Olea europea and By-Products: Extraction Methods and Cosmetic Applications
Abstract
:1. Introduction
2. Olive By-Products for Skin Care
2.1. Hydrophilic Compounds: Polyphenols
2.1.1. Polyphenols as Anti-Aging Agents
2.1.2. Polyphenols in UV Protection
2.1.3. Polyphenols as Antimicrobial Agents
2.2. Lipophilic Compounds
2.2.1. Fatty Acids
2.2.2. Vitamin E
2.2.3. Carotenoids
2.2.4. Squalene
3. Extraction Technologies of Bioactive Compounds from Olive By-Products
3.1. Solid–Liquid Extraction
3.2. Ultrasound-Assisted Extraction (UAE)
3.3. Microwave-Assisted Extraction (MAE)
3.4. Supercritical Fluid Extraction (SFE)
3.5. Pressurized Liquid Extraction (PLE)
3.6. Deep Eutectic Solvents (DES)
4. Applications of Olive Extracts in the Cosmetic Industry
5. Consumer Perception of Cosmetic Products with Olive Oil and By-Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- COI/T.15/NC No 3/Rev. 19 Nov. 2022; Trade Standard Applying to Olive Oils and Olive Pomace Oils. International Olive Council: Madrid, Spain, 2022.
- Čižinauskas, V.; Elie, N.; Brunelle, A.; Briedis, V. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery. Molecules 2017, 22, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichihashi, M.; Yanagi, H.; Yoshimoto, S.; Ando, H.; Kunisada, M.; Nishigori, C. Olive Oil and Skin Anti-Aging. Glycative Stress Res. 2018, 5, 86–94. [Google Scholar] [CrossRef]
- Djalil, A.D.; Setyawan, H.; Gumelar, M.I.; Nurulita, N.A.; Budiman, A. Antioxidant Potentials of Virgin Olive Oil and Virgin Coconut Oil and Its Cream Formulation. J. Phys. Conf. Ser. 2019, 1402, 3–8. [Google Scholar] [CrossRef]
- Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of Olive Oil Antioxidants between Oil and Water Phases. J. Agric. Food Chem. 2002, 50, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive By-Products: Challenge Application in Cosmetic Industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Madureira, J.; Margaça, F.M.A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Verde, S.C.; Barros, L. Applications of Bioactive Compounds Extracted from Olive Industry Wastes: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 453–476. [Google Scholar] [CrossRef]
- Lo Giudice, V.; Faraone, I.; Bruno, M.R.; Ponticelli, M.; Labanca, F.; Bisaccia, D.; Massarelli, C.; Milella, L.; Todaro, L. Olive Trees By-Products as Sources of Bioactive and Other Industrially Useful Compounds: A Systematic Review. Molecules 2021, 26, 5081. [Google Scholar] [CrossRef]
- Guinda, Á.; Albi, T.; Pérez-Camino, M.C.; Lanzón, A. Supplementation of Oils with Oleanolic Acid from the Olive Leaf (Olea europaea). Eur. J. Lipid Sci. Technol. 2004, 106, 22–26. [Google Scholar] [CrossRef]
- Molina Alcaide, E.; Nefzaoui, A. Recycling of Olive Oil By-Products: Possibilities of Utilization in Animal Nutrition. Int. Biodeterior. Biodegrad. 1996, 38, 227–235. [Google Scholar] [CrossRef]
- Martín García, A.I.; Moumen, A.; Yáñez Ruiz, D.R.; Molina Alcaide, E. Chemical Composition and Nutrients Availability for Goats and Sheep of Two-Stage Olive Cake and Olive Leaves. Anim. Feed Sci. Technol. 2003, 107, 61–74. [Google Scholar] [CrossRef]
- Campeol, E.; Flamini, G.; Cioni, P.L.; Morelli, I.; Cremonini, R.; Ceccarini, L. Volatile Fractions from Three Cultivars of Olea europaea L., Collected in Two Different Seasons. J. Agric. Food Chem. 2003, 51, 1994–1999. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.A.; Edwards, C.A.; Lean, M.E.J.; Crozier, A. Absorption and Excretion of Conjugated Flavonols, Including Quercetin-4′-O-β-Glucoside and Isorhamnetin-4′-O-β-Glucoside by Human Volunteers after the Consumption of Onions. Free Radic. Res. 1998, 29, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Micol, V.; Caturla, N.; Pérez-Fons, L.; Más, V.; Pérez, L.; Estepa, A. The Olive Leaf Extract Exhibits Antiviral Activity against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV). Antiviral Res. 2005, 66, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Fehri, B.; Aiache, J.M.; Memmi, A.; Korbi, S.; Yacoubi, M.T.; Mrad, S.; Lamaison, J.L. Hypotension, Hypoglycemia and Hypouricemia Recorded after Repeated Administration of Aqueous Leaf Extract of Olea europaea L. J. Pharm. Belg. 1994, 49, 101–108. [Google Scholar] [PubMed]
- Singh, I.; Mok, M.; Christensen, A.M.; Turner, A.H.; Hawley, J.A. The Effects of Polyphenols in Olive Leaves on Platelet Function. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive Mill Wastes: Biochemical Characterizations and Valorization Strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- González-Acedo, A.; Ramos-Torrecillas, J.; Illescas-Montes, R.; Costela-Ruiz, V.J.; Ruiz, C.; Melguizo-Rodríguez, L.; García-Martínez, O. The Benefits of Olive Oil for Skin Health: Study on the Effect of Hydroxytyrosol, Tyrosol, and Oleocanthal on Human Fibroblasts. Nutrients 2023, 15, 2077. [Google Scholar] [CrossRef]
- Aggoun, M.; Arhab, R.; Cornu, A.; Portelli, J.; Barkat, M.; Graulet, B. Olive Mill Wastewater Microconstituents Composition According to Olive Variety and Extraction Process. Food Chem. 2016, 209, 72–80. [Google Scholar] [CrossRef]
- Ramírez, E.M.; Brenes, M.; Romero, C.; Medina, E. Olive Leaf Processing for Infusion Purposes. Foods 2023, 12, 591. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; González-Acedo, A.; Illescas-Montes, R.; García-Recio, E.; Ramos-Torrecillas, J.; Costela-Ruiz, V.J.; García-Martínez, O. Biological Effects of the Olive Tree and Its Derivatives on the Skin. Food Funct. 2022, 6, 11410–11424. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, M.; Song, L. A Review of Fatty Acids Influencing Skin Condition. J. Cosmet. Dermatol. 2020, 19, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, L.E.; Storey, A. Essential Fatty Acids: Biological Functions and Potential Applications in the Skin. In Dry Skin and Moisturizers Chemistry and Function, 2nd ed.; Routledge: Abingdon, UK, 2006. [Google Scholar]
- Maestri, D.; Barrionuevo, D.; Bodoira, R.; Zafra, A.; Jiménez-López, J.; de Alché, J.D. Nutritional Profile and Nutraceutical Components of Olive (Olea europaea L.) Seeds. J. Food Sci. Technol. 2019, 56, 4359–4370. [Google Scholar] [CrossRef] [PubMed]
- Wołosik, K.; Knas, M.; Zalewska, A.; Niczyporuk, M.; Przystupa, A.W. The Importance and Perspective of Plant-Based Squalene in Cosmetology. J. Cosmet. Sci. 2013, 64, 59–66. [Google Scholar] [PubMed]
- Filipović, M.; Gledović, A.; Lukić, M.; Tasić-Kostov, M.; Isailović, T.; Pantelić, I.; Vuleta, G.; Savić, S. Alp Rose Stem Cells, Olive Oil Squalene and a Natural Alkyl Polyglucoside Emulsifier: Are They Appropriate Ingredients of Skin Moisturizers—In Vivo Efficency on Normal and Sodium Lauryl Sulfateirritated Skin? Vojnosanit. Pregl. 2016, 73, 991–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Wang, Y.; Yang, K.; Jiao, J.; Zhan, H.; Yang, Y.; Lv, D.; Li, W.; Ding, W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022, 27, 8732. [Google Scholar] [CrossRef]
- Cheng, Y.; Xia, Q.; Lu, Z.; Luan, X.; Fan, L.; Wang, Z.; Luo, D. Maslinic Acid Attenuates UVB-Induced Oxidative Damage in HFF-1 Cells. J. Cosmet. Dermatol. 2023, 22, 2352–2360. [Google Scholar] [CrossRef]
- European Commission. CosIng—Cosmetics Ingredients. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 29 April 2023).
- Draelos, Z.D. Revisiting the Skin Health and Beauty Pyramid: A Clinically Based Guide to Selecting Topical Skincare Products. J. Drugs Dermatol. 2021, 20, 695–699. [Google Scholar] [CrossRef]
- Wilson, N. Market Evolution of Topical Anti-Aging Treatments. In Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development; Dayan, N., Ed.; William Andrew Inc.: New York, NY, USA, 2008; pp. 15–34. ISBN 9780080947648. [Google Scholar]
- Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacol. Physiol. 2014, 27, 316–332. [Google Scholar] [CrossRef]
- Liebmann, J.; Born, M.; Kolb-Bachofen, V. Blue-Light Irradiation Regulates Proliferation and Differentiation in Human Skin Cells. J. Investig. Dermatol. 2010, 130, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Pourzand, C.; Albieri-Borges, A.; Raczek, N.N. Shedding a New Light on Skin Aging, Iron-and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants 2022, 11, 471. [Google Scholar] [CrossRef]
- Brüning, A.K.E.; Schiefer, J.L.; Fuchs, P.C.; Petzsch, P.; Köhrer, K.; Suschek, C.V.; Stürmer, E.K.; Opländer, C. Low-Dose Blue Light (420 Nm) Reduces Metabolic Activity and Inhibits Proliferation of Human Dermal Fibroblasts. Life 2023, 13, 331. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Ohta, S.; Wolf, A.M. Blue Light-Induced Oxidative Stress in Live Skin. Free Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.E. Prevention and Treatment of Aging Skin with Topical Antioxidants. In Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development; Dayan, N., Ed.; William Andrew Inc.: New York, NY, USA, 2008; pp. 149–176. ISBN 9780080947648. [Google Scholar]
- Farris, P.K.; Krol, Y. Under Persistent Assault: Understanding the Factors That Deteriorate Human Skin and Clinical Efficacy of Topical Antioxidants in Treating Aging Skin. Cosmetics 2015, 2, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Fuller, B.B. Antioxidants and Anti-Inflammatories. In Cosmetic Dermatology: Products and Procedures; Draelos, Z.D., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 366–387. ISBN 9781119676881. [Google Scholar]
- Khaiat, A.; Saliou, C. Botanical Extracts. In Cosmeceuticals and Active Cosmetics; Sivamani, R., Jagdeo, J.R., Elsner, P., Maibach, H.I., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 400–417. ISBN 9780429192388. [Google Scholar]
- Evangelista, M.; Mota, S.; Almeida, I.F.; Pereira, M.G. Usage Patterns and Self-Esteem of Female Consumers of Antiaging Cosmetic Products. Cosmetics 2022, 9, 49. [Google Scholar] [CrossRef]
- Lecci, R.M.; D’antuono, I.; Cardinali, A.; Garbetta, A.; Linsalata, V.; Logrieco, A.F.; Leone, A. Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on Uva-Damaged Human Keratinocytes. Molecules 2021, 26, 2153. [Google Scholar] [CrossRef]
- Rodrigues, F.; da Mota Nunes, M.A.; Oliveira, M.B. Applications of Recovered Bioactive Compounds in Cosmetics and Health Care Products. In Olive Mill Waste; Elsevier Inc.: San Diego, CA, USA, 2017; pp. 255–274. ISBN 9780128112915. [Google Scholar]
- Pouillot, A.; Polla, L.L.; Tacchini, P.; Neequaye, A.; Polla, A.; Polla, B. Natural Antioxidants and Their Effects on the Skin. In Formulating, Packaging, and Marketing of Natural Cosmetic Products; Dayan, N., Kromidas, L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 239–257. ISBN 9780470484081. [Google Scholar]
- Dreher, F.; Thiele, J.; Levin, J. Antioxidants. In Cosmeceuticals and Active Cosmeticals; Sivamani, R., Jagdeo, J.R., Elsner, P., Maibach, H.I., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 177–190. [Google Scholar]
- Lademann, J.; Vergou, T.; Darvin, M.E.; Patzelt, A.; Meinke, M.C.; Voit, C.; Papakostas, D.; Zastrow, L.; Sterry, W.; Doucet, O. Influence of Topical, Systemic and Combined Application of Antioxidants on the Barrier Properties of the Human Skin. Skin Pharmacol. Physiol. 2016, 29, 41–46. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Lobo, J.M.S. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef] [Green Version]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Espeso, J.; Isaza, A.; Lee, J.Y.; Sörensen, P.M.; Jurado, P.; de Avena-Bustillos, R.J.; Olaizola, M.; Arboleya, J.C. Olive Leaf Waste Management. Front. Sustain. Food Syst. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- Utami, N.D.; Nordin, A.; Katas, H.; Idrus, R.B.H.; Fauzi, M.B. Molecular Action of Hydroxytyrosol in Wound Healing: An in Vitro Evidence-Based Review. Biomolecules 2020, 10, 1397. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; Shady, N.H.; Ahmed, S.R.; Alnusaire, T.S.; Sayed, A.M.; Alowaiesh, B.F.; Sabouni, I.; Al-sanea, M.M.; Mostafa, E.M.; Youssif, K.A.; et al. Antiulcer Potential of Olea Europea l. Cv. Arbequina Leaf Extract Supported by Metabolic Profiling and Molecular Docking. Antioxidants 2021, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Denaro, M.; Mastracci, L.; Grillo, F.; Cornara, L.; Shirooie, S.; Nabavi, S.M.; Trombetta, D. Safety and Efficacy of Hydroxytyrosol-Based Formulation on Skin Inflammation: In Vitro Evaluation on Reconstructed Human Epidermis Model. DARU J. Pharm. Sci. 2019, 27, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Chamorro, M.C.; Poza, M.A.; de la Fuente, P. Propiedades Antioxidantes Del Hidroxitirosol Procedente de La Hoja de Olivo (Olea europaea L.). Rev. Fitoter. 2004, 4, 139–147. [Google Scholar]
- Wanitphakdeedecha, R.; Ng, J.N.C.; Junsuwan, N.; Phaitoonwattanakij, S.; Phothong, W.; Eimpunth, S.; Manuskiatti, W. Efficacy of Olive Leaf Extract–Containing Cream for Facial Rejuvenation: A Pilot Study. J. Cosmet. Dermatol. 2020, 19, 1662–1666. [Google Scholar] [CrossRef]
- Panagiotopoulou, M.; Papadaki, S.; Bagia, H.; Krokida, M. Valorisation of Olive Processing Waste for the Development of Value-Added Products. Sustain. Chem. Pharm. 2022, 28, 100736. [Google Scholar] [CrossRef]
- de la Cádiz-Gurrea, M.L.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study. Antioxidants 2021, 10, 245. [Google Scholar] [CrossRef]
- Nunes, A.; Gonçalves, L.; Marto, J.; Martins, A.M.; Silva, A.N.; Pinto, P.; Martins, M.; Fraga, C.; Ribeiro, H.M. Investigations of Olive Oil Industry By-Products Extracts with Potential Skin Benefits in Topical Formulations. Pharmaceutics 2021, 13, 465. [Google Scholar] [CrossRef]
- Tarbiat, S.; Yener, F.G.; Kashefifahmian, A.; Mohseni, A.R. Antiaging Effects of Oleuropein Combined with Helichrysum Italicum or Kumquat Essential Oils in Cosmetic Lotions. Curr. Top. Nutraceutical Res. 2022, 20, 352–359. [Google Scholar] [CrossRef]
- Tamasi, G.; Baratto, M.C.; Bonechi, C.; Byelyakova, A.; Pardini, A.; Donati, A.; Leone, G.; Consumi, M.; Lamponi, S.; Magnani, A.; et al. Chemical Characterization and Antioxidant Properties of Products and By-Products from Olea europaea L. Food Sci. Nutr. 2019, 7, 2907–2920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanakis, C.M.; Tsatalas, P.; Galanakis, I.M. Phenols from Olive Mill Wastewater and Other Natural Antioxidants as UV Filters in Sunscreens. Environ. Technol. Innov. 2018, 9, 160–168. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tsatalas, P.; Galanakis, I.M. Implementation of Phenols Recovered from Olive Mill Wastewater as UV Booster in Cosmetics. Ind. Crops Prod. 2018, 111, 30–37. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Off. J. Eur. Union 2009, 342, 59–207.
- MERCOSUR. Resolución GMC N°14/21. Reglamento Técnico MERCOSUR Sobre La Lista de Filtros Ultravioletas Permitidos Para Productos de Higiene Personal, Cosméticos y Perfumes; MERCOSUR: Montevideo, Urugay, 2021. [Google Scholar]
- FDA. Over-the-Counter Monograph M020: Sunscreen Drug Products for Over-the-Counter Human Use; (Posted September 24, 2021); FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- MERCOSUR. Resolución GMC N°35/20. Reglamento Técnico MERCOSUR Sobre Lista de Sustancias de Acción Conservadora Permitidas Para Productos de Higiene Personal, Cosméticos y Perfumes; MERCOSUR: Montevideo, Urugay, 2020. [Google Scholar]
- MERCOSUR. Resolución GMC N°51/98. Parámetros de Control Microbiológico Para Productos de Higiene Personal, Cosméticos y Perfumes; MERCOSUR: Montevideo, Urugay, 1998. [Google Scholar]
- Oliveira, A.L.S.; Gondim, S.; Gómez-García, R.; Ribeiro, T.; Pintado, M. Olive Leaf Phenolic Extract from Two Portuguese Cultivars –Bioactivities for Potential Food and Cosmetic Application. J. Environ. Chem. Eng. 2021, 9, 106175. [Google Scholar] [CrossRef]
- Nunes, M.A.; Palmeira, J.D.; Melo, D.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals 2021, 14, 913. [Google Scholar] [CrossRef]
- Dauber, C.; Carreras, T.; Fernández Fernández, A.; Irigaray, B.; Albores, S.; Gámbaro, A.; Ibáñez, E.; Vieitez, I. Response Surface Methodology for the Optimization of Biophenols Recovery from “Alperujo” Using Supercritical Fluid Extraction. Comparison between Arbequina and Coratina Cultivars. J. Supercrit. Fluids 2022, 180, 105460. [Google Scholar] [CrossRef]
- Viola, P.; Viola, M. Virgin Olive Oil as a Fundamental Nutritional Component and Skin Protector. Clin. Dermatol. 2009, 27, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Möller, H. The Chemistry of Natural and Synthetic Skin Barrier Lipids. In Cosmetic Lipids and the Skin Barrier; Förster, T., Ed.; Marcel Dekker, Inc.: New York, NJ, USA, 2002; pp. 1–35. [Google Scholar]
- Zocchi, G. Skin Feel. In Handbook of Cosmetic Science and Technology; Barel, A.O., Paye, M., Maibach, H.I., Eds.; Informa Healthcare USA, Inc.: Cranbury, NJ, USA, 2009; pp. 357–370. [Google Scholar]
- Lanzendörfer, G. Lipidic Ingredients Skin Care Formulations. In Cosmetic Lipids and the Skin Barrier; Förster, T., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 255–297. [Google Scholar]
- Schueller, R.; Romanowski, P. Oil of Nature. In Beginning Cosmetic Chemistry; Allurebooks: Carol Stream, IL, USA, 2009; pp. 117–128. [Google Scholar]
- Dreyfuss, L. Cosmetic Products. In Methods in Consumer Research; Ares, G., Varela, P., Eds.; Elsevier: Duxford, UK, 2018; Volume 2, pp. 397–410. [Google Scholar]
- Dayan, N. Delivery System Design in Topically Applied Formulations: An Overview. In Delivery System Handbook for Personal Care and Cosmetic Products; Elsevier: New York, NY, USA, 2005; pp. 101–118. [Google Scholar]
- Lodén, M. Moisturizers: Treatment of Dry Skin Syndrome and Barrier Defects. In Cosmeceuticals and Active Cosmetics, 3rd ed.; Sivamani, R.K., Jagdeo, J.R., Elsner, P., Maibach, H.I., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 235–259. [Google Scholar]
- Ghazali, N.I.; Mohd Rais, R.Z.; Makpol, S.; Chin, K.Y.; Yap, W.N.; Goon, J.A. Effects of Tocotrienol on Aging Skin: A Systematic Review. Front. Pharmacol. 2022, 13, 1006198. [Google Scholar] [CrossRef] [PubMed]
- Castaño Amores, C.; Hernández Benavides, P.J. Activos Antioxidantes En La Formulación de Productos Cosméticos Antienvejecimiento. Ars Pharm. 2018, 59, 77–84. [Google Scholar] [CrossRef]
- Ferreira, D.M.; De Oliveira, M.; Helena, M.; Meireles, D.; Lopes, L.; Oliveira, M.B.; Machado, J. Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. Plants 2023, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Carotenoids: Properties, Processing and Applications, 1st ed.; Galanakis, C.M., Ed.; Academic Press: London, UK, 2019; ISBN 9780128173145. [Google Scholar]
- Ramírez-Torres, A.; Gabás, C.; Barranquero, C.; Martínez-Beamonte, R.; Fernández-Juan, M.; Navarro, M.A.; SIGUEGuillén, N.; Lou-Bonafonte, J.M.; Amaral, C.; Martínez-García, M.V. Squalene: Current Knowledge and Potential Therapeutical Uses; Osada, J., Ed.; Nova Biomedical Books: New York, NY, USA, 2011; ISBN 978-1-61728-974-3. [Google Scholar]
- Downing, D.T.; Strauss, J.S. Synthesis and Composition of Surface Lipids of Human Skin. J. Investig. Dermatol. 1974, 62, 228–244. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant Sources, Extraction Methods, and Uses of Squalene. Int. J. Agron. 2018, 2018, 1829160. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Osada, J. Could Squalene Be an Added Value to Use Olive By-Products? J. Sci. Food Agric. 2020, 100, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R.P.; Saraiva, J.A.; Boussetta, N.; Grimi, N.; Barba, F.J. Emerging Opportunities for the Effective Valorization of Wastes and By-Products Generated during Olive Oil Production Process: Non-Conventional Methods for the Recovery of High-Added Value Compounds. Trends Food Sci. Technol. 2015, 45, 296–310. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [Green Version]
- Altiok, E.; Bayçin, D.; Bayraktar, O.; Ülkü, S. Isolation of Polyphenols from the Extracts of Olive Leaves (Olea europaea L.) by Adsorption on Silk Fibroin. Sep. Purif. Technol. 2008, 62, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Abaza, L.; Taamalli, A.; Nsir, H.; Zarrouk, M. Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds. Antioxidants 2015, 4, 682–698. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; de la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of “Sikitita” olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents “Arbequina” and “Picual” olive leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Reig, M. A Green Approach to Phenolic Compounds Recovery from Olive Mill and Winery Wastes. Sci. Total Environ. 2022, 835, 155552. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Arévalo, C.M.; Jimeno-Jiménez, Á.; Carbonell-Alcaina, C.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Effect of the Operating Conditions on a Nanofiltration Process to Separate Low-Molecular-Weight Phenolic Compounds from the Sugars Present in Olive Mill Wastewaters. Process Saf. Environ. Prot. 2021, 148, 428–436. [Google Scholar] [CrossRef]
- Benincasa, C.; Santoro, I.; Nardi, M.; Cassano, A.; Sindona, G. Eco-Friendly Extraction and Characterisation of Nutraceuticals from Olive Leaves. Molecules 2019, 24, 3481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Cruz, I.; Cara, C.; Romero, I.; Castro, E.; Gullón, B. Valorisation of Exhausted Olive Pomace by an Ecofriendly Solvent Extraction Process of Natural Antioxidants. Antioxidants 2020, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Sanz, M.T.; Blanco, B.; Beltrán, S.; Niknam, S.M. Freeze Dried Extract from Olive Leaves: Valorisation, Extraction Kinetics and Extract Characterization. Food Bioprod. Process. 2020, 124, 196–207. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Vuong, Q.V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Ultrasound Increases the Aqueous Extraction of Phenolic Compounds with High Antioxidant Activity from Olive Pomace. LWT-Food Sci. Technol. 2018, 89, 284–290. [Google Scholar] [CrossRef] [Green Version]
- del Contreras, M.M.; Lama-Muñoz, A.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of Olive Mill Leaves through Ultrasound-Assisted Extraction. Food Chem. 2020, 314, 126218. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds: Oleuropein, Phenolic Acids, Phenolic Alcohols and Flavonoids from Olive Leaves and Evaluation of Its Antioxidant Activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Xie, P.J.; Huang, L.X.; Zhang, C.H.; You, F.; Zhang, Y.L. Reduced Pressure Extraction of Oleuropein from Olive Leaves (Olea europaea L.) with Ultrasound Assistance. Food Bioprod. Process. 2015, 93, 29–38. [Google Scholar] [CrossRef]
- Flórez, N.; Conde, E.; Domínguez, H. Microwave Assisted Water Extraction of Plant Compounds. J. Chem. Technol. Biotechnol. 2015, 90, 590–607. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Chemat, F.; Cravotto, G. Microwave Assisted Extraction for Bioactive Compounds, 1st ed.; Chemat, F., Cravotto, G., Eds.; Springer: New York, NY, USA, 2013; ISBN 9781606920923. [Google Scholar]
- Orsat, V.; Raghavan, G.S.V.; Krishnaswamy, K. Microwave Technology for Food Processing: An Overview of Current and Future Applications. In The Microwave Processing of Foods, 2nd ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 100–116. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Sahin, S.; Samli, R.; Birteks, Z.; Tan, A.S.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [Green Version]
- Silveira da Rosa, G.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of Microwave, Ultrasonic and Conventional Techniques for Extraction of Bioactive Compounds from Olive Leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. [Google Scholar] [CrossRef]
- Macedo, G.A.; Santana, Á.L.; Crawford, L.M.; Wang, S.C.; Dias, F.F.G.; de Mour Bell, J.M.L.N. Integrated Microwave- and Enzyme-Assisted Extraction of Phenolic Compounds from Olive Pomace. Lwt 2021, 138, 110621. [Google Scholar] [CrossRef]
- Xiao, Q.; Weng, H.; Ni, H.; Hong, Q.; Lin, K.; Xiao, A. Physicochemical and Gel Properties of Agar Extracted by Enzyme and Enzyme-Assisted Methods. Food Hydrocoll. 2019, 87, 530–540. [Google Scholar] [CrossRef]
- Brunner, G. Gas Extraction: An Introdution to Fundamentas of Supercritical Fluids and the Application to Separation Process, 1st ed.; Springer: Berlin, Germany, 1994; ISBN 9783662073827. [Google Scholar]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAC-Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
- Del Valle, J.M.; De La Fuente, J.C.; Cardarelli, D.A. Contributions to Supercritical Extraction of Vegetable Substrates in Latin America. J. Food Eng. 2005, 67, 35–57. [Google Scholar] [CrossRef]
- Tirado, D.F.; de la Fuente, E.; Calvo, L. A Selective Extraction of Hydroxytyrosol Rich Olive Oil from Alperujo. J. Food Eng. 2019, 263, 409–416. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Dauber, C.; Carreras, T.; González, L.; Gámbaro, A.; Valdés, A.; Ibañez, E.; Vieitez, I. Characterization and Incorporation of Extracts from Olive Leaves Obtained through Maceration and Supercritical Extraction in Canola Oil: Oxidative Stability Evaluation. LWT-Food Sci. Technol. 2022, 160, 113274. [Google Scholar] [CrossRef]
- Canabarro, N.I.; Mazutti, M.A.; do Carmo Ferreira, M. Drying of Olive (Olea europaea L.)Leaves on a Conveyor Belt for Supercritical Extraction of Bioactive Compounds: Mathematical Modeling of Drying/Extraction Operations and Analysis of Extracts. Ind. Crops Prod. 2019, 136, 140–151. [Google Scholar] [CrossRef]
- Difonzo, G.; Aresta, A.; Cotugno, P.; Ragni, R.; Squeo, G.; Summo, C.; Massari, F.; Pasqualone, A.; Faccia, M.; Zambonin, C.; et al. Supercritical Co2 Extraction of Phytocompounds from Olive Pomace Subjected to Different Drying Methods. Molecules 2021, 26, 598. [Google Scholar] [CrossRef]
- Akgün, N.A. Separation of Squalene from Olive Oil Deodorizer Distillate Using Supercritical Fluids. Eur. J. Lipid Sci. Technol. 2011, 113, 1558–1565. [Google Scholar] [CrossRef]
- Waghmode, M.; Kamble, M.; Shruti, A. Pharmaceutical Profile of Alpha-Tocopherol—A Brief Review. Int. J. Pharm. Chem. Sci. 2012, 1, 1023–1039. [Google Scholar]
- de Lucas, A.; Martinez de la Ossa, E.; Rincón, J.; Blanco, M.A.; Gracia, I. Supercritical Fluid Extraction of Tocopherol Concentrates from Olive Tree Leaves. J. Supercrit. Fluids 2002, 22, 221–228. [Google Scholar] [CrossRef]
- Plaza, M.; Marina, M.L. Pressurized Hot Water Extraction of Bioactives. Trends Anal. Chem. 2019, 116, 236–247. [Google Scholar] [CrossRef]
- Cea Pavez, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an Extract Rich in Phenolic Compounds from Olive Pomace by Pressurized Liquid Extraction. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsinas, N.; Bento Da Silva, A.; Enríquez-De-Salamanca, A.; Fernández, N.; Bronze, M.R.; Rodríguez-Rojo, S. Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustain. Chem. Eng. 2021, 9, 5590–5602. [Google Scholar] [CrossRef]
- Dauber, C.; Romero, M.; Ibañez, E.; Gámbaro, A.; Vieitez, I. Pressurized Liquid Extraction from Olive Pomace: Optimization of Extraction Parameters and Application. In Proceedings of the The First International Conference on Antioxidants: Sources, Methods, Health Benefits and Industrial Applications, Barcelona, Spain, 10–12 May 2023. [Google Scholar]
- Martín-García, B.; Pimentel-Moral, S.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Box-Behnken Experimental Design for a Green Extraction Method of Phenolic Compounds from Olive Leaves. Ind. Crops Prod. 2020, 154, 112741. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Carmona, I.; Aguirre, I.; Griffith, D.M.; García-Borrego, A. Towards a Circular Economy in Virgin Olive Oil Production: Valorization of the Olive Mill Waste (OMW) “Alpeorujo” through Polyphenol Recovery with Natural Deep Eutectic Solvents (NADESs) and Vermicomposting. Sci. Total Environ. 2023, 872, 162198. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline Chloride-Based Deep Eutectic Solvents as Potential Solvent for Extraction of Phenolic Compounds from Olive Leaves: Extraction Optimization and Solvent Characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Panić, M.; Radić Stojković, M.; Kraljić, K.; Škevin, D.; Radojčić Redovniković, I.; Gaurina Srček, V.; Radošević, K. Ready-to-Use Green Polyphenolic Extracts from Food by-Products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef]
- Kishikawa, A.; Ashour, A.; Zhu, Q.; Yasuda, M.; Ishikawa, H.; Shimizu, K. Multiple Biological Effects of Olive Oil By-products Such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin. Phyther. Res. 2015, 29, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Garcia-Oliveira, P.; Carpena, M.; Barral-Martinez, M.; Chamorro, F.; Echave, J.; Garcia-Perez, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; et al. Applications of By-Products from the Olive Oil Processing: Revalorization Strategies Based on Target Molecules and Green Extraction Technologies. Trends Food Sci. Technol. 2021, 116, 1084–1104. [Google Scholar] [CrossRef]
- Carrara, M.; Kelly, M.T.; Roso, F.; Larroque, M.; Margout, D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. J. Agric. Food Chem. 2021, 69, 7268–7284. [Google Scholar] [CrossRef]
- Parente, E.; Miraballes, M.; Gámbaro, A. Use of Completion Projective Technique to Understand Consumer’s Perception upon a Novelty Cosmetic with Olive Oil. J. Sens. Stud. 2023, 38, e12800. [Google Scholar] [CrossRef]
- Parente, E.; Gámbaro, A.; Boinbaser, L.; Roascio, A. Sensory Characterization of Virgin Olive Oil-Based Cosmetic Creams. J. Cosmet. Sci. 2013, 64, 371–380. [Google Scholar] [PubMed]
- Chaabane, D.; Yakdhane, A.; Vatai, G.; Koris, A.; Nath, A. Microencapsulation of Olive Oil: A Comprehensive Review. Period. Polytech. Chem. Eng. 2022, 66, 354–366. [Google Scholar] [CrossRef]
- Spinelli, S.; Monteleone, E. Emotional Responses to Products. In Methods in Consumer Research; Ares, G., Varela, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 261–296. [Google Scholar]
- Deliza, R. Expectations: Blind/Informed Testing. In Methods in Consumer Research.; Ares, G., Varela, P., Eds.; Elsevier: Duxfors, UK, 2018; Volume 1, pp. 451–483. [Google Scholar]
- Olewnik-Mikołajewska, A.; Guzek, D.; Głabska, D.; Gutkowska, K. Consumer Behaviors Toward Novel Functional and Convenient Meat Products in Poland. J. Sens. Stud. 2016, 31, 193–205. [Google Scholar] [CrossRef]
- Matić, M.; Puh, B. Consumers’ Purchase Intentions Towards Natural Cosmetics. Ekon. Vjesn./Econviews Rev. Contemp. Bus. Entrep. Econ. Issues 2016, 29, 53–64. [Google Scholar]
- Pontual, I.; Amaral, G.; Esmerino, E.; Pimentel, T.; Freitas, M.; Fukuda, R.; Sant’Ana, I.; Silva, L.; Cruz, A. Assessing Consumer Expectations about Pizza: A Study on Celiac and Non-Celiac Individuals Using the Word Association Technique. Food Res. Int. 2017, 94, 1–5. [Google Scholar] [CrossRef]
- Vidal, L.; Ares, G.; Giménez, A. Projective Techniques to Uncover Consumer Perception: Application of Three Methodologies to Ready-to-Eat Salads. Food Qual. Prefer. 2013, 28, 1–7. [Google Scholar] [CrossRef]
- de Pinto, L.P.F.; Silva, H.L.A.; Kuriya, S.P.; Maçaira, P.M.; Cyrino Oliveira, F.L.; Cruz, A.G.; Esmerino, E.A.; Freitas, M.Q. Understanding Perceptions and Beliefs about Different Types of Fermented Milks through the Application of Projective Techniques: A Case Study Using Haire’s Shopping List and Free Word Association. J. Sens. Stud. 2018, 33, e12326. [Google Scholar] [CrossRef]
- Ávila, B.; Rosa, P.; Fernandes, T.; Garavaglia Chesini, R.; Sedrez, P.; Oliveira, A.; Mota, G.; Gularte, M.; Roll, V. Analysis of the Perception and Behaviour of Consumers Regarding Probiotic Dairy Products. Int. Dairy J. 2020, 106, 104703. [Google Scholar] [CrossRef]
- Mazon, S.; Menin, D.; Cella, B.M.; Lise, C.C.; de Vargas, T.O.; Daltoé, M.L.M. Exploring Consumers’ Knowledge and Perceptions of Unconventional Food Plants: Case Study of Addition of Pereskia Aculeata Miller to Ice Cream. Food Sci. Technol. 2020, 40, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Popoola, I.O.; Anders, S.; Feuereisen, M.M.; Savarese, M.; Wismer, W.V. Free Word Association Perceptions of Red Meats; Beef Is ‘Yummy’, Bison Is ‘Lean Game Meat’, Horse Is ‘off Limits’. Food Res. Int. 2021, 148, 110608. [Google Scholar] [CrossRef]
- Riquelme, N.; Robert, P.; Arancibia, C. Understanding Older People Perceptions about Desserts Using Word Association and Sorting Task Methodologies. Food Qual. Prefer. 2022, 96, 104423. [Google Scholar] [CrossRef]
- Yano, Y.; Kato, E.; Ohe, Y.; Blandford, D. Examining the Opinions of Potential Consumers about Plant-Derived Cosmetics: An Approach Combining Word Association, Co-Occurrence Network, and Multivariate Probit Analysis. J. Sens. Stud. 2018, 34, e12484. [Google Scholar] [CrossRef]
- Gámbaro, A.; Parente, E.; Roascio, A.; Boinbaser, L. Word Association Technique Applied to Cosmetic Products—A Case Study. J. Sens. Stud. 2014, 29, 103–109. [Google Scholar] [CrossRef]
- Torres, F.R.; da SILVA, H.L.A.; Cutrim, C.S.; Cortez, M.A.S. Consumer Perception of Petit-Suisse Cheese: Identifying Market Opportunities for the Brazilian Dairy Industry. Food Sci. Technol. 2020, 40, 653–660. [Google Scholar] [CrossRef]
- Alcaire, F.; Antúnez, L.; Vidal, L.; Velázquez, A.L.; Giménez, A.; Curutchet, M.R.; Girona, A.; Ares, G. Healthy Snacking in the School Environment: Exploring Children and Mothers’ Perspective Using Projective Techniques. Food Qual. Prefer. 2021, 90, 104173. [Google Scholar] [CrossRef]
- Berrondo, V.; Gámbaro, A. Modification of Consumer Perception When Sous-Vide Technology Is Applied to a Fish-Based Product. J. Food Nutr. Res. 2023, 11, 223–231. [Google Scholar] [CrossRef]
- Viana, M.M.; Silva, V.L.S.; Deliza, R.; Trindade, M.A. The Use of an Online Completion Test to Reveal Important Attributes in Consumer Choice: An Empirical Study on Frozen Burgers. Food Qual. Prefer. 2016, 52, 255–261. [Google Scholar] [CrossRef]
Compound | Present in | Use | Reference |
---|---|---|---|
Phenols and Polyphenols * | Bark, root, leaves, wood, stones, pomace, OMWW | Antioxidant, anti-aging, antiplatelet aggregation activity, anti-cancer activity, antimicrobial activity, cardioprotective activity, free radical scavenging activity, protect and reduce skin thickening and wrinkles, fibroblast proliferation | [6,7,8,17,18,19,20,21] |
Triterpenes | Dry leaves (as herbal infusions) | antimicrobial, anti-tumor, anti-inflammatory, and anti-HIV | [20] |
Pectins and oligosaccharides | Pomace, OMWW | Improve physical and structural properties of emulsions and oxidative stability, viscosity, texture, sensory characteristics and shelf-life of products | [6,17] |
Other sugars, mannitol, cellulose, hemicellulose | Root, wood (no flavonoids), pruning material, stones, pomace | Physical and structural properties of hydration, oil holding capacity | [6,8,17] |
Fatty acids * | Stones, olive oil | Decreases the permeability barrier (blocks complex lipids in sebum produced by sebaceous glands); signals keratinocytes to regulate epidermal homeostasis; promotes acidification of stratum corneum; increases hydration, softness, elasticity and the protective barrier of the skin | [6,22,23] |
Essential amino acids | Stones | [6,24] | |
Squalene * | Pomace, olive oil | Emollient, moisturizing, biological filter of singlet oxygen; sink for lipophilic xenobiotics | [6,25,26] |
Maslinic acid | Olive oil, olive pomace | Antioxidant, antiproliferative effect of murine melanoma cells, anti-inflammatory | [18,27,28] |
Carotenoids * (β-carotene) | OMWW | Antioxidant | [19] |
Tocopherols | OMWW | Antioxidant | [19] |
K, Ca, Na | OMWW, pomace | Hydration, stiffness, controlling pH | [6,17] |
INCI Name | Functions |
---|---|
Olea europaea leaf | Skin conditioner |
Olea europaea leaf cell extract | Flavoring, skin protecting |
Olea europaea leaf oil | Perfuming |
Olea europaea leaf powder | Skin conditioner, abrasive |
Olea europaea leaf water | Skin conditioner |
Hydroxytyrosol | Bleaching, skin conditioner |
Caffeic acid | Antioxidant, fragrance |
Ferulic acid | Antimicrobial |
Oleuropein | Antioxidant, hair conditioner, fixing, waving and straightening |
Squalene | Hair and skin conditioning, emollient, solvent |
Olea europea fruit unsaponifiables | Antioxidant, hair and skin conditioner |
Olive acid | Surfactant, cleansing |
Olive glycerides | Humectant, surfactant, emulsifying |
Oleic acid | Skin conditioning, emollient, surfactant, emulsifying |
By-Product | Material | Results | References |
---|---|---|---|
OMWW * | Extracts combined with UV filters: TiO2, Benzophenone-3, Uvinul®A, Tinosorb®M, Octocrylene, Octylmetoxy cinnamate, Octyl dimetyl PABA. | Spectrum between 220–400 nm. SPF and UVA absorption increase in vitro. Phenols as UV filter boosters. | [62] |
OMWW * | Extracts combined with UV filters: TiO2, Benzophenone-3, Uvinul®A, Octocrylene, Octylmetoxy cinnamate, Octyl dimetyl PABA | Spectrum between 220–400 nm from a combination of UV filters and combinations of different concentrations of phenols. Absorption increases in the UV range. Equations that relate SPF, polyphenol and UV filter content were obtained. | [63] |
OIBPE ** | OIBPE extracts | Spectrum between 290–320 nm (UVB), in vitro calculation of SPF. OIBPE may act as an UV protection booster, increasing the absorption of UV filters. | [59] |
By-Product | Effective against | References |
---|---|---|
Olive mill waste | Escherichia coli, Klebsiela pneumoniae | [43] |
Olive leaf phenolic extract | Escherichia coli, Salmonella entérica, Pseudomonas aeruginosa, Bacillus cereus, Staphilococcus aureus. | [69] |
OIBPE * | Staphilococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, Candida albicans. | [59] |
Olive pomace, hydrophilic and lipophilic components | Staphylococcus aureus, Eschechia coli. | [70] |
Olive pomace SFE extract | Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Klebsiella pneumoniae, Salmonella typhimurium. | [71] |
Commercial Products | Tests | References |
---|---|---|
O20, O30 * | Content and profile of polyphenols, antioxidant activity. Inhibition of hyaluronidase, elastase. Keratinocytes culture cytotoxicity, skin irritation using Episkin®. Potential efficacy for use in cosmetics. | [58] |
OIBPE ** | Extract In vitro: cytotoxicity, ocular and skin irritation. In vivo HRIPT **** 51 volunteers. Inhibition of hialuronidase, elastase, collagenase, tyrosinase. Antioxidant capacity, reduction of ROS. Promising extract for cosmetic use. | [59] |
O/W emulsion with OIBPE extract In vivo clinical evaluation, 10 volunteers. Security (patch test). UVA protection (colorimeter). The application of the cream did not produce adverse effects, and it showed excellent compatibility with the skin. | ||
Commercial cream with leaf extract *** | In vivo evaluation of efficacy measured with non-invasive techniques; skin moisture, sebum, pH, melanin, erythema index, TEWL, skin texture and wrinkles. Thirty-six volunteers, twice a day, for two months. Results: reduction of wrinkles, improvement in texture, moisture and skin barrier function. Volunteers point out unpleasant color and smell. | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dauber, C.; Parente, E.; Zucca, M.P.; Gámbaro, A.; Vieitez, I. Olea europea and By-Products: Extraction Methods and Cosmetic Applications. Cosmetics 2023, 10, 112. https://doi.org/10.3390/cosmetics10040112
Dauber C, Parente E, Zucca MP, Gámbaro A, Vieitez I. Olea europea and By-Products: Extraction Methods and Cosmetic Applications. Cosmetics. 2023; 10(4):112. https://doi.org/10.3390/cosmetics10040112
Chicago/Turabian StyleDauber, Cecilia, Emma Parente, María Pía Zucca, Adriana Gámbaro, and Ignacio Vieitez. 2023. "Olea europea and By-Products: Extraction Methods and Cosmetic Applications" Cosmetics 10, no. 4: 112. https://doi.org/10.3390/cosmetics10040112
APA StyleDauber, C., Parente, E., Zucca, M. P., Gámbaro, A., & Vieitez, I. (2023). Olea europea and By-Products: Extraction Methods and Cosmetic Applications. Cosmetics, 10(4), 112. https://doi.org/10.3390/cosmetics10040112