; Steck, J.L.; Keller, J.; Delgado, F.; Gonçalves, J.C.; Bunzel, M.; Pintado, C.M.B.S.; Díaz, T.S.; Silva, A.M. Labdanum resin from Cistus ladanifer L.: A natural and sustainable ingredient for skin care cosmetics with relevant cosmeceutical bioactivities. Plants 2022, 11, 1477. [Google Scholar] [CrossRef]
- Nascimento, R.D.; Rizzato, J.S.; Polezi, G.; Moya, A.; Silva, M.F.; Machado, A.P.D.; Franchi, G.C.F.J.; Borguini, R.G.; Santiago, M.; Paiotti, A.P.R.; et al. Freeze-dried jaboticaba (Myrciaria jaboticaba) peel powder, a rich source of anthocyanins and phenolic acids, mitigates inflammation-driven colorectal cancer in mice. Food Biosci. 2023, 53. [Google Scholar] [CrossRef]
- Rodrigues, F.A.M.; Giffony, P.S.; dos Santos, S.B.F.; Guedes, J.A.C.; Ribeiro, M.E.N.P.; de Araújo, T.G.; da Silva, L.M.R.; Zocolo, G.J.; Ricardo, N.M.P.S. Spondias purpurea L. stem bark extract: Antioxidant and In Vitro photoprotective activities. J. Braz. Chem. Soc. 2021, 32, 1918–1930. [Google Scholar] [CrossRef]
- Lefahal, M.; Makhloufi, E.H.; Trifa, W.; Ayad, R.; El Hattab, M.; Benahmed, M.; Keskin, M.; Akkal, S. The cosmetic potential of the medicinal Halophyte tamarix Gallica L. (Tamaricaceae) growing in the eastern part of Algeria: Photoprotective and antioxidant activities. Comb. Chem. High Throughput Screen. 2021, 24, 1671–1678. [Google Scholar] [CrossRef]
- Sami, F.J.; Soekamto, N.H.; Firdaus; Latip, J. Bioactivity profile of three types of seaweed as an antioxidant, UV-protection as sunscreen and their correlation activity. Food Res. 2021, 5, 441–447. [Google Scholar] [CrossRef]
- Lesmana, D.; Vianney, Y.M.; Goenawan, Y.A.; Natalie, K.; Sukweenadhi, J.; Buschle-Diller, G.; Mukti, Y.P.; Erawati, C.M.; Purwanto, M.G.M. Valorization of Peel-Based Agro-Waste Flour for Food Products: A systematic review on proximate composition and functional properties. ACS Food Sci. Technol. 2022, 2, 3–20. [Google Scholar] [CrossRef]
- Besrukow, P.; Orbach, A.; Schweiggert, R. Modulating the photostability of (E)-resveratrol in grape cane extract formulations. ACS Food Sci. Technol. 2024, 4, 625–632. [Google Scholar] [CrossRef]
- Santos, S.S.D.; Paraíso, C.M.; Costa, S.C.D.A.; Ogawa, C.Y.L.; Sato, F.; Madrona, G.S. Recovery of bioactive compounds from an agro-industrial waste: Extraction, microencapsulation, and characterization of jaboticaba (Myrciaria cauliflora Berg) pomace as a source of antioxidant. Anais Acad. Bras. Cienc. 2022, 94, e20191372. [Google Scholar] [CrossRef] [PubMed]
- Veggi, P.C.; Santos, D.T.; Meireles, M.A.A. Anthocyanin extraction from jaboticaba (Myrciaria cauliflora) skins by different techniques: Economic evaluation. Procedia Food Sci. 2011, 1, 1725–1731. [Google Scholar] [CrossRef]
- Samarakoon, S.M.G.K.; Rajapakse, C.S.K. Peel of Pineapple (Ananas comosus) as a potential source of antioxidants and photo-protective agents for sun protection cosmetics. Med. Plants 2022, 14, 95–104. [Google Scholar] [CrossRef]
- da Silva-Maia, J.K.; Nagalingam, A.; Cazarin, C.B.B.; Marostica Junior, M.R.; Sharma, D. Jaboticaba (Myrciaria jaboticaba) peel extracts induce reticulum stress and apoptosis in breast cancer cells. Food Chem. Mol. Sci. 2023, 6, 100167. [Google Scholar] [CrossRef]
- Das, A.; Burman, S.; Chandra, G.; Bandyopadhyay, A. In Vitro photoprotective, antioxidant and antibacterial activity of Vernonia squarrosa (D. Don) Less. Plant Sci. Today 2021, 8, 331–339. [Google Scholar] [CrossRef]
- Alves, A.P.C.; Corrêa, A.D.; Oliveira, F.C.; Isquierdo, E.P.; Abreu, C.M.P.; Borém, F.M. Influence of drying temperature on the chemical constituents of jaboticaba (Plinia jaboticaba (Vell.) Berg) Skin. Acta Sci. Technol. 2014, 36, 721–726. [Google Scholar] [CrossRef]
Keyword Combinations | Science Direct | Scopus | PubMed | Web of Science | SciELO | ACS Databases | Total | |
---|---|---|---|---|---|---|---|---|
*TAK | *TAK | All Fields | Topic | All Indexes | **TA | |||
1 | (Jaboticaba skin OR Jaboticaba peel) | 56 | 124 | 56 | 116 | 17 | 33 | 402 |
2 | (Jaboticaba skin OR Jaboticaba peel) AND Antioxidant activity | 45 | 43 | 27 | 46 | 2 | 28 | 191 |
3 | (Jaboticaba skin OR Jaboticaba peel) AND anti-inflammatory | 4 | 8 | 6 | 14 | 1 | 22 | 55 |
4 | (Jaboticaba skin OR Jaboticaba peel) AND (Sun Protector Factor OR sunscreen) | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
5 | (Jaboticaba skin OR Jaboticaba peel) AND (SPF in vitro OR sunscreen) | 1 | 1 | 0 | 6 | 0 | 4 | 12 |
6 | (Jaboticaba skin OR Jaboticaba peel) AND ultraviolet protection | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | (Jaboticaba skin OR Jaboticaba peel) AND Antioxidant activity AND (SPF in vitro OR sunscreen) | 1 | 1 | 21 | 6 | 0 | 4 | 33 |
8 | (Jaboticaba skin OR Jaboticaba peel) AND cosmetics | 0 | 0 | 1 | 2 | 0 | 1 | 4 |
9 | (Jaboticaba skin OR Jaboticaba peel) AND topic formulation | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | (Jaboticaba skin OR Jaboticaba peel) AND Photoprotector Effic * | 8 | 0 | 0 | 0 | 0 | 0 | 8 |
11 | Plinia peruviana AND Antioxidant activity | 2 | 7 | 5 | 5 | 0 | 1 | 20 |
12 | Plinia cauliflora AND Antioxidant activity | 7 | 25 | 13 | 29 | 2 | 5 | 81 |
13 | Plinia trunciflora AND Antioxidant activity | 2 | 6 | 6 | 7 | 0 | 1 | 22 |
14 | Myrciaria cauliflora AND Antioxidant activity | 15 | 45 | 23 | 81 | 2 | 31 | 197 |
15 | Plinia peruviana AND (Sun Protect * Factor OR sunscreen) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | Plinia cauliflora AND (Sun Protect * Factor OR sunscreen) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | Plinia trunciflora AND (Sun Protect * Factor OR sunscreen) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | Myrciaria cauliflora AND (Sun Protect * Factor OR sunscreen) | 0 | 0 | 0 | 0 | 0 | 7 | 7 |
19 | (Bioactive compounds OR Phytocompounds) AND Antioxidant activity AND (Sun Protection Factor OR sunscreen OR SPF in vitro) | 22 | 49 | 71 | 38 | 0 | 12 | 192 |
Total by database | 164 | 310 | 229 | 350 | 24 | 149 | 1.226 |
Number of Articles | |
---|---|
Total number of articles in the databases | 1226 |
Duplicate articles | 764 |
Articles outside the scope | 372 |
Articles excluded | 1136 |
Total number of articles in the portfolio | 90 |
Ranking | Authors | Documents | Citations |
---|---|---|---|
1 | Baby, A.R. | 7 | 277 |
2 | Oliveira, C.A. | 6 | 253 |
3 | Velasco, M.V.R. | 5 | 222 |
4 | Marostica Junior, M.R. | 3 | 222 |
5 | Rosado, C. | 5 | 198 |
6 | Peres, D.D. | 3 | 170 |
7 | Ruiz, A.L.T.G. | 2 | 166 |
8 | Meireles, M.A.A. | 2 | 130 |
9 | Santos, D.T. | 2 | 130 |
10 | Veggi, P.C. | 2 | 130 |
Ranking | Countries | documents | citations |
1 | Brazil | 53 | 1297 |
2 | Spain | 14 | 330 |
3 | Portugal | 10 | 262 |
4 | Algeria | 6 | 55 |
5 | Italy | 4 | 80 |
6 | Peoples R. China | 3 | 112 |
7 | South Korea | 3 | 31 |
8 | India | 3 | 5 |
9 | USA | 2 | 86 |
10 | Colombia | 2 | 42 |
Ranking | Journals | documents | citations |
1 | Food Research International | 7 | 432 |
2 | Molecules | 7 | 34 |
3 | Natural Product Research | 4 | 19 |
4 | Food Chemistry | 3 | 120 |
5 | Journal of Photochemistry and Photobiology B-Biology | 3 | 119 |
6 | Marine Drugs | 3 | 66 |
7 | Biocatalysis and Agricultural Biotechnology | 3 | 30 |
8 | Sustainable Chemistry and Pharmacy | 3 | 24 |
9 | International Journal of Cosmetic Science | 2 | 86 |
10 | Plants-Basel | 2 | 21 |
Ranking | Institutions | documents | citations |
1 | University of Campinas, UNICAMP (Brazil) | 15 | 182 |
2 | University of São Paulo, USP (Brazil) | 8 | 93 |
3 | Federal University of Santa Maria, UFSM (Brazil) | 6 | 72 |
4 | Federal University of Santa Catarina, UFSC (Brazil) | 5 | 11 |
5 | Lusofona University, UL (Portugal) | 4 | 75 |
6 | Maringa State University, UEM (Brazil) | 3 | 88 |
7 | Federal University of Juiz De Fora, UFJF (Brazil) | 3 | 364 |
8 | Federal University of Minas Gerais, UFMG (Brazil) | 3 | 29 |
9 | Federal University of Rio De Janeiro, UFRJ (Brazil) | 3 | 13 |
10 | University of Castilla-La Mancha, UCLM (Spain) | 3 | 3 |
Jaboticaba Species | Articles |
---|---|
Myrciaria cauliflora (Mart. O. Berg) | 13 |
Fruit peel | 10 |
Fruit peel and pulp | 2 |
Fruit peel, seeds, and pulp | 1 |
Plinia cauliflora (Mart.) Kausel | 8 |
Fruit peel | 6 |
Fruit peel and pulp | 2 |
Myrciaria jaboticaba (Vell.) Berg | 5 |
Fruit peel | 5 |
Plinia peruviana (Poir.) Govaerts | 2 |
Fruit peel | 2 |
Plinia jaboticaba (Vell.) Berg | 2 |
Fruit peel | 2 |
Name/Chemical Structure | Absorption (λmáx) | Activities | Potential Applications | References |
---|---|---|---|---|
Rosmarinic acid | 330 nm | -Antioxidant -Anti-inflammatory | Protection of DNA from UVR damage | [31,41,42] |
Caffeic acid | 327 nm | Antiaging and sunscreen adjuvant | [26,43,44] | |
Ferulic acid | 307 nm | Prevention of erythema, photoaging, and skin cancer | [18,45,46] | |
Gallic acid | 280 nm | -Antioxidant -Anti-inflammatory -Tyrosinase inhibition | Reduces skin redness | [31,46,47] |
Catechin | 280–320 nm | -Antioxidant | Protects skin from UVR and antiaging | [48,49,50] |
Quercetin | 375 nm | Hyperpigmentation disorders treatment | [18,47,51] | |
Rutin | 280–367 nm | -Antioxidant -Induces apoptosis | Suppresses skin redness, atopic dermatitis, and allergic contact dermatitis | [29,39,52] |
Cyanidin-3-O-glicoside | 530 nm (red color) | -Antioxidant -Anti-inflammatory | Protects skin cells from oxidative damage | [18,31,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.S.; Sá, C.P.d.; Santos, M.G.d.; Rosado, C.; Alves, F.R.S.; Baby, A.R.; Reyes Torres, Y. Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps. Cosmetics 2025, 12, 182. https://doi.org/10.3390/cosmetics12050182
Silva JS, Sá CPd, Santos MGd, Rosado C, Alves FRS, Baby AR, Reyes Torres Y. Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps. Cosmetics. 2025; 12(5):182. https://doi.org/10.3390/cosmetics12050182
Chicago/Turabian StyleSilva, Jovane Santana, Clayton Pereira de Sá, Márcio Gonçalves dos Santos, Catarina Rosado, Fábia Rafaella Silva Alves, André Rolim Baby, and Yohandra Reyes Torres. 2025. "Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps" Cosmetics 12, no. 5: 182. https://doi.org/10.3390/cosmetics12050182
APA StyleSilva, J. S., Sá, C. P. d., Santos, M. G. d., Rosado, C., Alves, F. R. S., Baby, A. R., & Reyes Torres, Y. (2025). Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps. Cosmetics, 12(5), 182. https://doi.org/10.3390/cosmetics12050182