Effects of Dietary Bacillus natto Productive Protein on the Skin: In Vitro Efficacy Test and Single-Armed Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Tyrosinase Inhibitory Activity
2.2. Measurement of Elastase Inhibitory Activity
2.3. Evaluation of DPPH Radical Scavenging Activity
2.4. Skin Irritation Test
2.5. Clinical Study
2.5.1. Inclusion/Exclusion Criteria for Participants
- a.
- Dermatological diseases, such as atopic dermatitis, contact dermatitis, and/or cutaneous hypersensitivity;
- b.
- Use of an oral drug or topical drug applied to the test skin site within two weeks before starting the study with a potential impact on the study intent;
- c.
- Injury or tanned area that may interfere with measurement;
- d.
- Past medical history of malignant tumors, heart failure, and/or myocardial infarction;
- e.
- Chronic diseases under medical treatment, as follows: atrial fibrillation, arrhythmia, liver failure, kidney disease, cerebrovascular disease, rheumatoid arthritis, diabetes mellitus, dyslipidemia, hypertension, and other chronic diseases;
- f.
- Regular intake of medicines (herbal medicines), food for specified health uses, foods with functional claims, health foods, and supplements;
- g.
- Allergies to medicines or test food-related foods; and
- h.
- Pregnancy, breastfeeding, or intention to become pregnant during the study period.
2.5.2. Ethics Approval and Informed Consent
2.5.3. Test Food Samples
2.5.4. Study Design
2.6. Statistical Analysis
3. Results
3.1. Tyrosinase Inhibitory Activity, Elastase Inhibitory Activity, and DPPH Radical Scavenging Activity
3.2. Participant Tests
3.2.1. Primary Endpoints
3.2.2. Secondary Endpoints
3.3. Skin Irritation Test
3.4. Stability of BNPP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abe, C.; Imai, T.; Sezaki, A.; Miyamoto, K.; Kawase, F.; Shirai, Y.; Sanada, M.; Inden, A.; Kato, T.; Sugihara, N.; et al. Global association between traditional Japanese diet score and All-Cause, cardiovascular disease, and total cancer mortality: A cross-sectional and longitudinal ecological study. J. Am. Nutr. Assoc. 2023, 42, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Omura, K.; Hitosugi, M.; Zhu, X.; Ikeda, M.; Maeda, H.; Tokudome, S. A newly derived protein from Bacillus subtilis natto with both antithrombotic and fibrinolytic effects. J. Pharmacol. Sci. 2005, 99, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Oda, E.; Giddings, J.C.; Yamamoto, J. The effect of dietary Bacillus natto productive protein on in vivo endogenous thrombolysis. Pathophysiol. Haemost. Thromb. 2003, 33, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Hitosugi, M. Effects of Bacillus Natto Products on Blood Pressure in Patients with Lifestyle Diseases. J. Hypertens. Open Access 2014, 3, 1000135. [Google Scholar] [CrossRef]
- Hitosugi, M.; Hamada, K.; Misaka, K. Effects of Bacillus subtilis var. natto products on symptoms caused by blood flow disturbance in female patients with lifestyle diseases. Int. J. Gen. Med. 2015, 8, 41–46. [Google Scholar] [CrossRef]
- Sunagawa, Y.; Okamura, N.; Miyazaki, Y.; Shimizu, K.; Genpei, M.; Funamoto, M.; Shimizu, S.; Katanasaka, Y.; Morimoto, E.; Yamakage, H.; et al. Effects of products containing Bacillus subtilis var. natto on healthy subjects with neck and shoulder stiffness, a double-blind, placebo-controlled, randomized crossover study. Biol. Pharm. Bull. 2018, 41, 504–509. [Google Scholar] [CrossRef]
- Fujita, C.; Usui, Y.; Inoue, M. Effects of Bacillus subtilis var. natto products on capillary blood flow in healthy subjects with peripheral coldness: A double-blind, placebo-controlled, randomized parallel study. Food Nutr. Sci. 2022, 13, 211–223. [Google Scholar] [CrossRef]
- Sawane, M.; Ota, M.; Yamanishi, H.; Motoyama, A.; Takakura, N.; Kajiya, K. The molecular basis of skin aging triggered by lymphatic and blood vascular dysfunction. J. Soc. Cosmet. Chem. Jpn. 2012, 46, 188–196. [Google Scholar] [CrossRef]
- Chang, T.S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef]
- Mason, H.S. The Chemistry of melanin; Mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. J. Biol. Chem. 1948, 172, 83–99. [Google Scholar] [CrossRef]
- Castillo, M.J.; Nakajima, K.; Zimmerman, M.; Powers, J.C. Sensitive substrates for human leukocyte and porcine pancreatic elastase: A study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal. Biochem. 1979, 99, 53–64. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Katoh, M.; Hata, K. Refinement of LabCyte EPI-MODEL24 skin irritation test method for adaptation to the requirement of OECD Test Guideline 439. AATEX 2011, 16, 111–122. [Google Scholar]
- Mohania, D.; Chandel, S.; Kumar, P.; Verma, V.; Digvijay, K.; Tripathi, D.; Choudhury, K.; Mitten, S.K.; Shah, D. Ultraviolet Radiations: Skin Defense-Damage Mechanism. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2017; Volume 996, pp. 71–87. [Google Scholar]
- Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: The effect of hydroxyl positions and numbers. Phytochemistry 2004, 65, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Shiino, M.; Watanabe, Y.; Umezawa, K. Synthesis and tyrosinase inhibitory activity of novel N-hydroxybenzyl-N-nitrosohydroxylamines. Bioorg. Chem. 2003, 31, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, K.U.; Ali, A.S.; Ali, S.A.; Naaz, I. Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem. Res. Int. 2014, 2014, 854687. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Tsukahara, K.; Takema, Y.; Moriwaki, S.; Tsuji, N.; Suzuki, Y.; Fujimura, T.; Imokawa, G. Selective inhibition of skin fibroblast elastase elicits a concentration-dependent prevention of ultraviolet B-induced wrinkle formation. J. Investig. Dermatol. 2001, 117, 671–677. [Google Scholar] [CrossRef]
- Imokawa, G.; Ishida, K. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging. Int. J. Mol. Sci. 2015, 16, 7753–7775. [Google Scholar] [CrossRef]
- Han, A.; Chien, A.L.; Kang, S. Photoaging. Dermatol. Clin. 2014, 32, 291–299. [Google Scholar] [CrossRef]
- Bosch, R.; Philips, N.; Suárez-Pérez, J.A.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants 2015, 4, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Kammeyer, A.; Luiten, R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Poljšak, B.; Dahmane, R.G.; Godić, A. Intrinsic skin aging: The role of oxidative stress. Acta Dermatovenerol. Alp. Pannonica Adriat. 2012, 21, 33–36. [Google Scholar] [PubMed]
- Chen, X.; Yang, C.; Jiang, G. Research progress on skin photoaging and oxidative stress. Adv. Dermatol. Alergol. 2021, 38, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Kitada, Y.; Kaneda, Y.; Muramatsu, Y.; Ogawa, H.; Iijima, S.; Takakura, N. Skin colors in the four seasons. J. Soc. Cosmet. Chem. Jpn. 1996, 30, 169–175. [Google Scholar] [CrossRef]
- Tsukada, H.; Takeda, A.; Uyama, M. Skin and Blood Flow of Microcirculation. J. Soc. Cosmet. Chem. Jpn. 1996, 30, 184–189. [Google Scholar] [CrossRef]
- Ohnami, H.; Morimoto, T.; Urushibata, O.; Ikeda, S.; Okouchi, S. Effects of Bathing in the Hot Spring Waters with Reductive Characteristic on the Elasticity of the Skins. Jpn. Soc. Hot Spring Sci. 2008, 57, 215–225. [Google Scholar]
Item | Baseline | 6 Weeks After | p Value | |
---|---|---|---|---|
Mean ± Standard Deviation | Mean ± Standard Deviation | |||
Brightness (L) | 67.24 ± 3.66 | 68.56 ± 3.72 | 0.0879 | |
Hue | a* | 16.27 ± 1.49 | 17.04 ± 1.84 | 0.0158 |
b* | 22.07 ± 3.14 | 21.11 ± 2.91 | 0.0024 | |
Chroma (c*) | 27.46 ± 3.03 | 27.20 ± 2.77 | 0.4398 |
Item | Baseline | 6 Weeks After | p Value |
---|---|---|---|
Mean ± Standard Deviation | Mean ± Standard Deviation | ||
Complexion | 3.27 ± 1.03 | 4.67 ± 0.90 | 0.005 |
Skin elasticity and resilience | 3.07 ± 1.22 | 4.27 ± 1.03 | 0.003 |
Moist feeling | 3.20 ± 1.15 | 4.53 ± 1.36 | 0.007 |
Skin texture | 2.80 ± 0.94 | 4.33 ± 0.90 | 0.002 |
Cosmetic adhesion | 3.67 ± 1.05 | 4.67 ± 1.11 | 0.026 |
Fine lines | 2.93 ± 1.03 | 4.00 ± 1.13 | 0.029 |
Under-eye darkness | 2.27 ± 0.88 | 3.93 ± 1.28 | 0.001 |
Eye bags | 2.47 ± 0.92 | 3.87 ± 0.99 | 0.005 |
Sagging cheeks | 2.47 ± 0.99 | 3.60 ± 0.99 | 0.012 |
Sagging mouth | 2.33 ± 0.98 | 3.53 ± 1.13 | 0.011 |
Test Item | Specification | At Production | After 3 Years and 6 Months | |
---|---|---|---|---|
Properties | Color | White or light yellow | Light yellow | Light yellow |
Odor | Odorless or slight fermented odor | Odorless | Odorless | |
Aerobic plate count (cfu/g) | 3 × 103 or less | Less than 1 × 102 | Less than 1 × 102 | |
Coliform bacteria | Negative | Negative | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igari, N.; Ninomiya, R.; Kawakami, S. Effects of Dietary Bacillus natto Productive Protein on the Skin: In Vitro Efficacy Test and Single-Armed Trial. Cosmetics 2023, 10, 135. https://doi.org/10.3390/cosmetics10050135
Igari N, Ninomiya R, Kawakami S. Effects of Dietary Bacillus natto Productive Protein on the Skin: In Vitro Efficacy Test and Single-Armed Trial. Cosmetics. 2023; 10(5):135. https://doi.org/10.3390/cosmetics10050135
Chicago/Turabian StyleIgari, Naoki, Ryo Ninomiya, and Satoshi Kawakami. 2023. "Effects of Dietary Bacillus natto Productive Protein on the Skin: In Vitro Efficacy Test and Single-Armed Trial" Cosmetics 10, no. 5: 135. https://doi.org/10.3390/cosmetics10050135
APA StyleIgari, N., Ninomiya, R., & Kawakami, S. (2023). Effects of Dietary Bacillus natto Productive Protein on the Skin: In Vitro Efficacy Test and Single-Armed Trial. Cosmetics, 10(5), 135. https://doi.org/10.3390/cosmetics10050135