Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Production of Bacillus Lysate
2.3. UV Absorption Profile
2.4. Formulation and Testing of Bacillus-Lysate-Formulated Chemical UV Filter Sunscreen
2.5. Determination of Protein Concentration
2.6. Statistical Analysis
3. Results
3.1. UV Absorption Profile and Protein Concentration of Bacillus Lysate
3.2. SPF-Boosting Capability of Bacillus Lysate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, A.R.; Zaslow, T.L.; Wren, T.A.; Daoud, A.K.; Campbell, K.; Nagle, K.; Coel, R.A. A characterization of sun protection attitudes and behaviors among children and adolescents in the United States. Prev. Med. Rep. 2019, 16, 100988. [Google Scholar] [CrossRef]
- Reyes-Marcelino, G.; Wang, R.; Gultekin, S.; Humphreys, L.; Smit, A.K.; Sharman, A.R.; St Laurent, A.G.; Evaquarta, R.; Dobbinson, S.J.; Cust, A.E. School-based interventions to improve sun-safe knowledge, attitudes and behaviors in childhood and adolescence: A systematic review. Prev. Med. 2021, 146, 106459. [Google Scholar] [CrossRef] [PubMed]
- Glenn, B.A.; Lin, T.; Chang, L.C.; Okada, A.; Wong, W.K.; Glanz, K.; Bastani, R. Sun protection practices and sun exposure among children with a parental history of melanoma. Cancer Epidemiol. Biomark. Prev. 2015, 24, 169–177. [Google Scholar] [CrossRef]
- Kammeyer, A.; Luiten, R. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Bae, S.; An, S.; Choe, Y.B.; Ahn, K.J.; An, I.S. Effects of ultraviolet radiation on the skin and skin cell signaling pathways. Korean J. Aesthet. Cosmetol. 2013, 11, 417–426. [Google Scholar]
- Hutchison, E.; Yoseph, R.; Wainman, H. Skin of colour: Essentials for the non-dermatologist. Clin. Med. 2023, 23, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Seite, S.; Colige, A.; Piquemal-Vivenot, P.; Montastier, C.; Fourtanier, A.; Lapiere, C.; Nusgens, B. A full-UV spectrum absorbing daily use cream protects human skin against biological changes occurring in photoaging. Photodermatol. Photoimmunol. Photomed. 2000, 16, 147–155. [Google Scholar] [CrossRef]
- Miller, S.L.; Linnes, J.; Luongo, J. Ultraviolet germicidal irradiation: Future directions for air disinfection and building applications. Photochem. Photobiol. 2013, 89, 777–781. [Google Scholar] [CrossRef]
- Budden, T.; Bowden, N.A. The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int. J. Mol. Sci. 2013, 14, 1132–1151. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Ahner, J.M.; Wulff, B.C.; Tober, K.L.; Kusewitt, D.F.; Riggenbach, J.A.; Oberyszyn, T.M. Gender differences in UVB-induced skin carcinogenesis, inflammation, and DNA damage. Cancer Res. 2007, 67, 3468–3474. [Google Scholar] [CrossRef]
- Gustorff, B.; Sycha, T.; Lieba-Samal, D.; Rolke, R.; Treede, R.-D.; Magerl, W. The pattern and time course of somatosensory changes in the human UVB sunburn model reveal the presence of peripheral and central sensitization. Pain 2013, 154, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J. The role of UVA rays in skin aging. Eur. J. Dermatol. 2001, 11, 170–171. [Google Scholar]
- Lan, C.-C.E.; Hung, Y.-T.; Fang, A.-H.; Ching-Shuang, W. Effects of irradiance on UVA-induced skin aging. J. Dermatol. Sci. 2019, 94, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- De Gruijl, F.R. Photocarcinogenesis: UVA vs. UVB radiation. Ski. Pharmacol. Physiol. 2002, 15, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Kohl, E.; Steinbauer, J.; Landthaler, M.; Szeimies, R.M. Skin ageing. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 873–884. [Google Scholar] [CrossRef]
- Beani, J.-C. Ultraviolet A-induced DNA damage: Role in skin cancer. Bull. De L’academie Natl. De Med. 2014, 198, 273–295. [Google Scholar]
- Sabzevari, N.; Qiblawi, S.; Norton, S.A.; Fivenson, D. Sunscreens: UV filters to protect us: Part 1: Changing regulations and choices for optimal sun protection. Int. J. Women’s Dermatol. 2021, 7, 28–44. [Google Scholar] [CrossRef]
- Mohammad, T.F.; Lim, H.W. The important role of dermatologists in public education on sunscreens. JAMA Dermatol. 2021, 157, 509–511. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, S.H.; Lee, S.; Bharadwaj, A.S.; Lee, Y.S.; Yoo, C.G.; Kim, T.H. A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites. Energies 2023, 16, 2231. [Google Scholar] [CrossRef]
- Bhalekar, M.R.; Padher, S.; Ladkat, S.; Paranjape, P. Evaluation of carboxymethyl xyloglucan as SPF booster in Oxybenzone cream. IJAR 2017, 3, 813–816. [Google Scholar]
- Singh, S.; Garg, G.; Garg, V.K.; Sharma, P. Review on herbal plants having sunscreen and antioxidant activity. Pharmacologyonline 2009, 3, 244–267. [Google Scholar]
- Yarovaya, L.; Khunkitti, W. Effect of grape seed extract as a sunscreen booster. Songklanakarin J. Sci. Technol. 2019, 41, 708–715. [Google Scholar]
- Kim, M.; Shin, S.; Ryu, D.; Cho, E.; Yoo, J.; Park, D.; Jung, E. Evaluating the Sun Protection Factor of Cosmetic Formulations Containing Afzelin. Chem. Pharm. Bull. 2021, 69, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Cordero, R.J.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [Google Scholar] [CrossRef]
- Shanuja, S.; Iswarya, S.; Sridevi, J.; Gnanamani, A. Exploring the UVB-protective efficacy of melanin precursor extracted from marine imperfect fungus: Featuring characterization and application studies under in vitro conditions. Int. Microbiol. 2018, 21, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Allam, N.G.; Abd El-Zaher, E.H. Protective role of Aspergillus fumigatus melanin against ultraviolet (UV) irradiation and Bjerkandera adusta melanin as a candidate vaccine against systemic candidiasis. Afr. J. Biotechnol. 2012, 11, 6566–6577. [Google Scholar]
- Krastanov, A.; Alexieva, Z.; Yemendzhiev, H. Microbial degradation of phenol and phenolic derivatives. Eng. Life Sci. 2013, 13, 76–87. [Google Scholar] [CrossRef]
- Grace, S.C.; Logan, B.A. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2000, 355, 1499–1510. [Google Scholar] [CrossRef]
- Chimi, H.; Cillard, J.; Cillard, P.; Rahmani, M. Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J. Am. Oil Chem. Soc. 1991, 68, 307–312. [Google Scholar] [CrossRef]
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G. Cyanobacteria secondary metabolites as biotechnological ingredients in natural anti-aging cosmetics: Potential to overcome hyperpigmentation, loss of skin density and UV radiation-deleterious effects. Mar. Drugs 2022, 20, 183. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.-H.; Chollet-Krugler, M.; Gouault, N.; Tomasi, S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013, 30, 1490–1508. [Google Scholar] [CrossRef] [PubMed]
- Link, L.; Sawyer, J.; Venkateswaran, K.; Nicholson, W. Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microb. Ecol. 2004, 47, 159–163. [Google Scholar] [CrossRef]
- Chiang, A.J.; Malli Mohan, G.B.; Singh, N.K.; Vaishampayan, P.A.; Kalkum, M.; Venkateswaran, K. Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. Msystems 2019, 4, e00195-19. [Google Scholar] [CrossRef]
- Waters, S.M.; Ledford, S.M.; Wacker, A.; Verma, S.; Serda, B.; McKaig, J.; Varelas, J.; Nicoll, P.M.; Venkateswaran, K.; Smith, D.J. Long-read sequencing reveals increased occurrence of genomic variants and adenosine methylation in Bacillus pumilus SAFR-032 after long-duration flight exposure onboard the International Space Station. Int. J. Astrobiol. 2021, 20, 435–444. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Richards, J.T.; Newcombe, D.A.; Venkateswaran, K. Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation. Icarus 2006, 181, 52–62. [Google Scholar] [CrossRef]
- Vaishampayan, P.A.; Fox, G.E.; Venkateswaran, K. Survival of Bacillus pumilus SAFR-032 in simulated Mars atmosphere in real space conditions. In Proceedings of the Instruments, Methods, and Missions for Astrobiology XIII, San Diego, CA, USA, 1–5 August 2010; pp. 218–226. [Google Scholar]
- ISO 24444:2019; Cosmetics—Sun Protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). ISO: Geneva, Switzerland, 2019.
- Niehaus, F.; Bertoldo, C.; Kähler, M.; Antranikian, G. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 1999, 51, 711–729. [Google Scholar] [CrossRef]
- Krüger, A.; Schäfers, C.; Schröder, C.; Antranikian, G. Towards a sustainable biobased industry–highlighting the impact of extremophiles. New Biotechnol. 2018, 40, 144–153. [Google Scholar] [CrossRef]
- Kaur, A.; Capalash, N.; Sharma, P. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol. Res. 2019, 221, 15–27. [Google Scholar] [CrossRef]
- Landry, K.S.; Morey, J.M.; Bharat, B.; Haney, N.M.; Panesar, S.S. Biofilms-Impacts on Human Health and Its Relevance to Space Travel. Microorganisms 2020, 8, 998. [Google Scholar] [CrossRef]
- Landry, K.S.; Levin, R.E. Purification and characterization of iso-ribonucleases from a novel thermophilic fungus. Int. J. Mol. Sci. 2014, 15, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Landry, K.S.; Levin, R.E. Characterization of a recently purified thermophilic DNase from a novel thermophilic fungus. Appl. Biochem. Biotechnol. 2014, 173, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, B.; Kambourova, M.; Oner, E.T. Exopolysaccharides from extremophiles: From fundamentals to biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef]
- Giddings, L.-A.; Newman, D.J.; Giddings, L.-A.; Newman, D.J. Bioactive compounds from extremophiles. In Bioactive Compounds from Extremophiles: Genomic Studies, Biosynthetic Gene Clusters, and New Dereplication Methods; Springer: Cham, Switzerland, 2015; pp. 1–47. [Google Scholar]
- Horikawa, D.D.; Cumbers, J.; Sakakibara, I.; Rogoff, D.; Leuko, S.; Harnoto, R.; Arakawa, K.; Katayama, T.; Kunieda, T.; Toyoda, A. Analysis of DNA repair and protection in the Tardigrade Ramazzottius varieornatus and Hypsibius dujardini after exposure to UVC radiation. PLoS ONE 2013, 8, e64793. [Google Scholar] [CrossRef]
- Ricci, C.; Riolo, G.; Marzocchi, C.; Brunetti, J.; Pini, A.; Cantara, S. The tardigrade damage suppressor protein modulates transcription factor and DNA repair genes in human cells treated with hydroxyl radicals and UV-C. Biology 2021, 10, 970. [Google Scholar] [CrossRef]
- Tanaka, M.; Narumi, I.; Funayama, T.; Kikuchi, M.; Watanabe, H.; Matsunaga, T.; Nikaido, O.; Yamamoto, K. Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J. Bacteriol. 2005, 187, 3693–3697. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, N.; Zhang, Y. The radioresistant and survival mechanisms of Deinococcus radiodurans. Radiat. Med. Prot. 2023, 4, 70–79. [Google Scholar] [CrossRef]
- Miksa, S.; Lutz, D.; Guy, C.; Delamour, E. Sunscreen sun protection factor claim based on in vivo interlaboratory variability. Int. J. Cosmet. Sci. 2016, 38, 541–549. [Google Scholar] [CrossRef]
- Minaberry, Y.S.; Svarc, F.E. Sun protection, progress, myths, and inconsistencies (a proposal for the democratization of ISO 24443). Photochem. Photobiol. 2023. [Google Scholar] [CrossRef]
- Raffa, R.B.; Pergolizzi, J.V., Jr.; Taylor, R., Jr.; Kitzen, J.M.; NEMA Research Group. Sunscreen bans: Coral reefs and skin cancer. J. Clin. Pharm. Ther. 2019, 44, 134–139. [Google Scholar] [CrossRef]
- Moeller, M.; Pawlowski, S.; Petersen-Thiery, M.; Miller, I.B.; Nietzer, S.; Heisel-Sure, Y.; Kellermann, M.Y.; Schupp, P.J. Challenges in current coral reef protection–possible impacts of UV filters used in sunscreens, a critical review. Front. Mar. Sci. 2021, 8, 665548. [Google Scholar] [CrossRef]
- Paul, S.P. Ensuring the safety of sunscreens, and their efficacy in preventing skin cancers: Challenges and controversies for clinicians, formulators, and regulators. Front. Med. 2019, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.E.; Wang, S.Q. Current sunscreen controversies: A critical review. Photodermatol. Photoimmunol. Photomed. 2011, 27, 58–67. [Google Scholar] [CrossRef] [PubMed]
Phase A | Supplier | %WT |
---|---|---|
Octocrylene (PARSOL® 340) | DSM | 5.000 |
Homosalate (PARSOL® HMS) | DSM | 5.000 |
Ethylhexyl Salycilate (PARSOL® EHS) | DSM | 5.000 |
Avobenzone (PARSOL® 1789) | DSM | 3.000 |
Caprylic Capric Triglycerides | Protameen | 5.000 |
Glyceryl Stearate (and) PEG-100 stearate | Protameen | 3.000 |
Cetearyl alcohol (and) Ceteareth 20 (Procol L CS-20-D) | Protameen | 3.000 |
Cetyl alcohol | Protameen | 2.500 |
C15–19 Alkane (Emogreen L-19) | Seppic | 4.500 |
Dimethicone (XIAMETER® PMX-200 Silicone Fluid 10 cSt) | Dow Chemicals | 1.000 |
Phase B | ||
Deionized water | 51.100 | |
EDTA (Protacide Na3 EDTA) | Protameen | 0.100 |
Phenoxyethanol (and) Ethylhexylglycerin (Euxyl PE 9010) | Shulke | 1.000 |
Carbomer (Carbopol® 940 Polymer) | Ess. Ingredients | 0.200 |
Glycerin | Pride | 3.000 |
Polysorbate 20 | Protameen | 1.500 |
Propanediol (Zemea) | Essential Ingreds | 2.000 |
Polyglyceryl-4 Caprate (Tegosoft PC 41) | Evonik | 0.500 |
Sodium Hyaluronate (and) water (Actique™ Hyal 1%) | Jarchem | 1.500 |
Hydrolyzed Jojoba Esters (and) Water (Floraesters K-20 W) | Essential Ingreds | 1.500 |
Phase C | ||
Triethanolamine 99% | Jeen Internat. | 0.500 |
Tocopherol clear | Jedwards | 0.100 |
Procedure: | ||
1—Heat phase A to 85 °C while stirring; | ||
2—Heat phase B to 80 °C and add to phase A while stirring and homogenizing the emulsion; | ||
3—Cool down the emulsion to 40 °C and add phase C. |
Phase A | Supplier | %WT |
---|---|---|
Octocrylene (PARSOL® 340) | DSM | 5.000 |
Homosalate (PARSOL® HMS) | DSM | 5.000 |
Ethylhexyl Salycilate (PARSOL® EHS) | DSM | 5.000 |
Avobenzone (PARSOL® 1789) | DSM | 3.000 |
Caprylic Capric Triglycerides | Protameen | 5.000 |
Glyceryl Stearate (and) PEG-100 stearate | Protameen | 3.000 |
Cetearyl alcohol (and) Ceteareth 20 (Procol L CS-20-D) | Protameen | 3.000 |
Cetyl alcohol | Protameen | 2.500 |
C15–19 Alkane (Emogreen L-19) | Seppic | 4.500 |
Dimethicone (XIAMETER® PMX-200 Silicone Fluid 10 cSt) | Dow Chemicals | 1.000 |
Phase B | ||
Deionized water | 48.100 | |
EDTA (Protacide Na3 EDTA) | Protameen | 0.100 |
Phenoxyethanol (and) Ethylhexylglycerin (Euxyl PE 9010) | Shulke | 1.000 |
Carbomer (Carbopol® 940 Polymer) | Ess. Ingredients | 0.200 |
Glycerin | Pride | 3.000 |
Polysorbate 20 | Protameen | 1.500 |
Propanediol (Zemea) | Essential Ingreds | 2.000 |
Polyglyceryl-4 Caprate (Tegosoft PC 41) | Evonik | 0.500 |
Sodium Hyaluronate (and) water (Actique™ Hyal 1%) | Jarchem | 1.500 |
Hydrolyzed Jojoba Esters (and) Water (Floraesters K-20W) | Essential Ingreds | 1.500 |
Phase C | ||
Triethanolamine 99% | Jeen Internat. | 0.500 |
Tocopherol clear | Jedwards | 0.100 |
Phase D | ||
Bacillus Lysate | Delavie Sciences | 3.00 |
Procedure: | ||
1—Heat phase A to 85 °C while stirring; | ||
2—Heat phase B to 80 °C and add to phase A while stirring and homogenizing the emulsion; | ||
3—Cool down the emulsion to 40 °C and add phase C; | ||
4—Add phase D and homogenize. |
Phase A | Supplier | %WT |
---|---|---|
Octocrylene (PARSOL® 340) | DSM | 5.000 |
Homosalate (PARSOL® HMS) | DSM | 5.000 |
Ethylhexyl Salycilate (PARSOL® EHS) | DSM | 5.000 |
Avobenzone (PARSOL® 1789) | DSM | 3.000 |
Caprylic Capric Triglycerides | Protameen | 5.000 |
Glyceryl Stearate (and) PEG-100 stearate | Protameen | 3.000 |
Cetearyl alcohol (and) Ceteareth 20 (Procol L CS-20-D) | Protameen | 3.000 |
Cetyl alcohol | Protameen | 2.500 |
C15–19 Alkane (Emogreen L-19) | Seppic | 4.500 |
Dimethicone (XIAMETER® PMX-200 Silicone Fluid 10 cSt) | Dow Chemicals | 1.000 |
Phase B | ||
Deionized water | 44.100 | |
EDTA (Protacide Na3 EDTA) | Protameen | 0.100 |
Phenoxyethanol (and) Ethylhexylglycerin (Euxyl PE 9010) | Shulke | 1.000 |
Carbomer (Carbopol® 940 Polymer) | Ess. Ingredients | 0.200 |
Glycerin | Pride | 3.000 |
Polysorbate 20 | Protameen | 1.500 |
Propanediol (Zemea) | Essential Ingreds | 2.000 |
Polyglyceryl-4 Caprate (Tegosoft PC 41) | Evonik | 0.500 |
Sodium Hyaluronate (and) water (Actique™ Hyal 1%) | Jarchem | 1.500 |
Hydrolyzed Jojoba Esters (and) Water (Floraesters K-20W) | Essential Ingreds | 1.500 |
Phase C | ||
Triethanolamine 99% | Jeen Internat. | 0.500 |
Tocopherol clear | Jedwards | 0.100 |
Phase D | ||
Bacillus Lysate | Delavie Sciences | 7.00 |
Procedure: | ||
1—Heat phase A to 85 °C while stirring; | ||
2—Heat phase B to 80 °C and add to phase A while stirring and homogenizing the emulsion; | ||
3—Cool down the emulsion to 40 °C and add phase C; | ||
4—Add phase D and homogenize. |
Phase A | Supplier | %WT |
---|---|---|
Octocrylene (PARSOL® 340) | DSM | 5.000 |
Homosalate (PARSOL® HMS) | DSM | 5.000 |
Ethylhexyl Salycilate (PARSOL® EHS) | DSM | 5.000 |
Avobenzone (PARSOL® 1789) | DSM | 3.000 |
Caprylic Capric Triglycerides | Protameen | 5.000 |
Glyceryl Stearate (and) PEG-100 stearate | Protameen | 3.000 |
Cetearyl alcohol (and) Ceteareth 20 (Procol L CS-20-D) | Protameen | 3.000 |
Cetyl alcohol | Protameen | 2.500 |
C15–19 Alkane (Emogreen L-19) | Seppic | 4.500 |
Dimethicone (XIAMETER® PMX-200 Silicone Fluid 10 cSt) | Dow Chemicals | 1.000 |
Phase B | ||
Deionized water | 41.100 | |
EDTA (Protacide Na3 EDTA) | Protameen | 0.100 |
Phenoxyethanol (and) Ethylhexylglycerin (Euxyl PE 9010) | Shulke | 1.000 |
Carbomer (Carbopol® 940 Polymer) | Ess. Ingredients | 0.200 |
Glycerin | Pride | 3.000 |
Polysorbate 20 | Protameen | 1.500 |
Propanediol (Zemea) | Essential Ingreds | 2.000 |
Polyglyceryl-4 Caprate (Tegosoft PC 41) | Evonik | 0.500 |
Sodium Hyaluronate (and) water (Actique™ Hyal 1%) | Jarchem | 1.500 |
Hydrolyzed Jojoba Esters (and) Water (Floraesters K-20W) | Essential Ingreds | 1.500 |
Phase C | ||
Triethanolamine 99% | Jeen Internat. | 0.500 |
Tocopherol clear | Jedwards | 0.100 |
Phase D | ||
Bacillus Lysate | Delavie Sciences | 10.00 |
Procedure: | ||
1—Heat phase A to 85 °C while stirring; | ||
2—Heat phase B to 80 °C and add to phase A while stirring and homogenizing the emulsion; | ||
3—Cool down the emulsion to 40 °C and add phase C; | ||
4—Add phase D and homogenize. |
Sample | Absorbance (595 nm) | Concentration (mg/mL) | Std. Dev. |
---|---|---|---|
Bacillus Lysate | 1.554 | 2.13 | 0.339 |
50% Bacillus Lysate | 1.287 | 1.75 | 0.104 |
10% Bacillus Lysate | 0.385 | 0.47 | 0.017 |
1% Bacillus Lysate | 0.031 | 0.04 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, K.S.; Young, E.; Avery, T.S.; Gropman, J. Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station. Cosmetics 2023, 10, 138. https://doi.org/10.3390/cosmetics10050138
Landry KS, Young E, Avery TS, Gropman J. Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station. Cosmetics. 2023; 10(5):138. https://doi.org/10.3390/cosmetics10050138
Chicago/Turabian StyleLandry, Kyle S., Elizabeth Young, Timothy S. Avery, and Julia Gropman. 2023. "Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station" Cosmetics 10, no. 5: 138. https://doi.org/10.3390/cosmetics10050138
APA StyleLandry, K. S., Young, E., Avery, T. S., & Gropman, J. (2023). Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station. Cosmetics, 10(5), 138. https://doi.org/10.3390/cosmetics10050138