Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications
Abstract
:1. Introduction
Polyglutamic Acid—An Overview
- Micro-organisms: Certain bacteria, particularly strains of Bacillus species, are known to produce PGA as a part of their metabolic processes. Bacillus subtilis is one of the most well-studied producers of PGA. These bacteria synthesize PGA intracellularly and excrete it into the surrounding environment. PGA production by micro-organisms is often stimulated under conditions of stress or nutrient limitation, suggesting a role for PGA in microbial adaptation and survival.
- Fermented Foods: PGA can also be found in certain fermented foods that undergo microbial fermentation processes. Fermented soybean products like natto, a traditional Japanese food, contain PGA produced by Bacillus subtilis during the fermentation of soybeans. Additionally, other fermented foods such as fermented soy sauce and Korean kimchi may also contain PGA as a result of microbial activity during the fermentation process.
- Environmental Sources: Apart from microbial and food sources, PGA has also been detected in various environmental settings. For example, PGA-producing bacteria have been isolated from soil, water, and plant surfaces, indicating that PGA may play a role in microbial ecology and environmental interactions. The presence of PGA in environmental samples highlights its ubiquity and suggests its potential ecological significance beyond microbial metabolism.
- Biotechnological Production: In addition to natural sources, PGA can also be produced through biotechnological processes using recombinant micro-organisms or enzymatic synthesis. This approach allows for the controlled and scalable production of PGA for various industrial and biomedical applications, including cosmetics, pharmaceuticals [4,5,6], and biodegradable materials [7,8,9].
2. Microbial Production of Polyglutamate
3. The Potential of Polyglutamate in Cosmetic Applications
3.1. The Potential of Poly-γ-Glutamic Acid as a Moisturizing and Anti-Aging Agent
3.2. The Potential of Poly-γ-Glutamic Acid as a Depigmenting Agent
3.3. Poly-γ-Glutamic Acid’s Potential in Sunscreens
3.4. Exploring Poly-γ-Glutamic Acid’s Potential in Treating Skin Damage
3.5. The Potential of Poly-γ-Glutamic Acid in Haircare
3.6. The Potential of Poly-γ-Glutamic Acid in Dental Care
3.7. Polyglutamic Acid Skincare Products in the Market
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parati, M.; Khalil, I.; Tchuenbou-Magaia, F.; Adamus, G.; Mendrek, B.; Hill, R.; Radecka, I. Building a circular economy around poly(D/L-γ-glutamic acid)—A smart microbial biopolymer. Biotechnol. Adv. 2022, 61, 108049. [Google Scholar] [CrossRef]
- Chatterjee, P.; Tiwari, D.; Raval, R.; Dubey, A. Coherent Aspects of Multifaceted Eco-friendly Biopolymer—Polyglutamic Acid from the Microbes. J. Pure Appl. Microbiol. 2019, 13, 741–756. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial synthesis of poly-γ-glutamic acid: Current progress, challenges, and future perspectives. Biotechnol. Biofuels 2016, 9, 134. [Google Scholar] [CrossRef]
- Epshtein, Y.; Blau, R.; Pisarevsky, E.; Koshrovski-Michael, S.; Ben-Shushan, D.; Pozzi, S.; Shenbach-Koltin, G.; Fridrich, L.; Buzhor, M.; Krivitsky, A.; et al. Polyglutamate-based nanoconjugates for image-guided surgery and post-operative melanoma metastases prevention. Theranostics 2022, 12, 6339–6362. [Google Scholar] [CrossRef]
- Córdoba-David, G.; Duro-Castano, A.; Castelo-Branco, R.C.; González-Guerrero, C.; Cannata, P.; Sanz, A.B.; Vicent, M.J.; Ortiz, A.; Ramos, A.M. Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped Polyglutamate-Curcuminoid Conjugate. Sci. Rep. 2020, 10, 2056. [Google Scholar] [CrossRef]
- Van Lysebetten, D.; Malfanti, A.; Deswarte, K.; Koynov, K.; Golba, B.; Ye, T.; Zhong, Z.; Kasmi, S.; Lamoot, A.; Chen, Y.; et al. Lipid-Polyglutamate Nanoparticle Vaccine Platform. ACS Appl. Mater. Interfaces 2021, 13, 6011–6022. [Google Scholar] [CrossRef]
- Cao, M.; Feng, J.; Sirisansaneeyakul, S.; Song, C.; Chisti, Y. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnol. Adv. 2018, 36, 1424–1433. [Google Scholar] [CrossRef]
- Khalil, I.R.; Burns, A.T.H.; Radecka, I.; Kowalczuk, M.; Khalaf, T.; Adamus, G.; Johnston, B.; Khechara, M.P. Bacterial-Derived Polymer Poly-y-Glutamic Acid (y-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications. Int. J. Mol. Sci. 2017, 18, 313. [Google Scholar] [CrossRef]
- Sirisansaneeyakul, S.; Cao, M.; Kongklom, N.; Chuensangjun, C.; Shi, Z.; Chisti, Y. Microbial production of poly-γ-glutamic acid. World J. Microbiol. Biotechnol. 2017, 33, 173. [Google Scholar] [CrossRef]
- Soliman, N.A.; Berekaa, M.M.; Abdel-Fattah, Y.R. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: Application of Plackett–Burman experimental design to evaluate culture requirements. Appl. Microbiol. Biotechnol. 2005, 69, 259–267. [Google Scholar] [CrossRef]
- Buescher, J.M.; Margaritis, A. Microbial Biosynthesis of Polyglutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries. Crit. Rev. Biotechnol. 2007, 27, 1–19. [Google Scholar] [CrossRef]
- Saini, M.; Kashyap, A.; Bindal, S.; Saini, K.; Gupta, R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights into Structure–Function Relationship and Its Biotechnological Applications. Front. Microbiol. 2021, 12, 641251. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, M.K.; Tabor, H. Polyamines Are Critical for the Induction of the Glutamate Decarboxylase-dependent Acid Resistance System in Escherichia coli. J. Biol. Chem. 2013, 288, 33559–33570. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Ma, X. Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review. Curr. Drug Deliv. 2023, 21, 795–806. [Google Scholar] [CrossRef]
- Kumarr, M.M.; Raj, J.X.; Gopalan, N.; Ramana, K.V.; Sharma, R.K. Poly (γ-) Glutamic Acid: A Promising Biopolymer. Def. Life Sci. J. 2018, 3, 301–306. [Google Scholar] [CrossRef]
- Sajna, K.V.; Gottumukkala, L.D.; Sukumaran, R.K.; Pandey, A. White Biotechnology in Cosmetics. In Industrial Biore-Fineries & White Biotechnology; Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 607–652. [Google Scholar] [CrossRef]
- HO, G.-H.; Yang, T.; Yang, J. Moisturizers Comprising One or More of Gamma-Polyglutamic Acid (Gamma-Pga, H Form), Gamma-Polyglutamates and Gamma-Polyglutamate Hydrogels for Use in Cosmetic or Personal Care Products. US 2009/0110705 A1, 30 April 2009. [Google Scholar]
- Prescott, A.G. Dermal Filler and Method of Using Same. US 8,486.467 B1, 16 July 2013. [Google Scholar]
- Bajaj, I.; Singhal, R. Poly (glutamic acid)—An emerging biopolymer of commercial interest. Bioresour. Technol. 2011, 102, 5551–5561. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Xu, H.; Xu, Z.; Xu, C.; Xu, Z.; Lei, P.; Qiu, Y.; Liang, J.; Feng, X. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation. Bioresour. Technol. 2015, 181, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, D.; Ren, H. Economical production of agricultural γ-polyglutamic acid using industrial wastes by Bacillus subtilis. Biochem. Eng. J. 2019, 146, 117–123. [Google Scholar] [CrossRef]
- Pereira, C.L.; Antunes, J.C.; Gonçalves, R.M.; Ferreira-Da-Silva, F.; Barbosa, M.A. Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. J. Mater. Sci. Mater. Med. 2012, 23, 1583–1591. [Google Scholar] [CrossRef]
- Richard, A.; Margaritis, A. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotechnol. Bioeng. 2003, 82, 299–305. [Google Scholar] [CrossRef]
- Kedia, G.; Hill, D.; Hill, R.; Radecka, I. Production of Poly-γ-Glutamic Acid by Bacillus subtilis and Bacillus licheniformis with Different Growth Media. J. Nanosci. Nanotechnol. 2010, 10, 5926–5934. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jiang, M.; Li, H.; Lu, D.; Ouyang, P. Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process. Biochem. 2005, 40, 519–523. [Google Scholar] [CrossRef]
- Shi, F.; Xu, Z.; Cen, P. Efficient Production of Poly-γ-glutamic Acid by Bacillus subtilis ZJU-7. Appl. Biochem. Biotechnol. 2006, 133, 271–282. [Google Scholar] [CrossRef]
- Richard, A.; Margaritis, A. Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol. Lett. 2003, 25, 465–468. [Google Scholar] [CrossRef]
- Huang, J.; Du, Y.; Xu, G.; Zhang, H.; Zhu, F.; Huang, L.; Xu, Z. High yield and cost-effective production of poly(γ-glutamic acid) with Bacillus subtilis. Eng. Life Sci. 2011, 11, 291–297. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Fu, J.; Xie, J.; Ju, J.; Yu, B.; Wang, L. Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis strain. Microb. Cell Factories 2022, 21, 140. [Google Scholar] [CrossRef]
- Ogawa, Y.; Yamaguchi, F.; Yuasa, K.; Tahara, Y. Efficient Production of γ-Polyglutamic Acid by Bacillus subtilis(natto) in Jar Fermenters. Biosci. Biotechnol. Biochem. 1997, 61, 1684–1687. [Google Scholar] [CrossRef]
- Guo, L.; Lu, L.; Wang, H.; Zhang, X.; Wang, G.; Zhao, T.; Zheng, G.; Qiao, C. Effects of Fe2+ addition to sugarcane molasses on poly-γ-glutamic acid production in Bacillus licheniformis CGMCC NO. 23967. Microb. Cell Factories 2023, 22, 37. [Google Scholar] [CrossRef]
- Du, G.; Yang, G.; Qu, Y.; Chen, J.; Lun, S. Effects of glycerol on the production of poly(γ-glutamic acid) by Bacillus licheniformis. Process. Biochem. 2005, 40, 2143–2147. [Google Scholar] [CrossRef]
- Cromwick, A.-M.; Birrer, G.A.; Gross, R.A. Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol. Bioeng. 1996, 50, 222–227. [Google Scholar] [CrossRef]
- Yoon, S.H.; Do, J.H.; Lee, S.Y.; Chang, H.N. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol. Lett. 2000, 22, 585–588. [Google Scholar] [CrossRef]
- Nair, P.G.; Joseph, E.; Yadav, R.; Rajput, V.; Nisal, A.; Dharne, M.S. Production of poly-gamma-glutamic acid (γ-PGA) from sucrose by an osmotolerant Bacillus paralicheniformis NCIM 5769 and genome-based predictive biosynthetic pathway. Biomass Convers. Biorefinery 2023, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Yan, Q.; Wang, Y.; Li, Y.; Jiang, Z. Efficient production of poly-γ-glutamic acid by Bacillus velezensis via solid-state fermentation and its application. Food Biosci. 2022, 46, 101575. [Google Scholar] [CrossRef]
- Moraes, L.; Alegre, R.; Brito, P. Optimisation of Poly(γ-Glutamic Acid) Production by Bacillus velezensis NRRL B—23189 in Liquid Fermentation with Molasses as the Carbon Source without Addition of Glutamic Acid. Int. Rev. Bio-Phys. Chem. (IREBIC) 2014, 5, 130–135. [Google Scholar]
- Wang, D.; Fu, X.; Zhou, D.; Gao, J.; Bai, W. Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid. Microb. Cell Factories 2022, 21, 276. [Google Scholar] [CrossRef]
- Liu, K.-W. Study on Biosynthesis and Fermentation of Polyglutamic Acid with High Molecular Weight. Prog. Mod. Biomed. 2009, 9, 2637–2640+2605. [Google Scholar]
- Guo, X.-P. Response surface analysis of γ-polyglutamic acid fermentation conditions. Chin. J. Biochem. Pharm. 2011, 32, 99–102. [Google Scholar]
- Kongklom, N.; Luo, H.; Shi, Z.; Pechyen, C.; Chisti, Y.; Sirisansaneeyakul, S. Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochem. Eng. J. 2015, 100, 67–75. [Google Scholar] [CrossRef]
- Chatterjee, P.M.; Tiwari, D.P.; Datta, S.; Chakrabarty, S.; Raval, R.; Dubey, A.K. Probing into Methylene Blue Interaction with Polyglutamic Acid: Spectroscopic and Molecular Dynamics Simulation Studies. Asian J. Chem. 2019, 31, 1949–1958. [Google Scholar] [CrossRef]
- Dahiya, D.; Chettri, R.; Nigam, P. Biosynthesis of polyglutamic acid (γ-PGA), a biodegradable and economical pol-yamide biopolymer for industrial applications. In Microbial and Natural Macromolecules; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Liang, B.-L.; Shu, Y.-Q.; Yin, P.-G.; Guo, L. Nacre-inspired polyglutamic acid/layered double hydroxide bionanocomposite film with high mechanical, translucence and UV-blocking properties. Chin. J. Polym. Sci. 2017, 35, 631–640. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Y.; Sun, W.; Zhou, B.; Zhu, J.; Peng, C.; Shen, M.; Shi, X. Polyaniline-loaded γ-polyglutamic acid nanogels as a platform for photoacoustic imaging-guided tumor photothermal therapy. Nanoscale 2017, 9, 12746–12754. [Google Scholar] [CrossRef]
- Pellis, A.; Silvestrini, L.; Scaini, D.; Coburn, J.M.; Gardossi, L.; Kaplan, D.L.; Acero, E.H.; Guebitz, G.M. Enzyme-catalyzed functionalization of poly(L-lactic acid) for drug delivery applications. Process. Biochem. 2017, 59, 77–83. [Google Scholar] [CrossRef]
- Chen, D.; Chen, J.; Wu, M.; Tian, H.; Chen, X.; Sun, J. Robust and Flexible Free-Standing Films for Unidirectional Drug Delivery. Langmuir 2013, 29, 8328–8334. [Google Scholar] [CrossRef]
- Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym. J. 2014, 46, 769–775. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, C.; Ma, Z.; Weng, Y. In Situ Formation of Microfibrillar PBAT in PGA Films: An Effective Way to Robust Barrier and Mechanical Properties for Fully Biodegradable Packaging Films. ACS Omega 2022, 7, 21280–21290. [Google Scholar] [CrossRef]
- Budak, K.; Sogut, O.; Sezer, U.A. A review on synthesis and biomedical applications of polyglycolic acid. J. Polym. Res. 2020, 27, 208. [Google Scholar] [CrossRef]
- Sanko, V.; Sahin, I.; Sezer, U.A.; Sezer, S. A versatile method for the synthesis of poly(glycolic acid): High solubility and tunable molecular weights. Polym. J. 2019, 51, 637–647. [Google Scholar] [CrossRef]
- Chang, L.-F.; Zhou, Y.-G.; Ning, Y.; Zou, J. Toughening Effect of Physically Blended Polyethylene Oxide on Polyglycolic Acid. J. Polym. Environ. 2020, 28, 2125–2136. [Google Scholar] [CrossRef]
- Park, S.-B.; Sung, M.-H.; Uyama, H.; Han, D.K. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog. Polym. Sci. 2021, 113, 101341. [Google Scholar] [CrossRef]
- Manocha, B.; Margaritis, A. A novel Method for the selective recovery and purification of γ-polyglutamic acid from Bacillus licheniformis fermentation broth. Biotechnol. Prog. 2010, 26, 734–742. [Google Scholar] [CrossRef]
- Ben-Zur, N.; Goldman, D.M. Polyglutamic Acid: A Novel Peptide for Skin Care. Cosmet. Toilet. 2007, 12, 65–74. [Google Scholar]
- Caspers, P.J.; Lucassen, G.W.; Wolthuis, R.; Bruining, H.A.; Puppels, G.J. In-vivo Raman spectroscopy of human skin: Determination of the composition of natural moisturizing factor. In Proceedings of the BiOS ‘99 International Biomedical Optics Symposium, San Jose, CA, USA, 23–29 January 1999; pp. 99–103. [Google Scholar]
- Zhang, M.; Yang, J.; Yang, Q.; Huang, L.; Wu, H.; Chen, L.; Ding, C. Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid). Int. J. Biol. Macromol. 2018, 112, 1156–1163. [Google Scholar] [CrossRef]
- Chen, M.; Chen, L.; Yuan, D.; Niu, L.; Hu, J.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, X.; Ling, P.; et al. Preparation, function, and safety evaluation of a novel degradable dermal filler, the cross-linked poly-γ-glutamic acid hydrogel particles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 1407–1418. [Google Scholar] [CrossRef]
- Yang, R.; Huang, J.; Zhang, W.; Xue, W.; Jiang, Y.; Li, S.; Wu, X.; Xu, H.; Ren, J.; Chi, B. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr. Polym. 2021, 273, 118607. [Google Scholar] [CrossRef]
- Ho, G.-H.; Yang, J.; Yang, T.-H. Gamma Polyglutamic Acid (Gamma-Pga, H Form), Gamma-Polyglutamate Hydrogels for Use as Super Moisturizers in Cosmetic and Personal Care Products. EP1690525A1, 16 August 2006. [Google Scholar]
- Yang, S.-A.; Chan, C.-F. Cosmetic Composition Including Gamma-Pgaa S Active Ingredient. US 2019/0343746 A1, 14 November 2019. [Google Scholar]
- Cai, M.; Han, Y.; Zheng, X.; Xue, B.; Zhang, X.; Mahmut, Z.; Wang, Y.; Dong, B.; Zhang, C.; Gao, D.; et al. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. Materials 2023, 17, 15. [Google Scholar] [CrossRef]
- Genovese, L.; Corbo, A.; Sibilla, S. An Insight into the Changes in Skin Texture and Properties following Dietary Intervention with a Nutricosmeceutical Containing a Blend of Collagen Bioactive Peptides and Antioxidants. Ski. Pharmacol. Physiol. 2017, 30, 146–158. [Google Scholar] [CrossRef]
- Kim, H.M.; Byun, K.-A.; Oh, S.; Yang, J.Y.; Park, H.J.; Chung, M.S.; Son, K.H.; Byun, K. A Mixture of Topical Forms of Polydeoxyribonucleotide, Vitamin C, and Niacinamide Attenuated Skin Pigmentation and Increased Skin Elasticity by Modulating Nuclear Factor Erythroid 2-like 2. Molecules 2022, 27, 1276. [Google Scholar] [CrossRef]
- Chen, S.; Fu, J.; Yu, B.; Wang, L. Development of a Conjugation-Based Genome Editing System in an Undomesticated Bacillus subtilis Strain for Poly-γ-glutamic Acid Production with Diverse Molecular Masses. J. Agric. Food Chem. 2023, 71, 7734–7743. [Google Scholar] [CrossRef]
- Wen, L.-L.; Qu, W.-J.; Zhou, S.-Y.; Lu, Z.; Lv, L.; Xu, G.-X. Skin Care Composition, Application Thereof and Skin Care Product. CN114699338A, 5 July 2022. [Google Scholar]
- Zhang, T.; Sun, B.; Guo, J.; Wang, M.; Cui, H.; Mao, H.; Wang, B.; Yan, F. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater. 2020, 115, 136–147. [Google Scholar] [CrossRef]
- Choi, E.; Kang, Y.-G.; Hwang, S.-H.; Kim, J.K.; Hong, Y.D.; Park, W.-S.; Kim, D.; Kim, E.; Cho, J.Y. In Vitro Effects of Dehydrotrametenolic Acid on Skin Barrier Function. Molecules 2019, 24, 4583. [Google Scholar] [CrossRef]
- Pan, M.; Lu, C.; Zheng, M.; Zhou, W.; Song, F.; Chen, W.; Yao, F.; Liu, D.; Cai, J. Unnatural Amino-Acid-Based Star-Shaped Poly(l-Ornithine)s as Emerging Long-Term and Biofilm-Disrupting Antimicrobial Peptides to Treat Pseudomonas aeruginosa-Infected Burn Wounds. Adv. Healthc. Mater. 2020, 9, e2000647. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-J.; Lai, P.; Li, S.-S. High resolution high-performance liquid chromatography separation of polyglutamic acids. Anal. Biochem. 2004, 332, 199–201. [Google Scholar] [CrossRef]
- Mojumdar, E.H.; Sparr, E. The effect of pH and salt on the molecular structure and dynamics of the skin. Colloids Surf. B Biointerfaces 2020, 198, 111476. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.E.; Kim, J.; Goleva, E.; Berdyshev, E.; Lee, J.; Vang, K.A.; Lee, U.H.; Han, S.; Leung, S.; Hall, C.F.; et al. Particulate matter causes skin barrier dysfunction. J. Clin. Investig. 2021, 6, e145185. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-H.; Lu, W.-C.; Chan, Y.-J.; Ko, W.-C.; Jung, C.-C.; Le Huynh, D.T.; Ji, Y.-X. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture 2020, 515, 734590. [Google Scholar] [CrossRef]
- Shu, S.; Sha, X.; Hu, Z.; Ma, Q.; Qiao, J.; Fang, T.; Jiang, W.; Tu, Z. Improving gelling properties of fish gelatin by γ-polyglutamic acid with four different molecular weights. Int. J. Food Sci. Technol. 2023, 58, 6588–6597. [Google Scholar] [CrossRef]
- Savic, S.; Lukic, M.; Jaksic, I.; Reichl, S.; Tamburic, S.; Müller-Goymann, C. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: The influence of colloidal structure on emulsions skin hydration potential. J. Colloid Interface Sci. 2011, 358, 182–191. [Google Scholar] [CrossRef]
- Mostafa, E.S.; Maher, A.; Mostafa, D.A.; Gad, S.S.; Nawwar, M.A.; Swilam, N. A Unique Acylated Flavonol Glycoside from Prunus persica (L.) var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare. Antioxidants 2021, 10, 436. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef]
- Dzierzkowska, E.; Scisłowska-Czarnecka, A.; Kudzin, M.; Boguń, M.; Szatkowski, P.; Gajek, M.; Kornaus, K.; Chadzinska, M.; Stodolak-Zych, E. Effects of Process Parameters on Structure and Properties of Melt-Blown Poly(Lactic Acid) Nonwovens for Skin Regeneration. J. Funct. Biomater. 2021, 12, 16. [Google Scholar] [CrossRef]
- Xie, C.; Luo, M.; Chen, M.; Wang, M.; Qu, X.; Lei, B. Bioactive Poly(octanediol-citrate-polyglycol) Accelerates Skin Regeneration through M2 Polarization Immunomodulating and Early Angiogenesis. Adv. Healthc. Mater. 2022, 11, 2101931. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.; Park, C.; Kim, C.; Poo, H.; Soda, K.; Ashiuchi, M. Natural and edible biopolymer poly-γ-glutamic acid: Synthesis, production, and applications. Chem. Rec. 2005, 5, 352–366. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, J.-H.; Kim, K.W.; Lee, B.-J.; Kim, D.-G.; Kim, Y.-O.; Kong, I.-S. Physicochemical properties, production, and biological functionality of poly-γ-d-glutamic acid with constant molecular weight from halotolerant Bacillus sp. SJ-10. Int. J. Biol. Macromol. 2018, 108, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, X.; Chen, S. Production and Application of Poly-γ-glutamic Acid. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 693–717. [Google Scholar] [CrossRef]
- Lee, N.-R.; Go, T.-H.; Lee, S.-M.; Jeong, S.-Y.; Park, G.-T.; Hong, C.-O.; Son, H.-J. In vitro evaluation of new functional properties of poly-γ-glutamic acid produced by Bacillus subtilis D7. Saudi J. Biol. Sci. 2014, 21, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Kang, S.G.; Yoon, S.-I.; Kim, P.-H.; Kim, D.; Lee, G.-S. Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation. Cell. Mol. Immunol. 2016, 15, 111–119. [Google Scholar] [CrossRef]
- Liu, X.; Liu, F.; Liu, S.; Li, H.; Ling, P.; Zhu, X. Poly-γ-glutamate from Bacillus subtilis inhibits tyrosinase activity and melanogenesis. Appl. Microbiol. Biotechnol. 2013, 97, 9801–9809. [Google Scholar] [CrossRef]
- Shanbhag, S.; Nayak, A.; Narayan, R.; Nayak, U.Y. Anti-aging and Sunscreens: Paradigm Shift in Cosmetics. Adv. Pharm. Bull. 2019, 9, 348–359. [Google Scholar] [CrossRef]
- Guo, T.; Liu, S.-J.; Zhang, Z.-Q.; Wang, X.; Fan, P.-L.; Zhao, J.-L. Polyglutamic Acid Sunscreen Peptide and Preparation Method Thereof. CN115677837A, 3 February 2023. [Google Scholar]
- Wang, R.; Wang, X.; Zhan, Y.; Xu, Z.; Xu, Z.; Feng, X.; Li, S.; Xu, H. A Dual Network Hydrogel Sunscreen Based on Poly-γ-glutamic Acid/Tannic Acid Demonstrates Excellent Anti-UV, Self-Recovery, and Skin-Integration Capacities. ACS Appl. Mater. Interfaces 2019, 11, 37502–37512. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Dai, T.; Xu, P.; Wu, P.; Zou, Y.; Yang, P.; Hu, J.; Li, Y.; Cheng, Y. Skin Pigmentation-Inspired Polydopamine Sunscreens. Adv. Funct. Mater. 2018, 28, 1802127. [Google Scholar] [CrossRef]
- Heo, S.; Hwang, H.S.; Jeong, Y.; Na, K. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent. Carbohydr. Polym. 2018, 195, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Wang, H.-Y.; Lee, T.-H.; Chung, R.-J. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Mater. Sci. Eng. C 2019, 101, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Chi, B.; Wang, P.-H.; Zhao, X.-Y. Application of Multi-Polyglutamic Acid Cross-Linked Polymer in Skin Repair. CN115317405A, 11 November 2022. [Google Scholar]
- Huang, M.; Yang, M. Swelling and biocompatibility of sodium alginate/poly(γ-glutamic acid) hydrogels. Polym. Adv. Technol. 2009, 21, 561–567. [Google Scholar] [CrossRef]
- Kim, H.S.; Kwon, H.-K.; Lee, D.H.; Le, T.N.; Park, H.-J.; Kim, M.I. Poly(γ-Glutamic Acid)/Chitosan Hydrogel Nanoparticles for Effective Preservation and Delivery of Fermented Herbal Extract for Enlarging Hair Bulb and Enhancing Hair Growth. Int. J. Nanomed. 2019, 14, 8409–8419. [Google Scholar] [CrossRef] [PubMed]
- Kohei, H.; Shinki, O.; Kiomi, Y. Cosmetic Containing Y-Polyglutamic Acid or Its Salt. JP2002145723A, 22 May 2002. [Google Scholar]
- Jang, S.J.; Kim, J.Y.; Cheon, S.J.; Kim, S.H.; Lee, J.Y. In Vivo Hair Growth-Promoting Effect of Rice Bran Extract Prepared by Supercritical Carbon Dioxide Fluid. Biol. Pharm. Bull. 2014, 37, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-H.; Tsujimoto, T.; Uyama, H.; Sung, M.-H.; Kim, K.; Kuramitsu, S. Enhancement of enzyme activity and stability by poly(γ-glutamic acid). Polym. J. 2010, 42, 818–822. [Google Scholar] [CrossRef]
- Jara, C.P.; Berti, B.d.A.; Mendes, N.F.; Engel, D.F.; Zanesco, A.M.; de Souza, G.F.P.; Bezerra, R.d.M.; Bagatin, J.d.T.; Maria-Engler, S.S.; Morari, J.; et al. Glutamic acid promotes hair growth in mice. bioRxiv 2020. [Google Scholar] [CrossRef]
- Choi, J.-C.; Uyama, H.; Lee, C.-H.; Sung, M.-H. In Vivo Hair Growth Promotion Effects of Ultra-High Molecular Weight Poly-γ-Glutamic Acid from Bacillus subtilis (Chungkookjang). J. Microbiol. Biotechnol. 2015, 25, 407–412. [Google Scholar] [CrossRef]
- Qiao, C.-S.; Li, X. Oral Care Toothpaste Containing Polyglutamic Acid and Preparation Method of Oral Care Toothpaste. CN106176299A, 7 December 2016. [Google Scholar]
- Parati, M.; Clarke, L.; Anderson, P.; Hill, R.; Khalil, I.; Tchuenbou-Magaia, F.; Stanley, M.S.; McGee, D.; Mendrek, B.; Kowalczuk, M.; et al. Microbial Poly-γ-Glutamic Acid (γ-PGA) as an Effective Tooth Enamel Protectant. Polymers 2022, 14, 2937. [Google Scholar] [CrossRef]
- Yamamoto, S.; Yoshida, H.; Ohkubo, T.; Sawai, H.; Morita, S. Evaluation of environmental change in the mouth with the use of spray-type oral moisturizer containing γ-PGA. J. Oral Maxillofac. Surg. Med. Pathol. 2016, 28, 446–449. [Google Scholar] [CrossRef]
- QYResearch Group. Global Gamma-Polyglutamic Acid Market Insights, Forecast to 2029. Available online: https://www.marketresearch.com/QYResearch-Group-v3531/Global-Gamma-Polyglutamic-Acid-Insights-33999969/ (accessed on 23 August 2023).
- Charlotte’s Magic Serum Crystal Elixir. Available online: https://www.charlottetilbury.com/eu/product/charlottes-magic-serum-crystal-elixir (accessed on 23 August 2023).
- Twainmoist® Is a High-Performance Moisturizer. Available online: https://www.sollicebiotech.com/en/cosmetic-ingredients/twainmoist/ (accessed on 23 August 2023).
Micro-Organism | Culture Media | Fermentation Conditions | Results | References |
---|---|---|---|---|
Bacillus subtilis NX-2 | 95.6% w/w Glycerol Dry mushroom residues (DMR) Monosodium glutamate production residues (MGPR) [DSMR-to-MGPR ratio 12:8 (w/w)] | pH 7.0 35 °C 65% relative humidity 48 h | 116.4 g/kg | [20] |
Bacillus subtilis NX-2 | 30 g/L Glucose 30 g/L L-glutamic acid | 37 °C 200 rpm 24 h | 30.2 g/L 1.26 g/L/h | [25] |
Bacillus subtilis ZC-5 | 62.35 g Chicken manure 25.15 g Soybean cake 15.09 g Crude extract of glutamic acid after isoelectric crystallization (CEGA) | 37 °C >80% relative humidity 48 h | 7% | [21] |
Bacillus subtilis (natto) strain MR-141 | 6% Maltose 7% Soy sauce 3% Sodium L-glutamate 3% NaCI | pH 8 40 °C 0.1 vvm: 0–18 h 1 vvm: 18–90 h 400 rpm 90 h | 35 g/L | [30] |
Bacillus subtilis subsp. natto | 3% L-glutamic acid 2% Citric acid 1% (NH4)2SO4 | pH 7.0 37 °C 120 rpm 72 h | 200 mg/L 10–50 kDa 17 kDa | [22] |
Bacillus subtilis natto ATCC 15245 | 20 g/L L-glutamic acid 50 g/L Sucrose 50 g/L NaCl | pH 6.5 37 °C aeration rate 1 L/min 250 rpm 800 rpm, aeration rate 5 L/min to maintain DO > 40% 96 h | 26–28 g/L 6.27 × 102 kDa | [24] |
Bacillus subtilis IFO 3335 | 30 g/L L-glutamic acid 20 g/L Citric acid 20 g/L Glycerol 10 g/L (NH4)2SO4 | pH 7 37 °C 2 vvm 700 rpm 32 h | 23 g/L 3.89 × 103 kDa | [23] |
Bacillus subtilis IFO 3335 | 30 g/L L-glutamic acid 20 g/L Citric acid 10 g/L (NH4)2SO4 20 g/L Glycerol | pH 7 37 °C 2 vvm 700 rpm 30 h | 23 g/L | [27] |
Bacillus subtilis ZJU-7 | 30 g/L Glutamate 20 g/L Glucose | pH 6.5 37 °C 1.5 vvm 300–800 rpm to maintain DO > 10% glucose < 3 g/L: fed with glucose solution 46 h | 101.1 g/L 2.19 g/L/h | [28] |
Bacillus subtilis ZJU-7 | 60 g/L Sucrose 60 g/L Tryptone 80 g/L L-glutamic acid | pH 7 37 °C 200 rpm 24 h | 54.4 g/L 1.24 × 103 kDa | [26] |
Bacillus subtilis 242 | 100 g/L Cane molasses 30 g/L L-glutamate 2 g/L Corn steep liquor | pH 7 37 °C 1.5 vvm 200–600 rpm to maintain DO = 10% fed at 24 h and 34 h with cane molasses and glutamate 48 h | 32.14 g/L 27.99 kDa | [29] |
Bacillus velezensis CAU263 | 100 g/kg Sucrose 150 g/kg L-sodium glutamate | 37 °C >70% relative humidity 48 h | 155.1 g/kg 3.23 g/kg/h 3.8 · 103 kDa | [36] |
Bacillus velezensis NRRL B—23189 | 200 g/L Molasses 12.5 g/L Citric acid 8 g/L (NH4)2SO4 | pH 6.5 27 °C 200 rpm 72 h | 4.82 g/L | [37] |
Bacillus licheniformis CGMCC3967 | Sugarcane molasses (9% soluble solids) 0.7 g/L FeSO4·7H2O 80 g/L Monosodium glutamate | pH 7.2–7.3 37 °C 1.2 vvm 450 rpm 72 h | 76.848 g/L 1.07 g/L·h | [31] |
Bacillus licheniformis WBL-3 mutant | 10 g/L Citric acid 20 g/L L-glutamic acid 70 g/L Glycerol | pH 6.5 37 °C aeration rate 1.5 L/min 600–800 rpm to mantain DO > 20% 96 h | 29.4 g/L | [32] |
Bacillus licheniformis ATCC 994514 | 20.0 g/L L-glutamic acid 12.0 g/L Citric acid 80.0 g/L Glycerol | pH 6.5 37 °C 250 rpm and aeration rate 1.0 L/min: 0–20 h 800 rpm and aeration rate 2.0 L/min: 20–48 h | 23 g/L | [33] |
Bacillus licheniformis ATCC 9945 | 75 g/L L-glutamic acid 12 g/L Citric acid 80 g/L Glycerol 7 g/L NH4Cl | pH 6.5 30 °C 250 rpm 72 h | 12.64 g/L 98 kDa | [41] |
Bacillus licheniformis ATCC 9945A | 20 g/L L-glutamic acid 12 g/L Citric acid 80 g/L Glycerol 7 g/L NH4Cl | pH 6.5 37 °C 2 vvm 1000 rpm 42 h | 35 g/L | [34] |
Bacillus tequilensis BL01 engineering strain | 30 g/L Glucose 10 g/L Sodium citrate 5 g/L (NH4)2SO4 | pH 6.5 37 °C aeration rate 10 NL/min 400–700 rpm to mantain DO > 5% sugar < 10 g/L: fed with sucrose solution citric acid < 5 g/L: fed with citric acid solution 30 h | 25.3 g/L 2.06 × 103 kDa | [38] |
Bacillus paralicheniformis NCIM 5769 | 50% Sucrose 7% L-glutamic acid monosodium salt monohydrate 1% Citric acid monohydrate 1.5% Ammonium nitrate | pH 7.5 28 °C 1 vvm 250 rpm 72 h | 284 g/L 3.94 g/L/h 785 kDa | [35] |
Trademark | Skin Care Product | Benefits |
---|---|---|
REN Clean Skincare | Perfect Canvas Smooth, Prep And Plump Essence | Offers anti-pollution defense for fortified skin barrier; acts as skin primer. |
Dr. Jart | Cicapair Tiger Grass Re. Pair Serum | Soothes redness, moisturizes, protects from environmental stressors; minimizes pore visibility. |
TULA SKINCARE | 24-7 Ultra Hydration Triple-Hydra Complex Day & Night Serum | Aids in smoothing wrinkles and fine lines. |
dermalogica | Circular Hydration Serum | Promoting long-lasting hydration. |
111Skin | The Hydration Concentrate | Moisturizes and prevents excess water loss through skin. |
The INKEY List | Polyglutamic Acid Serum | Promotes hydration and reduces the visibility of fine lines. |
The INKEY List | Polyglutamic Acid Dewy Sunscreen Spf30 | Offers full UVA and UVB protection against sun’s rays. |
Collistar | Hyaluronic And Polyglutamic Acid | Offers multi-level hydration. |
Charlotte Tilbury | Charlotte’s Magic Serum Crystal Elixir | Enhances hydration, elasticity, and firmness; diminishes wrinkles and pores. |
Viviology | Ceramide Moisturiser | Moisturizing, soothing and calming product. |
KATE SOMERVILLE | Dermalquench Wrinkle Warrior Advanced Hydrating And Plumping Treatment | Combats wrinkles, sagging, uneven tone; ensures unmatched hydration. |
Sollice Biotech | Twainmoist® | Delivers hydration, firmness, and vitality. |
Good Molecules | B5 Hydrating Body Serum | Preserves moisture, fortifies skin barrier. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, M.; Gudina, E.; Botelho, C.; Teixeira, J.A.; Barros, A.N. Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications. Cosmetics 2024, 11, 76. https://doi.org/10.3390/cosmetics11030076
Serra M, Gudina E, Botelho C, Teixeira JA, Barros AN. Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications. Cosmetics. 2024; 11(3):76. https://doi.org/10.3390/cosmetics11030076
Chicago/Turabian StyleSerra, Mónica, Eduardo Gudina, Cláudia Botelho, José António Teixeira, and Ana Novo Barros. 2024. "Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications" Cosmetics 11, no. 3: 76. https://doi.org/10.3390/cosmetics11030076
APA StyleSerra, M., Gudina, E., Botelho, C., Teixeira, J. A., & Barros, A. N. (2024). Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications. Cosmetics, 11(3), 76. https://doi.org/10.3390/cosmetics11030076