Computational Methods as Part of Scientific Research in Cosmetic Sciences—Are We Using the Opportunity?
Abstract
:1. Introduction
2. Modeling and Simulation—Various Modeling Approaches, Dependent Variable Character, and Various Input Data
3. Cosmetic Sciences and Cosmetic Product Development—Endpoints of Interest
3.1. Safety Assessment
3.2. Exposure Assessment
3.3. Formulation Characterization
- Physicochemical properties;
- Stability in reasonably foreseeable storage conditions and compatibility testing;
- Microbiological quality and challenge testing.
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beauty & Personal Care—Worldwide. Statista. Available online: https://www.statista.com/outlook/cmo/beauty-personal-care/worldwide (accessed on 15 March 2024).
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef] [PubMed]
- Gkika, D.A.; Mitropoulos, A.C.; Lambropoulou, D.A.; Kalavrouziotis, I.K.; Kyzas, G.Z. Cosmetic Wastewater Treatment Technologies: A Review. Environ. Sci. Pollut. Res. 2022, 29, 75223–75247. [Google Scholar] [CrossRef] [PubMed]
- Förster, M.; Bolzinger, M.-A.; Fessi, H.; Briançon, S. Topical Delivery of Cosmetics and Drugs. Molecular Aspects of Percutaneous Absorption and Delivery. Eur. J. Dermatol. 2009, 19, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Yamashita, F.; Hashida, M. QSAR Analysis of Interstudy Variable Skin Permeability Based on the “Latent Membrane Permeability” Concept. J. Pharm. Sci. 2003, 92, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Netscher, M.; Rehrl, T.; Jordan, S.; Roschmann, M.; Seibel, D.; Kill, K.; Heppler, P.; Lunkenheimer, M.; Kracklauer, A. AI in Cosmetics. Determinants Influencing the Acceptance of Product Configurators. Bavar. J. Appl. Sci. 2023, 6, 535–548. [Google Scholar] [CrossRef]
- Wilm, A. Development of Machine Learning Models for the Prediction of the Skin Sensitization Potential of Small Organic Compounds; Universität Hamburg: Hamburg, Germany, 2022. [Google Scholar]
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
- Bonate, P.L. Pharmacokinetic-Pharmacodynamic Modeling and Simulation, 2nd ed.; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9484-4. [Google Scholar]
- The European Parliament. REGULATION (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products; The European Parliament: Strasbourg, France, 2009. [Google Scholar]
- Bernauer, U.; Bodin, L.; Chaudhry, Q.; Coenraads, P.J.; Dusinska, M.; Ezendam, J.; Gaffet, E.; Galli, C.L.; Panteri, E.; Rogiers (Rapporteur), V.; et al. SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation—12th Revision; European Union: Maastricht, The Netherlands, 2023. [Google Scholar]
- The European Commission. COMMISSION REGULATION (EU) No 655/2013 of 10 July 2013 Laying down Common Criteria for the Justification of Claims Used in Relation to Cosmetic Products; The European Parliament: Strasbourg, France, 2013. [Google Scholar]
- Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Rathman, J.F.; Richarz, A.-N.; Yang, C. A Review of in Silico Toxicology Approaches to Support the Safety Assessment of Cosmetics-Related Materials. Comput. Toxicol. 2022, 21, 100213. [Google Scholar] [CrossRef]
- Madden, J.C.; Enoch, S.J.; Paini, A.; Cronin, M.T.D. A Review of In Silico Tools as Alternatives to Animal Testing: Principles, Resources and Applications. Altern. Lab. Anim. 2020, 48, 146–172. [Google Scholar] [CrossRef]
- Ta, G.H.; Weng, C.-F.; Leong, M.K. In Silico Prediction of Skin Sensitization: Quo Vadis? Front. Pharmacol. 2021, 12, 655771. [Google Scholar] [CrossRef]
- European Union. Final Report Summary—COSMOS (Integrated In Silico Models for the Prediction of Human Repeated Dose Toxicity of Cosmetics to Optimise Safety); European Union: Maastricht, The Netherlands, 2015. [Google Scholar]
- Russo, G.; Crispino, E.; Corsini, E.; Iulini, M.; Paini, A.; Worth, A.; Pappalardo, F. Computational Modelling and Simulation for Immunotoxicity Prediction Induced by Skin Sensitisers. Comput. Struct. Biotechnol. J. 2022, 20, 6172–6181. [Google Scholar] [CrossRef]
- OECD. Test No. 428: Skin Absorption: In Vitro Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2004; ISBN 978-92-64-07108-7. [Google Scholar]
- Li, H.; Reynolds, J.; Sorrell, I.; Sheffield, D.; Pendlington, R.; Cubberley, R.; Nicol, B. PBK Modelling of Topical Application and Characterisation of the Uncertainty of Cmax Estimate: A Case Study Approach. Toxicol. Appl. Pharmacol. 2022, 442, 115992. [Google Scholar] [CrossRef] [PubMed]
- Lehman, P.A.; Raney, S.G.; Franz, T.J. Percutaneous Absorption in Man: In Vitro-in Vivo Correlation. Ski. Pharmacol. Physiol. 2011, 24, 224–230. [Google Scholar] [CrossRef]
- Dumont, C.; Prieto, P.; Asturiol, D.; Worth, A. Review of the Availability of In Vitro and In Silico Methods for Assessing Dermal Bioavailability. Appl. Vitr. Toxicol. 2015, 1, 147–164. [Google Scholar] [CrossRef]
- Grégoire, S.; Sorrell, I.; Lange, D.; Najjar, A.; Schepky, A.; Ellison, C.; Troutman, J.; Fabian, E.; Duplan, H.; Genies, C.; et al. Cosmetics Europe Evaluation of 6 in Silico Skin Penetration Models. Comput. Toxicol. 2021, 19, 100177. [Google Scholar] [CrossRef]
- Neely, B.J.; Madihally, S.V.; Robinson, R.L.; Gasem, K.A.M. Nonlinear Quantitative Structure-Property Relationship Modeling of Skin Permeation Coefficient. J. Pharm. Sci. 2009, 98, 4069–4084. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Notes on Dermal Absorption; Series on Testing and Assessment No. 156; OECD: Paris, France, 2011. [Google Scholar]
- Bouwman, T.; Cronin, M.; Bessems, J.; Van De Sandt, J. Improving the Applicability of (Q)SARs for Percutaneous Penetration in Regulatory Risk Assessment. Hum. Exp. Toxicol. 2008, 27, 269–276. [Google Scholar] [CrossRef]
- Riviere, J.E.; Brooks, J.D. Predicting Skin Permeability from Complex Chemical Mixtures. Toxicol. Appl. Pharmacol. 2005, 208, 99–110. [Google Scholar] [CrossRef]
- Grégoire, S.; Ribaud, C.; Benech, F.; Meunier, J.R.; Garrigues-Mazert, A.; Guy, R.H. Prediction of Chemical Absorption into and through the Skin from Cosmetic and Dermatological Formulations. Br. J. Dermatol. 2009, 160, 80–91. [Google Scholar] [CrossRef]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Moss, G.P.; Cronin, M.T.D. Quantitative Structure–Permeability Relationships for Percutaneous Absorption: Re-Analysis of Steroid Data. Int. J. Pharm. 2002, 238, 105–109. [Google Scholar] [CrossRef]
- Barratt, M.D. Quantitative Structure-Activity Relationships for Skin Permeability. Toxicol. Vitr. 1995, 9, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Frederick Frasch, H. A Random Walk Model of Skin Permeation. Risk Anal. 2002, 22, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Wilschut, A.; Ten Berge, W.F.; Robinson, P.J.; McKone, T.E. Estimating Skin Permeation. The Validation of Five Mathematical Skin Permeation Models. Chemosphere 1995, 30, 1275–1296. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, D.; Corish, J.; Hayes, B. Modelling Skin Permeability in Risk Assessment––the Future. Chemosphere 2004, 55, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, P.; Bodor, N. A Simple, Predictive, Structure-Based Skin Permeability Model. J. Pharm. Pharmacol. 2010, 53, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, B.M.; Anissimov, Y.G.; Cross, S.E.; Roberts, M.S. Molecular Size as the Main Determinant of Solute Maximum Flux Across the Skin. J. Investig. Dermatol. 2004, 122, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Milewski, M.; Stinchcomb, A.L. Estimation of Maximum Transdermal Flux of Nonionized Xenobiotics from Basic Physicochemical Determinants. Mol. Pharm. 2012, 9, 2111–2120. [Google Scholar] [CrossRef]
- Roberts, W.J.; Sloan, K.B. Correlation of Aqueous and Lipid Solubilities with Flux for Prodrugs of 5-fluorouracil, Theophylline, and 6-mercaptopurine: A Potts–Guy Approach. J. Pharm. Sci. 1999, 88, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Cronin, M.T.D.; Dearden, J.C.; Moss, G.P.; Murray-Dickson, G. Investigation of the Mechanism of Flux across Human Skin in Vitro by Quantitative Structure–Permeability Relationships. Eur. J. Pharm. Sci. 1999, 7, 325–330. [Google Scholar] [CrossRef]
- Patel, H.; Berge, W.T.; Cronin, M.T.D. Quantitative Structure–Activity Relationships (QSARs) for the Prediction of Skin Permeation of Exogenous Chemicals. Chemosphere 2002, 48, 603–613. [Google Scholar] [CrossRef]
- Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. The Factors That Influence Skin Penetration of Solutes. J. Pharm. Pharmacol. 1995, 47, 8–16. [Google Scholar] [CrossRef]
- Mitragotri, S. A Theoretical Analysis of Permeation of Small Hydrophobic Solutes across the Stratum Corneum Based on Scaled Particle Theory. J. Pharm. Sci. 2002, 91, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, A.; Modarress, H. Linear and Nonlinear Quantitative Structure-Property Relationship Modelling of Skin Permeability. SAR QSAR Environ. Res. 2014, 25, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Baba, H.; Ueno, Y.; Hashida, M.; Yamashita, F. Quantitative Prediction of Ionization Effect on Human Skin Permeability. Int. J. Pharm. 2017, 522, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-P.; Chen, C.-C.; Huang, C.-W.; Chang, Y.-C. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability. Molecules 2018, 23, 911. [Google Scholar] [CrossRef]
- Rezaei, S.; Behnejad, H.; Shiri, F.; Ghasemi, J.B. Exploring 3D-QSPR Models of Human Skin Permeability for a Diverse Dataset of Chemical Compounds. J. Recept. Signal Transduct. 2019, 39, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-W.; Ta, G.H.; Lung, Y.-C.; Weng, C.-F.; Leong, M.K. In Silico Prediction of Skin Permeability Using a Two-QSAR Approach. Pharmaceutics 2022, 14, 961. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.J.; Quah, X.L. Predicting Skin Permeability Using HuskinDB. Sci. Data 2022, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Lehr, C.-M.; Schaefer, U.F. Improved Input Parameters for Diffusion Models of Skin Absorption. Adv. Drug Deliv. Rev. 2013, 65, 251–264. [Google Scholar] [CrossRef]
- Patel, N.; Clarke, J.F.; Salem, F.; Abdulla, T.; Martins, F.; Arora, S.; Tsakalozou, E.; Hodgkinson, A.; Arjmandi-Tash, O.; Cristea, S.; et al. Multi-phase Multi-Layer Mechanistic Dermal Absorption (MPML MechDermA) Model to Predict Local and Systemic Exposure of Drug Products Applied on Skin. CPT Pharmacom. Syst. Pharmacol. 2022, 11, 1060–1084. [Google Scholar] [CrossRef]
- Ellison, C.A.; Tankersley, K.O.; Obringer, C.M.; Carr, G.J.; Manwaring, J.; Rothe, H.; Duplan, H.; Géniès, C.; Grégoire, S.; Hewitt, N.J.; et al. Partition Coefficient and Diffusion Coefficient Determinations of 50 Compounds in Human Intact Skin, Isolated Skin Layers and Isolated Stratum Corneum Lipids. Toxicol. Vitr. 2020, 69, 104990. [Google Scholar] [CrossRef]
- Nitsche, J.M.; Wang, T.-F.; Kasting, G.B. A Two-Phase Analysis of Solute Partitioning into the Stratum Corneum. J. Pharm. Sci. 2006, 95, 649–666. [Google Scholar] [CrossRef]
- Raykar, P.V.; Fung, M.; Anderson, B.D. The Role of Protein and Lipid Domains in the Uptake of Solutes by Human Stratum Corneum. Pharm. Res. 1988, 5, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Manda, P.; Pavurala, N.; Khan, M.A.; Krishnaiah, Y.S.R. Development and Validation of in Vitro–in Vivo Correlation (IVIVC) for Estradiol Transdermal Drug Delivery Systems. J. Control. Release 2015, 210, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Valiveti, S.; Wesley, J.; Lu, G.W. Investigation of Drug Partition Property in Artificial Sebum. Int. J. Pharm. 2008, 346, 10–16. [Google Scholar] [CrossRef]
- Chen, L.; Han, L.; Saib, O.; Lian, G. In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals. Pharm. Res. 2015, 32, 1779–1793. [Google Scholar] [CrossRef]
- Kretsos, K.; Miller, M.A.; Zamora-Estrada, G.; Kasting, G.B. Partitioning, Diffusivity and Clearance of Skin Permeants in Mammalian Dermis. Int. J. Pharm. 2008, 346, 64–79. [Google Scholar] [CrossRef]
- Shatkin, J.A.; Brown, H.S. Pharmacokinetics of the Dermal Route of Exposure to Volatile Organic Chemicals in Water: A Computer Simulation Model. Environ. Res. 1991, 56, 90–108. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Berk, D.A.; Blankschtein, D.; Golan, D.E.; Jain, R.K.; Langer, R.S. Lateral Diffusion of Small Compounds in Human Stratum Corneum and Model Lipid Bilayer Systems. Biophys. J. 1996, 71, 2656–2668. [Google Scholar] [CrossRef]
- Mitragotri, S. Modeling Skin Permeability to Hydrophilic and Hydrophobic Solutes Based on Four Permeation Pathways. J. Control. Release 2003, 86, 69–92. [Google Scholar] [CrossRef]
- Wang, T.-F.; Kasting, G.B.; Nitsche, J.M. A Multiphase Microscopic Diffusion Model for Stratum Corneum Permeability. I. Formulation, Solution, and Illustrative Results for Representative Compounds. J. Pharm. Sci. 2006, 95, 620–648. [Google Scholar] [CrossRef] [PubMed]
- Guy, R.H.; Maibach, H.I. Rapid Radial Transport of Methyl Nicotinate in the Dermis. Arch. Dermatol. Res. 1982, 273, 91–95. [Google Scholar] [CrossRef]
- Clarke, J.F.; Patel, N.; Polak, S. Predicting Diffusion in the Dermis: A Physiologically Based, Bottom-Up Approach; Barrier Function of Mammalian Skin (GRS): Waterville Valley, NH, USA, 2019. [Google Scholar]
- Yang, S.; Li, L.; Lu, M.; Chen, T.; Han, L.; Lian, G. Determination of Solute Diffusion Properties in Artificial Sebum. J. Pharm. Sci. 2019, 108, 3003–3010. [Google Scholar] [CrossRef]
- Moxon, T.E.; Li, H.; Lee, M.-Y.; Piechota, P.; Nicol, B.; Pickles, J.; Pendlington, R.; Sorrell, I.; Baltazar, M.T. Application of Physiologically Based Kinetic (PBK) Modelling in the next Generation Risk Assessment of Dermally Applied Consumer Products. Toxicol. Vitr. 2020, 63, 104746. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.G.A.; Jaiswal, S.; Chen, K.-F.; Jones, H.M.; Templeton, I.E. Real-World Application of PBPK in Drug Discovery. Drug Metab. Dispos. 2023, 52, DMD-MR-2022-001036. [Google Scholar] [CrossRef]
- Yuvaneshwari, K.; Kollipara, S.; Ahmed, T.; Chachad, S. Applications of PBPK/PBBM Modeling in Generic Product Development: An Industry Perspective. J. Drug Deliv. Sci. Technol. 2022, 69, 103152. [Google Scholar] [CrossRef]
- Krstevska, A.; Đuriš, J.; Ibrić, S.; Cvijić, S. In-Depth Analysis of Physiologically Based Pharmacokinetic (PBPK) Modeling Utilization in Different Application Fields Using Text Mining Tools. Pharmaceutics 2022, 15, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Grimstein, M.; Fan, J.; Grillo, J.A.; Huang, S.; Zhu, H.; Wang, Y. Application of PBPK Modeling and Simulation for Regulatory Decision Making and Its Impact on US Prescribing Information: An Update on the 2018-2019 Submissions to the US FDA’s Office of Clinical Pharmacology. J. Clin. Pharma 2020, 60, S160–S178. [Google Scholar] [CrossRef]
- Middleton, A.M.; Reynolds, J.; Cable, S.; Baltazar, M.T.; Li, H.; Bevan, S.; Carmichael, P.L.; Dent, M.P.; Hatherell, S.; Houghton, J.; et al. Are Non-Animal Systemic Safety Assessments Protective? A Toolbox and Workflow. Toxicol. Sci. 2022, 189, 124–147. [Google Scholar] [CrossRef]
- Thompson, C.V.; Firman, J.W.; Goldsmith, M.R.; Grulke, C.M.; Tan, Y.-M.; Paini, A.; Penson, P.E.; Sayre, R.R.; Webb, S.; Madden, J.C. A Systematic Review of Published Physiologically-Based Kinetic Models and an Assessment of Their Chemical Space Coverage. Altern. Lab. Anim. 2021, 49, 197–208. [Google Scholar] [CrossRef]
- Cheruvu, H.S.; Liu, X.; Grice, J.E.; Roberts, M.S. An Updated Database of Human Maximum Skin Fluxes and Epidermal Permeability Coefficients for Drugs, Xenobiotics, and Other Solutes Applied as Aqueous Solutions. Data Brief 2022, 42, 108242. [Google Scholar] [CrossRef]
- Paini, A.; Worth, A.; Kulkarni, S.; Ebbrell, D.; Madden, J. Assessment of the Predictive Capacity of a Physiologically Based Kinetic Model Using a Read-across Approach. Comput. Toxicol. 2021, 18, 100159. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on the Characterisation, Validation and Reporting of Physiologically Based Kinetic (PBK) Models for Regulatory Purposes; Series on Testing and Assessment No. 331; OECD: Paris, France, 2021. [Google Scholar]
- Alexander-White, C.; Bury, D.; Cronin, M.; Dent, M.; Hack, E.; Hewitt, N.J.; Kenna, G.; Naciff, J.; Ouedraogo, G.; Schepky, A.; et al. A 10-Step Framework for Use of Read-across (RAX) in next Generation Risk Assessment (NGRA) for Cosmetics Safety Assessment. Regul. Toxicol. Pharmacol. 2022, 129, 105094. [Google Scholar] [CrossRef]
- Ouedraogo, G.; Alexander-White, C.; Bury, D.; Clewell, H.J.; Cronin, M.; Cull, T.; Dent, M.; Desprez, B.; Detroyer, A.; Ellison, C.; et al. Read-across and New Approach Methodologies Applied in a 10-Step Framework for Cosmetics Safety Assessment—A Case Study with Parabens. Regul. Toxicol. Pharmacol. 2022, 132, 105161. [Google Scholar] [CrossRef]
- Bury, D.; Alexander-White, C.; Clewell, H.J.; Cronin, M.; Desprez, B.; Detroyer, A.; Efremenko, A.; Firman, J.; Hack, E.; Hewitt, N.J.; et al. New Framework for a Non-Animal Approach Adequately Assures the Safety of Cosmetic Ingredients—A Case Study on Caffeine. Regul. Toxicol. Pharmacol. 2021, 123, 104931. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bunglawala, F.; Hewitt, N.J.; Pendlington, R.; Cubberley, R.; Nicol, B.; Spriggs, S.; Baltazar, M.; Cable, S.; Dent, M. ADME Characterization and PBK Model Development of 3 Highly Protein-Bound UV Filters through Topical Application. Toxicol. Sci. 2023, 196, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhang, Z.; Zhang, Y.; Zhan, M.; Qu, W.; He, G.; Zhou, Y. Development of Human Dermal PBPK Models for the Bisphenols BPA, BPS, BPF, and BPAF with Parallel-Layered Skin Compartment: Basing on Dermal Administration Studies in Humans. Sci. Total Environ. 2023, 868, 161639. [Google Scholar] [CrossRef] [PubMed]
- Cosmetics Europe the Personal Care Association. Guidelines on Stability Testing of Cosmetic Products; Cosmetics Europe the Personal Care Association: Auderghem, Belgium, 2004. [Google Scholar]
- Rico, F.; Mazabel, A.; Egurrola, G.; Pulido, J.; Barrios, N.; Marquez, R.; García, J. Meta-Analysis and Analytical Methods in Cosmetics Formulation: A Review. Cosmetics 2023, 11, 1. [Google Scholar] [CrossRef]
- Ainurofiq, A.; Maharani, A.; Fatonah, F.; Halida, H.N.; Nurrodlotiningtyas, T. Pre-Formulation Study on The Preparation of Skin Cosmetics. Sci. Technol. Indones 2021, 6, 273–284. [Google Scholar] [CrossRef]
- Postles, A. Factors Affecting the Measurement of Stability and Safety of Cosmetic Products; Bournemouth University: Poole, UK, 2018. [Google Scholar]
- ISO 07.100.40; Cosmetics Microbiology. International Organisation for Standardisation: Geneva, Switzerland, 2014.
- Herrera, A.G. Microbiological Analysis of Cosmetics. In Public Health Microbiology; Humana Press: Totowa, NJ, USA, 2004; Volume 268, pp. 293–296. ISBN 978-1-59259-766-6. [Google Scholar]
- Huang, J.; Hitchins, A.; Tran, T.; McCarron, J. Bacteriological Analytical Manual Chapter 23: Methods for Cosmetics; FDA: Silver Spring, MD, USA, 2024. [Google Scholar]
- Council of Europe. European Pharmacopoeia Commission. 5.1.3. Efficacy of Antimicrobial Preservation. In European Pharmacopoeia 6.0; Council of Europe: Strasbourg, France, 2008. [Google Scholar]
- Cosmetics Europe the Personal Care Association. Guidelines for Cosmetic Product Claim Substantiation. Revising and Expanding the Colipa Guidelines on Efficacy (2001/Rev. 2008); Cosmetics Europe the Personal Care Association: Auderghem, Belgium, 2019. [Google Scholar]
- Piasentin, N.; Lian, G.; Cai, Q. In Silico Prediction of Stratum Corneum Partition Coefficients via COSMOmic and Molecular Dynamics Simulations. J. Phys. Chem. B 2023, 127, 2719–2728. [Google Scholar] [CrossRef]
- Bom, S.; Gouveia, L.F.; Pinto, P.; Martins, A.M.; Ribeiro, H.M.; Marto, J. A Mathematical Modeling Strategy to Predict the Spreading Behavior on Skin of Sustainable Alternatives to Personal Care Emollients. Colloids Surf. B Biointerfaces 2021, 205, 111865. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.R.; Lee, H.-J.; Kim, B.S.; Oh, H.; Lee, J.B.; Park, K.; Yi, Y.J.; Park, C.H.; Park, J.D. Predictive Model for the Spreadability of Cosmetic Formulations Based on Large Amplitude Oscillatory Shear (LAOS) and Machine Learning. Phys. Fluids 2022, 34, 103109. [Google Scholar] [CrossRef]
- Manea, A.; Perju, D.; Tămaș, A. The Method of Studying Cosmetic Creams Based on the Principles of Systems Theory and Mathematical Modeling Techniques. Cosmetics 2023, 10, 118. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Miwake, H.; Nakatake, R.; Arai, N. Predicting the Performance of Functional Materials Composed of Polymeric Multicomponent Systems Using Artificial Intelligence—Formulations of Cleansing Foams as an Example. Polymers 2023, 15, 4216. [Google Scholar] [CrossRef] [PubMed]
- Osterwalder, U.; Sohn, M.; Herzog, B. Global State of Sunscreens. Photoderm. Photoimm. Photomed. 2014, 30, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, D.; Wen, T.; GholamHosseini, H.; Li, J. In Silico Prediction of Fragrance Retention Grades for Monomer Flavors Using QSPR Models. Chemom. Intell. Lab. Syst. 2021, 218, 104424. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, T.; Ng, K.M. Optimization-based Cosmetic Formulation: Integration of Mechanistic Model, Surrogate Model, and Heuristics. AIChE J. 2021, 67, e17064. [Google Scholar] [CrossRef]
- Gilbert, L.; Savary, G.; Grisel, M.; Picard, C. Predicting Sensory Texture Properties of Cosmetic Emulsions by Physical Measurements. Chemom. Intell. Lab. Syst. 2021, 124, 21–31. [Google Scholar] [CrossRef]
- Santana, V.V.; Martins, M.A.F.; Loureiro, J.M.; Ribeiro, A.M.; Rodrigues, A.E.; Nogueira, I.B.R. Optimal Fragrances Formulation Using a Deep Learning Neural Network Architecture: A Novel Systematic Approach. Comput. Chem. Eng. 2021, 150, 107344. [Google Scholar] [CrossRef]
- Kowalewski, J. Applications of Computation to Understand Chemosensory Processing. Ph.D. Dissertation, University of California Riverside, Riverside, CA, USA, 2021. [Google Scholar]
- Markowetz, F. All Models Are Wrong and Yours Are Useless: Making Clinical Prediction Models Impactful for Patients. NPJ Precis. Oncol. 2024, 8, 54. [Google Scholar] [CrossRef]
- Gellatly, N.; Sewell, F. Regulatory Acceptance of in Silico Approaches for the Safety Assessment of Cosmetic-Related Substances. Comput. Toxicol. 2019, 11, 82–89. [Google Scholar] [CrossRef]
- Taylor, K.; Rego Alvarez, L. Regulatory Drivers in the Last 20 Years towards the Use of in Silico Techniques as Replacements to Animal Testing for Cosmetic-Related Substances. Comput. Toxicol. 2020, 13, 100112. [Google Scholar] [CrossRef]
Conditions/Method Type | Test/Software |
---|---|
Sensitization | Skin sensitization is an induction of a specific immunological reaction following contact with the agent penetrating into the epidermis, which can provoke allergic contact dermatitis upon subsequent exposure. |
In vitro | |
Covalent binding of the chemical to proteins of the skin | Direct Peptide Reactivity Assay (DPRA) |
Amino acid Derivative Reactivity Assay (ADRA) | |
Kinetic Direct Peptide Reactivity Assay (kDPRA) | |
Keratinocyte activation | ARE-Nrf2 Luciferase KeratinoSens method |
ARE-Nrf2 luciferase LuSens | |
EpiSensA | |
SENS-IS | |
Dendritic cell activation | Human Cell Line Activation (h-CLAT) |
U937 Skin Sensitization Test (U-SENS) | |
Interleukin-8 Reporter Gene Assay (IL8-Luc assay) | |
Genomic Allergen Rapid Detection (GARDTM) for the detection of skin sensitization (GARDskinTM) | |
In vivo | |
ITS-SkinSensPred | |
Derek Nexus | |
OECD QSAR Toolbox | |
ToxTree | |
UL’s REACHAcros | |
Danish QSAR Database (Consensus model from ACDLabs, Leadscope, CASE Ultra, and SciQSAR) | |
TIMES-SS | |
CASE Ultra, MultiCASE | |
VEGA | |
SkinSensPred (majority vote and decision tree model; similarity) | |
Pred-skin (QSAR+Baeysian model) | |
Skin/Eye Corrosion and Irritation | Corrosion is irreversible (necrotic) and irritation is a reversible damage to the skin, following the application of a test substance for up to 4 h. Eye irritation is defined by the occurrence of changes in the eye in response to the application of a test substance that are fully reversible within 21 days of application. |
In vitro skin | |
Skin corrosion | Rat Skin Transcutaneous Electrical Resistance (TER) Reconstructed human Epidermis (RhE) Test Method (EpiSkin™, Lyon, France, EpiDerm™ SCT (EPI-200), Ashland, MA, USA SkinEthic™ RHE, Lyon, France, epiCS® and LabCyte EPI-MODEL24) |
Membrane Barrier Test Method (OECD TG 435), including the Corrositex® test method | |
Skin irritation | Reconstructed Human Epidermis (RhE) Test Method (EpiSkin™, EpiDerm™ SIT (EPI-200), SkinEthic™ RHE and LabCyte, San Jose, CA, USA EPI-MODEL24SIT, EpiCS, Skin+®, KeraSkinTM, Seoul, Republic of Korea) |
In vitro eye | |
Organotypic test methods | Bovine Cornea Opacity Permeability (BCOP) |
Isolated Chicken Eye (ICE) | |
Isolated Rabbit Eye | |
Hen’s Egg Test on Chorioallantoic Membrane (HET-CAM) | |
Cytotoxicity and cell-function-based in vitro tests | Short Time Exposure (STE) test method using a rabbit corneal cell line |
Fluorescein Leakage (FL) test using epithelial monolayer of MDCK kidney cells | |
Reconstructed human tissue (RhT)-based test methods | Reconstructed Human-Cornea-like Epithelium (RhCE |
SkinEthic™ HCE Time to Toxicity | |
Vitrigel-EIT | |
In vitro macromolecular test method | Ocular Irritection (OI®) |
In silico | |
TOPKAT | |
MultiCASE | |
Derek Nexus | |
Bundesinstitut für Risikobewertun (BfR) decision support system | |
HazadExpert | |
STopTox | |
Endocrine Disruption | Interaction, interference, or disruption of the function of the endocrine system |
In vitro | |
Estrogen or androgen receptor binding affinity | |
Estrogen, retinoid receptor transactivation | |
Yeast estrogen screen | |
Androgen receptor transcriptional activation | |
Rapid androgen disrupter activity reporter assay | |
Steroidogenesis | |
Aromatase Assay | |
Thyroid disruption assays (e.g., thyroperoxidase inhibition, transthyretin binding) | |
ADMET PredictorTM | |
MetaDrugTM | |
VEGA | |
Online Chemical Modelling Environment (OCHEM) | |
OECD QSAR Toolbox | |
MultiCASE ERBA QSAR | |
US EPA’s rtnER | |
Genotoxicity | Induced by several mechanisms of alteration of the structure, information content, or segregation of DNA, including those which cause DNA damage by interfering with normal replication processes, or that alter its replication in a non-physiological manner |
In vitro | |
Ames Test | |
TransGenic Rodent (TGR) mutagenicity assays | |
—mutagenicity assays based on immortalized cell lines or primary hepatocytes from the MutaMouse or lacZ Plasmid Mouse | |
Phosphatidylnositol glycan class A gene (Pig-a) | |
Genome-wide loss-of-function screening, mutation characterization by next generation sequencing, and fluorescence-based mutation detection | |
3D Tissues | |
High-Information-Content assay | |
In silico | |
LAZAR | |
Danish QSAR database | |
US-EPA’s Toxicity Estimation Software Tool (T.E.S.T.) | |
OECD QSAR Toolbox | |
ToxRead | |
VEGA QSAR platform | |
ToxTree | |
OpenTox for carcinogenicity | |
OncoLogic (US EPA) | |
SciQSAR | |
TopKat | |
CASE Ultra | |
Leadscope | |
Derek Nexus |
Name | Units | Comments |
Permeability coefficient (Per) | cm × h−1 | |
Partition coefficient (Kp) | - | E.g., skin:formulation, formulation:stratum corneum, stratum corneum:viable epidermis, viable epidermis:dermis, stratum corneum lipids:water, stratum corneum proteins:water |
Diffusion coefficients (D) | cm2 × h−1 | E.g., in stratum corneum, stratum corneum lipids, viable epidermis, dermis, sebum, buffer |
Flux (J) | mg × cm−2 × h−1 | |
Amount in receptor solution | µg × cm−2 | From IVPT studies |
Amount in the skin | µg/cm2 | Full skin or in selected layers (stratum corneum, viable epidermis, dermis) |
Systemic concentration | µg/mL | Plasma or specific organ concentration |
Authors/Model | Descriptors | Output | Source |
---|---|---|---|
Potts and Guy, 1992 | ko/w a, MW b or MV c | Per | [28] |
Moss and Cronin, 2002 | logko/w a, MW b | Per | [29] |
Barratt, 1995 | logko/w a, MV c, melting point | Per | [30] |
Frasch, 2002 | logko/w a, MW b | Per | [31] |
Wilschut, 1995 (Modified Robinson Model) | logko/w a, MW b | Per | [32] |
Fitzpatrick, 2004 | logko/w a, MW b | Per | [33] |
Buchwald and Bodor, 2001 | A d, N e | Per | [34] |
Magnusson, 2004 | MW b, solute melting point | Jmax | [35] |
Milewski-Stinchcombe, 2012 | logko/w a, MW b, solute melting point | Jmax | [36] |
Roberts-Sloan,1999 | MW b¸ logSIPM f, logSPG g | J | [37] |
Cronin, 1999 | logko/w a, molecular mass | Per | [38] |
Patel, 2002 | logko/w a, MW b, ABSQon h, SsssCH i | Per | [39] |
Abraham, 1995 | Solute dipolarity/polarizability, solute hydrogen bond acidity, solute hydrogen bond basicity, McGowan characteristic molecular volume, excess molar refraction | Per | [40] |
Mitragotri, 2002 | logko/w a, solute molecular radius | Per | [41] |
Fujiwara, 2003 | logko/w a, MW b | Per | [5] |
Khajeh and Modarress, 2014 | EEig15r j, logko/w a, Neoplastic-80 k | Per | [42] |
Baba, 2017 | 15 molecular descriptors | Per | [43] |
Chen, 2018 | logko/w a, D/Dr10 l, T(O..Cl) m, Neoplastic-80 k | Per | [44] |
Rezaei, 2019 | GRid-INdependent Descriptors | Per | [45] |
Wu, 2022 | logko/w a, MV c, χ n, Jurs_PPSA_1 o | Per | [46] |
Waters and Quah, 2022 | logko/w a, MV c, TPSA p | Per | [47] |
The Dermal Permeability Coefficient Program (DERMWIN) | logko/w a, MW b | Per | Module available in the EPI Suite package developed by the EPA’s Office of Pollution Prevention Toxics and Syracuse Research Corporation |
Authors | Input (Independent) Parameters | Output | Source |
---|---|---|---|
Hansen, 2013 | logko/w a | SC lipid: water Kp | [48] |
Nitsche, 2006 | logko/w a | SC lipid: water Kp | [51] |
Raykar, 1988 | logko/wa | SC lipid: water Kp | [52] |
Yang, 2018 | logko/w a, pH, fni b, fCAT c | Sebum: water Kp | [53] |
Valiveti, 2008 | logko/w a | Sebum: water Kp | [54] |
Chen, 2015 | SC lipid: water kp, fu,plasma d, fni,VE e | SC lipid: viable epidermis Kp | [55] |
Kretsos, 2008 | Amount desorbed from tissue, density | Dermis: water Kp | [56] |
Shatkin and Brown, 1991 | logko/w a, ffat,SC f, ffat,VE g | SC lipid: viable epidermis Kp | [57] |
Shatkin and Brown, 1991 | h ffat,D, i ffat,blood | Dermis: blood Kp | [57] |
Patel, 2022 | j fni,dermis, sebum: water kp, lipid: water kp | Dermis: sebum Kp | [49] |
Johnson, 1996 | MW k, skin temperature | D SC lipid, D sebum | [58] |
Mitragotri, 2003 | Molecular radius | D SC lipid | [59] |
Wang, 2006 | MW k | D SC lipid | [60] |
Guy, 1982 | Transport distance, time | D viable epidermis | [61] |
Clarke, 2019 | MW k | D dermis | [62] |
Yang, 2019 | MW k | D sebum | [63] |
Endpoint Group | Endpoint | Model Type; Algorithm Used | Input | Author |
Physicochemical properties | Stratum corneum partition coefficient | Mechanistic; COSMOmic and Molecular Dynamics | Structure–chemical potential | Piasentin, 2023 [88] |
Spreadability | Empirical | Apparent viscosity, density, melting range | Bom, 2021 [89] | |
Spreadability | Empirical; linear regression, non-linear regression based on random forest regressor algorithm | Large amplitude oscillatory shear | Lee, 2022 [90] | |
Quality of cream (total number of germs, pH, evaporation residue, relative density, evaporation loss) | Empirical; regression | Total number of germs, pH, evaporation residue, relative density, evaporation loss | Manea, 2023 [91] | |
Performance | Cleansing capability prediction | Empirical; random forest, extra tree regressors, lasso, partial least squares, support vector regressor | Molecular descriptors and Hansen solubility index | Hamaguchi, 2023 [92] |
Sun Protection Factor, UVA protection, photostability, blue light irradiation protection, free radicals generation | BASF Sunscreen Simulator | Absorption and scattering properties | Osterwalder, 2014 [93] | |
Sun Protection Factor, Critical Wavelength, blue light protection factor, Normalized transmitted UV Dose | DSM Sunscreen Optimizer | Type and concentration of UV filters, the emollient system, and the formulation viscosity | https://sunscreensimulator.basf.com/Sunscreen_Simulator/login [accessed on 15 March 2024] | |
Fragrance retention grades | Empirical; random forest, support vector machine, and deep neural network | Molecular descriptors (Dragoor) | Liu, 2021 [94] | |
Sensorial | Overall sensorial rating; formulation optimization | Empirical; Artificial neural network | Physicochemical properties and product specifications | Zhang, 2020 [95] |
Sensory texture properties (Gloss, Integrity of Shape, Penetration Force, Compression Force, Stringiness and Difficulty of Spreading) | Empirical; linear simple, linear multiple and Partial Least Square (PLS) regressions | Instrumental parameters | Gilbert, 2021 [96] | |
Optimal fragrance formulation | Empirical; Artificial neural network | Fragrance composition | Santana, 2021 [97] | |
Odor perceptual qualities | Empirical; Support Vector Machine | Physicochemical properties (DRAGON) | Kowalewski, 2021 [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krumpholz, L.; Polak, S.; Wiśniowska, B. Computational Methods as Part of Scientific Research in Cosmetic Sciences—Are We Using the Opportunity? Cosmetics 2024, 11, 79. https://doi.org/10.3390/cosmetics11030079
Krumpholz L, Polak S, Wiśniowska B. Computational Methods as Part of Scientific Research in Cosmetic Sciences—Are We Using the Opportunity? Cosmetics. 2024; 11(3):79. https://doi.org/10.3390/cosmetics11030079
Chicago/Turabian StyleKrumpholz, Laura, Sebastian Polak, and Barbara Wiśniowska. 2024. "Computational Methods as Part of Scientific Research in Cosmetic Sciences—Are We Using the Opportunity?" Cosmetics 11, no. 3: 79. https://doi.org/10.3390/cosmetics11030079
APA StyleKrumpholz, L., Polak, S., & Wiśniowska, B. (2024). Computational Methods as Part of Scientific Research in Cosmetic Sciences—Are We Using the Opportunity? Cosmetics, 11(3), 79. https://doi.org/10.3390/cosmetics11030079