Insights into Bioactive Peptides in Cosmetics
Abstract
:1. Introduction
2. Mechanisms and Classification of Bioactive Peptides
2.1. Classification of Cosmetic Peptides
2.1.1. Signal Peptides
2.1.2. Carrier Peptides
2.1.3. Neurotransmitter-Inhibitor Peptides
2.1.4. Enzyme-Inhibitory Peptides
2.2. Mechanisms of Action
3. Natural Sources of Bioactive Peptides
3.1. Plant Sources
3.2. Animal Sources
3.3. Marine Sources
3.4. Edible Insect Sources
Classification of Peptides | Sources | Type of Bioactive Peptide Preparation | Peptide Sequences | Main Activities | References |
---|---|---|---|---|---|
Plants | Buckwheat (Fagopyrum esculentum Moench.) seed | Enzyme hydrolysis | Ala–Leu–Pro–Ile–Asp–Val–Ala–Asn–Ala–Tyr–Arg Thr–Asn–Pro–Asn–Ser–Met–Val–Ser–His–Ile–Ala–Gly Lys | Antimicrobial activity | [59] |
Amaranthus hypochondiracus seed | Reverse-phase high pressure liquid chromatography | Phe–Val–Pro–Asn–Gln–Asp–Glu–Val–Gln–Arg–Glu–Leu–Gln–Gln–Cys–Ile–Gln–Arg–Cys–Gln–Arg–Glu–Arg–Gly Gln–Met–Gly Gln–Met–Lys | Antimicrobial activity | [60] | |
Mulberry (Morus atropurpurea Roxb.) Leaf | Neutrase-hydrolysate hydrolyzation using ion exchange chromatography, gel filtration chromatography, and reverse-phase HPLC | Ser–Val–Leu Glu–Ala–Val–Gln Arg–Asp–Tyr | Antioxidant activity | [61] | |
Jiupei (fermented grains) | Fermentation, ultrafiltration, and reverse-phase HPLC | Val–Asn–Pro Tyr–Gly–Asp | Antioxidant activity | [62] | |
Alcalase-hydrolyzed soybean (Glycinemcax L.) | Gel filtration chromatography and reverse-phase HPLC | Val–Val–Phe–Val–Asp–Arg–Leu Val–Ile–Tyr–Val–Val–Asp–Leu–Arg Ile–Tyr–Val–Val–Asp–Leu–Arg Ile–Tyr–Val–Phe–Val–Arg | Antioxidant, anti-inflammatory, and skin-whitening activities | [48] | |
Chickpea (Cicer arietinum L.) | Ion-exchange chromatography, gel filtration chromatography, and reverse-phase HPLC | Leu–Thr–Glu–Ile–Pro | Antioxidant activity | [63] | |
Defatted walnut (Juglans regia L.) | Enzymatic hydrolysis | Gln–Leu–Gln–Val–Leu–Arg–Pro–Arg Gln–Leu–Pro–Arg Val–Asn–Leu–Asn–Pro–His–Lys–Leu–Pro–Leu Leu–Gly Leu–Leu–Pro–Ser–Phe–Seu–Asn–Ala–Pro–Arg | Antioxidant activity | [64] | |
Animals | Arthrospira platensis | Enzymatic hydrolysis | Gly–Met–Cys–Cys–Ser–Arg Tyr–Gly–Phe–Val–Met–Pro–Arg–Ser–Gly Trp–Phe–Arg | Antioxidant, hemolysis inhibition, and collagen-stimulating activities | [65] |
Lactoferrin or buffalo milk | Enzymatic hydrolysis and solid phase synthesis | Ser–Val–Asp–Gly–Lys–Glu–Asp–Leu–Ile–Trp | Antioxidant, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) activities | [49] | |
Hard cow milk cheese | Reverse-phase HPLC | Glu–Ile–Val–Pro–Asn Asp–Lys–Ile–His–Pro–Phe Lys–Ala–Val–Pro–Tyr–Pro–Gln Val–Ala–Pro–Phe–Pro–Gln | Antioxidant and metal chelating activities | [66] | |
Mastitic cow milk | Reverse-phase HPLC | Ile–Asp–Trp–Lys–Lys–Leu–Leu–Asp–Ala–Ala–Lys–Gln–Ile–Leu | Antimicrobial activity | [67,68] | |
Goat milk | Fermentation | Ser–Ala–Glu–Glu–Gln–Leu–His–Ser–Met–Lys Ile–Ala–Lys–Tyr–Ile–Pro–Ile–Gln–Tyr–Val–Leu–Ser–Arg Glu–Ala–Leu–Glu–Lys–Phe–Asp–Lys | Antioxidant activity | [69] | |
Bullfrog skin (Rana catesbeiana Shaw) | Enzymatic hydrolysis | Leu–Glu–Glu–Leu–Glu–Glu–Glu–Leu–Glu–Gly Cys–Glu | Antioxidant activity | [70] | |
Chicken dark meat | Enzymatic hydrolysis | Tyr–Ala–Ser–Gly Arg | Antioxidant activity | [51] | |
Sour pork meat | Fermentation | Glu–Ser–Thr–Val–Pro–Glu–Arg–Thr–His–Pro–Ala–Cys–Pro–Asp–Phe–Asn | Antioxidant capacity | [52] | |
Marine | Arthrospira platensis (Spirulina) | Enzymatic hydrolysates | Ala–Asn–His–Gly Leu–Ser–Gly Asp–Ala–Ala–Val–Glu–Ala–Asn–Ser–Tyr–Leu–Asp–Tyr–Ala–Ile–Asn–Ala–Leu–Ser | Skin moisturizing activity | [71] |
Dunaliella salina | Ultrasound extraction and membrane ultrafiltration | Ile–Leu–Thr–Lys–Ala–Ala–Ile–Glu–Gly Lys Ile–Ile–Tyr–Phe–Gln–Gly Lys Asn–Asp–Pro–Ser–Thr–Val–Lys Thr–Val–Arg–Pro–Pro–Gln–Arg | Antioxidant activity | [72] | |
Algae Gracilariopsis lemaneiformis | Enzymatic hydrolysis | Glu–Leu–Trp–Lys–Thr–Phe | Antioxidant activity | [73] | |
Algae Porphyra dioica | Reverse-phase HPLC | Asp–Tyr–Tyr–Lys–Arg Thr–Tyr–Ile–Ala | Antioxidant and antimicrobial activities | [54] | |
Algae Porphyra yezpensis | Ultrafiltration, molecular sieve chromatography, and ion exchange chromatography | Thr–Pro–Asp–Ser–Glu–Ala–Leu | Antimicrobial activity | [74] | |
Fungi Acremonium sp. NTU492 | Enzyme hydrolysis | Gln–Ile–Ile–Ile–Val–Ile–Ile–Leu | Anti-inflammatory activity | [75] | |
Fungi Aspergillus allahabadii and A. ochraceopetaliformis | Fermentation | Ala–Phe–Tyr–Pro–Leu–Val | Antimicrobial activity | [76] | |
Fungi Aspergillus sp. | Ethanol extraction and HPLC | Cys–Cys–Val–Leu–Leu | Antimicrobial activity | [55] | |
Sponge Poecillastra sp. | Ethanol extraction and HPLC | Abu–Thr–Tyr–Abu–Gly Thr–His | Antioxidant and high biological activities | [56] | |
Edible insects | Schistocerca gregaria | Gel filtration chromatography | Gly–Lys–Asp–Ala–Val–Ile–Val Ala–Ile–Gly Val–Ala–Ile–Glu–Arg Phe–Asp–Pro–Phe–Pro–Lys Tyr–Glu–Thr–Gly Asn–Gly–Ile–Lys | Antioxidant and anti-inflammatory activities | [57] |
Alphitobius diaperinus | Enzyme hydrolysis | Ala–Arg–Asn–Asp–Cys–Gln–Glu–His–Met–Phe–Thr–Trp–Val–Tyr | Antioxidant activity | [58] | |
Tenebrio molitor | Gel filtration chromatography | Pro–Ala–Leu–Leu–Leu Ala–Ala–Gly–Ala–Pro–Pro Ser–Leu–Ala–Pro–Lys | Antioxidant activity | [77] | |
Bombyx mori | Enzyme hydrolysis | Ser–Trp–Phe–Val–Thr–Pro–Phe Asn–Asp–Val–Leu–Phe–Phe | Antioxidant activity | [26] |
4. Safety Assessment of Peptides Used as Cosmetic Ingredients
5. Challenges of Cosmetic Peptide Applications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Liceaga, A.M. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019, 122, 170170. [Google Scholar]
- Zhang, L.; Falla, T.J. Cosmeceuticals and peptides. Clin. Dermatol. 2009, 27, 485–494. [Google Scholar] [CrossRef]
- Usman, R.; Bharadvaja, N. Nutricosmetics: Role in health, nutrition, and cosmetics. Proc. Indian Natl. Sci. Acad. 2023, 1–16. [Google Scholar] [CrossRef]
- Lima, T.N.; Moraes, C.A.P. Bioactive peptides: Applications and relevance for cosmeceuticals. Cosmetics 2018, 5, 21. [Google Scholar]
- Siméon, A.; Emonard, H.; Hornebeck, W.; Maquart, F.-X. The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci. 2000, 67, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Schagen, S. New data of the Cosmeceutical and tripeptide GHK. SOFW J. 2015, 9, 141. [Google Scholar]
- Wang, Y.; Wang, M.; Xiao, X.S.; Huo, J.; Zhang, W.D. The anti-wrinkle efficacy of Argireline. J. Cosmet. Laser Ther. 2013, 15, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Magalhães, M.C.; Sousa-Lobo, J.M.; Almeida, I.F. Trending anti-aging peptides. Cosmetics 2020, 7, 91. [Google Scholar] [CrossRef]
- Mazurkiewicz-Pisarek, A.; Baran, J.; Ciach, T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int. J. Mol. Sci. 2023, 24, 9031. [Google Scholar]
- Pai, V.V.; Bhandari, P.; Shukla, P. Topical peptides as cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9. [Google Scholar] [CrossRef]
- Bégin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef]
- Aruan, R.R.; Hutabarat, H.; Widodo, A.A.; Firdiyono, M.T.C.C.; Wirawanty, C.; Fransiska, L. Double-blind, Randomized Trial on the Effectiveness of Acetylhexapeptide-3 Cream and Palmitoyl Pentapeptide-4 Cream for Crow’s Feet. J. Clin. Aesthet. Dermatol. 2023, 16, 37. [Google Scholar] [PubMed]
- Zhao, X.; Zhang, X.; Liu, D. Collagen peptides and the related synthetic peptides: A review on improving skin health. J. Funct. Foods 2021, 86, 104680. [Google Scholar] [CrossRef]
- Hahn, H.J.; Jung, H.J.; Schrammek-Drusios, M.C.; Lee, S.N.; Kim, J.; Kwon, S.B.; An, I.; An, S.; Ahn, K.J. Instrumental evaluation of anti-aging effects of cosmetic formulations containing palmitoyl peptides, Silybum marianum seed oil, vitamin E and other functional ingredients on aged human skin. Exp. Ther. Med. 2016, 12, 1171–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schagen, S.K. Topical peptide treatments with effective anti-aging results. Cosmetics 2017, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Hu, L.; Lu, B.; Bo, Y.; Liao, Y.; Zhan, J.; Pei, Y.; Sun, H.; Wang, Z.; Guo, C. A novel delivery vehicle for copper peptides. New J. Chem. 2023, 47, 75–83. [Google Scholar] [CrossRef]
- Hussain, M.; Goldberg, D.J. Topical manganese peptide in the treatment of photodamaged skin. J. Cosmet. Laser Ther. 2007, 9, 232–236. [Google Scholar] [CrossRef]
- Bresciani, G.; da Cruz, I.B.M.; González-Gallego, J. Manganese superoxide dismutase and oxidative stress modulation. Adv. Clin. Chem. 2015, 68, 87–130. [Google Scholar]
- Zhang, Y.; Zhang, H.; Jiang, B.; Yan, S.; Lu, J. A promising therapeutic target for psoriasis: Neuropeptides in human skin. Int. Immunopharmacol. 2020, 87, 106755. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Xiao, S.; Pan, P.; Li, P.; Huo, J. The Anti-Wrinkle Efficacy of Argireline, a Synthetic Hexapeptide, in Chinese Subjects. Am. J. Clin. Dermatol. 2013, 14, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.A.; Clares, B.; Morales, M.E.; Gallardo, V. Evaluation of the anti-wrinkle efficacy of cosmetic formulations with an anti-aging peptide (Argireline®). Ars. Pharm. 2010, 50, 168–176. [Google Scholar]
- Fries, K.S.; Heldreth, B. Safety Assessment of Soy Proteins and Peptides as Used in Cosmetics. Int. J. Toxicol. 2023, 42, 102S–113S. [Google Scholar]
- Andre-Frei, V.; Perrier, E.; Augustin, C.; Damour, O.; Bordat, P.; Schumann, K.; Förster, T.H.; Waldmann-Laue, M. A comparison of biological activities of a new soya biopeptide studied in an in vitro skin equivalent model and human volunteers. Int. J. Cosmet. Sci. 1999, 21, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K. Skin-moisturizing effect of collagen peptides taking orally. J. Nutr. Food Sci. 2018, 8, 2. [Google Scholar]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, W.; Manosroi, J. Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermeno, M.; Bascón, C.; Amigo-Benavent, M.; Felix, M.; FitzGerald, R.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. J. Funct. Foods 2022, 92, 105052. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nagao, K. “Deepening” Insight on Skin Aging and Anti-microbial Immunity. Cell Metab. 2019, 29, 515–517. [Google Scholar] [CrossRef] [Green Version]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Field, C.J.; Wu, J. Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chem. 2018, 253, 101–107. [Google Scholar] [CrossRef]
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive compounds for skin health: A review. Nutrients 2021, 13, 203. [Google Scholar] [CrossRef]
- Power, O.; Jakeman, P.; FitzGerald, R.J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 2013, 44, 797–820. [Google Scholar] [PubMed]
- Ngoh, Y.-Y.; Gan, C.-Y. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem. 2016, 190, 331–337. [Google Scholar] [PubMed]
- Guha, S.; Majumder, K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. J. Food Biochem. 2019, 43, e12531. [Google Scholar] [PubMed] [Green Version]
- Bamdad, F.; Bark, S.; Kwon, C.H.; Suh, J.-W.; Sunwoo, H. Anti-inflammatory and antioxidant properties of peptides released from β-lactoglobulin by high hydrostatic pressure-assisted enzymatic hydrolysis. Molecules 2017, 22, 949. [Google Scholar]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar]
- Taniguchi, M.; Kameda, M.; Namae, T.; Ochiai, A.; Saitoh, E.; Tanaka, T. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J. Funct. Foods 2017, 34, 287–296. [Google Scholar]
- Lu, J.; Hou, H.; Fan, Y.; Yang, T.; Li, B. Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway. J. Funct. Foods 2017, 33, 251–260. [Google Scholar]
- Chen, T.; Hou, H.; Fan, Y.; Wang, S.; Chen, Q.; Si, L.; Li, B. Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. J. Photochem. Photobiol. B Biol. 2016, 165, 34–41. [Google Scholar]
- Yeo, I.; Lee, Y.-J.; Song, K.; Jin, H.-S.; Lee, J.-E.; Kim, D.; Lee, D.-W.; Kang, N.J. Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. J. Biotechnol. 2018, 271, 17–25. [Google Scholar] [PubMed]
- Han, Q.-Y.; Koyama, T.; Watabe, S.; Nagashima, Y.; Ishizaki, S. Isolation and Characterization of Collagen and Collagen Peptides with Hyaluronidase Inhibition Activity Derived from the Skin of Marlin (Istiophoridae). Molecules 2023, 28, 889. [Google Scholar]
- Nakchum, L.; Kim, S.M. Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent. Prep. Biochem. Biotechnol. 2016, 46, 123–130. [Google Scholar] [PubMed]
- Xue, W.; Liu, X.; Zhao, W.; Yu, Z. Identification and molecular mechanism of novel tyrosinase inhibitory peptides from collagen. J. Food Sci. 2022, 87, 2744–2756. [Google Scholar]
- Zhao, Y.; Zhang, T.; Ning, Y.; Wang, D.; Li, F.; Fan, Y.; Yao, J.; Ren, G.; Zhang, B. Identification and molecular mechanism of novel tyrosinase inhibitory peptides from the hydrolysate of ’Fengdan’ peony (Paeonia ostii) seed meal proteins: Peptidomics and in silico analysis. LWT 2023, 180, 114695. [Google Scholar]
- Karkouch, I.; Tabbene, O.; Gharbi, D.; Mlouka, M.A.B.; Elkahoui, S.; Rihouey, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Limam, F. Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from Vicia faba protein hydrolysate: A powerful agents in cosmetic application. Ind. Crops Prod. 2017, 109, 310–319. [Google Scholar]
- Leirós, G.J.; Kusinsky, A.G.; Balañá, M.E.; Hagelin, K. Triolein reduces MMP-1 upregulation in dermal fibroblasts generated by ROS production in UVB-irradiated keratinocytes. J. Dermatol. Sci. 2017, 85, 124–130. [Google Scholar] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [PubMed]
- Apone, F.; Barbulova, A.; Colucci, M.G. Plant and microalgae derived peptides are advantageously employed as bioactive compounds in cosmetics. Front. Plant Sci. 2019, 10, 756. [Google Scholar] [PubMed] [Green Version]
- Zhang, Q.; Tong, X.; Li, Y.; Wang, H.; Wang, Z.; Qi, B.; Sui, X.; Jiang, L. Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean (Glycine max L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2019, 67, 5772–5781. [Google Scholar] [PubMed]
- Yang, P.; Abel-Hamid, M.; Romieh, E.; Huang, L.; Zeng, Q.K.; Nong, H.R.; Feng, L.; Tang, Y.; Li, L. Effect of peptides synthesized from lactoferrin of buffalo milk on oxidative stress in kunming mice. J. Anim. Plant Sci. 2020, 30, 65–71. [Google Scholar]
- Ren, Y.; Wu, H.; Li, X.; Lai, F.; Xiao, X. Purification and characterization of high antioxidant peptides from duck egg white protein hydrolysates. Biochem. Biophys. Res. Commun. 2014, 452, 888–894. [Google Scholar]
- Fukada, Y.; Mizutani, S.; Nomura, S.; Hara, W.; Matsui, R.; Nagai, K.; Murakami, Y.; Washio, N.; Ikemoto, N.; Terashima, M. Antioxidant activities of a peptide derived from chicken dark meat. J. Food Sci. Technol. 2016, 53, 2476–2481. [Google Scholar] [PubMed] [Green Version]
- Zhang, Y.; Hu, P.; Xie, Y.; Yang, P.; Zheng, S.; Tian, Y.; Li, J.; Feng, D. DNA damage protection and antioxidant activities of peptides isolated from sour meat co-fermented by P. pentosaceus SWU73571 and L. curvatus LAB26. CyTA J. Food 2020, 18, 375–382. [Google Scholar]
- Liu, D.; Chen, X.; Huang, M.; Zhou, G. Antioxidant activity of peptides in postmortem aged duck meat as affected by cooking and in vitro digestion. Int. J. Food Prop. 2019, 22, 727–736. [Google Scholar]
- Cermeño, M.; Stack, J.; Tobin, P.R.; O’Keeffe, M.B.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct. 2019, 10, 3421–3429. [Google Scholar]
- Li, X.; Xia, Z.; Wang, B.; Lai, L.; Wang, J.; Jiang, L.; Li, T.; Wu, J.; Wang, L. Malformin C, an algicidal peptide from marine fungus Aspergillus species. Ecotoxicology 2021, 30, 996–1003. [Google Scholar]
- Sugawara, K.; Kanki, D.; Watanabe, R.; Matsushima, R.; Ise, Y.; Yokose, H.; Morii, Y.; Yamawaki, N.; Ninomiya, A.; Okada, S.; et al. Aciculitin D, a cytotoxic heterodetic cyclic peptide from a Poecillastra sp. marine sponge. Tetrahedron 2022, 119, 132859. [Google Scholar]
- Zielińska, E.; Baraniak, B.; Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018, 53, 2542–2551. [Google Scholar]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar]
- Yu, G.; Wang, F.; Zhang, B.; Fan, J. In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. var. nudum Hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins. Food Chem. 2016, 194, 577–586. [Google Scholar]
- Moyer, T.B.; Schug, W.J.; Hicks, L.M. Amaranthus hypochondriacus seeds as a rich source of cysteine rich bioactive peptides. Food Chem. 2022, 377, 131959. [Google Scholar]
- Sun, C.; Tang, X.; Ren, Y.; Wang, E.; Shi, L.; Wu, X.; Wu, H. Novel Antioxidant Peptides Purified from Mulberry (Morus atropurpurea Roxb.) Leaf Protein Hydrolysates with Hemolysis Inhibition Ability and Cellular Antioxidant Activity. J. Agric. Food Chem. 2019, 67, 7650–7659. [Google Scholar] [PubMed]
- Jiang, Y.; Zhao, D.; Sun, J.; Luo, X.; Li, H.; Sun, X.; Zheng, F. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin. Food Sci. Nutr. 2019, 7, 2391–2403. [Google Scholar]
- Wali, A.; Mijiti, Y.; Yanhua, G.; Yili, A.; Aisa, H.A.; Kawuli, A. Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. Int. J. Pept. Res. Ther. 2021, 27, 219–227. [Google Scholar]
- Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative Effects and Mechanism Study of Bioactive Peptides from Defatted Walnut (Juglans regia L.) Meal Hydrolysate. J. Agric. Food Chem. 2019, 67, 3305–3312. [Google Scholar]
- Zeng, Q.; Fan, X.; Zheng, Q.; Wang, J.; Zhang, X. Anti-oxidant, hemolysis inhibition, and collagen-stimulating activities of a new hexapeptide derived from Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2018, 30, 1655–1665. [Google Scholar]
- Timón, M.L.; Andrés, A.I.; Otte, J.; Petrón, M.J. Antioxidant peptides (< 3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Res. Int. 2019, 120, 643–649. [Google Scholar]
- Shah, P.; Shrivastava, S.; Gogoi, P.; Saxena, S.; Srivastava, S.; Singh, R.J.; Godara, B.; Kumar, N.; Gaur, G.K. Wasp venom peptide (Polybia MP-1) shows antimicrobial activity against multi drug resistant bacteria isolated from mastitic cow milk. Int. J. Pept. Res. Ther. 2022, 28, 1–14. [Google Scholar]
- Gogoi, P.; Shrivastava, S.; Shah, P.; Saxena, S.; Srivastava, S.; Gaur, G.K. Linear and branched forms of short antimicrobial peptide-IRK inhibit growth of multi drug resistant Staphylococcus aureus isolates from mastitic cow milk. Int. J. Pept. Res. Ther. 2021, 27, 2149–2159. [Google Scholar]
- Panchal, G.; Hati, S.; Sakure, A. Characterization and production of novel antioxidative peptides derived from fermented goat milk by Fermentum L. LWT 2020, 119, 108887. [Google Scholar]
- Qian, Z.-J.; Jung, W.-K.; Kim, S.-K. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour. Technol. 2008, 99, 1690–1698. [Google Scholar]
- Li, Y.; Aiello, G.; Bollati, C.; Bartolomei, M.; Arnoldi, A.; Lammi, C. Phycobiliproteins from Arthrospira Platensis (Spirulina): A new source of peptides with dipeptidyl peptidase-IV Inhibitory activity. Nutrients 2020, 12, 794. [Google Scholar] [PubMed] [Green Version]
- Xia, E.; Zhai, L.; Huang, Z.; Liang, H.; Yang, H.; Song, G.; Li, W.; Tang, H. Optimization and identification of antioxidant peptide from underutilized Dunaliella salina protein: Extraction, in vitro gastrointestinal digestion, and fractionation. Biomed. Res. Int. 2019, 2019, 6424651. [Google Scholar] [PubMed] [Green Version]
- Zhang, X.; Cao, D.; Sun, X.; Sun, S.; Xu, N. Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsis lemaneiformis. J. Appl. Phycol. 2019, 31, 2585–2596. [Google Scholar]
- Jiao, K.; Gao, J.; Zhou, T.; Yu, J.; Song, H.; Wei, Y.; Gao, X. Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis. J. Food Biochem. 2019, 43, e12864. [Google Scholar]
- Hsiao, G.; Wang, S.-W.; Chiang, Y.-R.; Chi, W.-C.; Kuo, Y.-H.; Chen, C.-Y.; Lee, T.-H. Anti-inflammatory effects of peptides from a marine algicolous fungus Acremonium sp. NTU492 in BV-2 microglial cells. J. Food Drug Anal. 2020, 28, 283. [Google Scholar]
- Hwang, J.-Y.; Lee, J.-H.; Park, S.C.; Lee, J.; Oh, D.-C.; Oh, K.-B.; Shin, J. New peptides from the marine-derived fungi Aspergillus allahabadii and Aspergillus ochraceopetaliformis. Mar. Drugs 2019, 17, 488. [Google Scholar]
- Rivero-Pino, F.; Guadix, A.; Guadix, E.M. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor. Food Funct. 2021, 12, 873–880. [Google Scholar]
- Osborne, R.; Mcildowie, M.J.; Edwards, J.D. Skin care product and method of use 2018. U.S. Patent No 10,034,827, 2018. [Google Scholar]
- Writer, C.I.R. Safety Assessment of Myristoyl Pentapeptide-4, Palmitoyl Pentapeptide-4, and Pentapeptide-4 as Used in Cosmetics. 2023. Available online: https://www.cir-safety.org/sites/default/files/SLR_Pentapeptide4_062023.pdf (accessed on 10 July 2023).
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Tripeptide-1, Hexapeptide-12, Their Metal Salts and Fatty Acyl Derivatives, and Palmitoyl Tetrapeptide-7 as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 90S–102S. [Google Scholar]
- Slaga, T.J.; Snyder, P.W. Safety Assessment of Acetyl Hexapeptide-8 and Acetyl Hexapeptide-8 Amide as Used in Cosmetics. 2020. Available online: https://www.cir-safety.org/sites/default/files/acetyl122020revTR.pdf (accessed on 15 March 2022).
- Lintner, K. Peptides, amino adds and proteins in skin care. Cosmet. Toilet. 2007, 122, 10. [Google Scholar]
- Bissett, D.L. Common cosmeceuticals. Clin. Dermatol. 2009, 27, 435–445. [Google Scholar]
- Udenigwe, C.C.; Fogliano, V. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? J. Funct. Foods 2017, 35, 9–12. [Google Scholar]
Cosmetic Properties | Mechanism | Effective Factors |
---|---|---|
Antioxidant activity | Prevents the deleterious effects of oxidative stress caused by overproduction of ROS in the skin [31] Act as antioxidants through hydrogen atom transfer, single electron transfer, and chelating transition pro-oxidant metals [31] | Antioxidant properties depend on their structural properties: molecular weight, hydrophobicity, and amino acid sequence (Pro, His, Cys, Phe, Try, and Tyr) [28] Peptides with lower molecular weight show effective antioxidant properties [32] |
Anti-inflammatory activity | Possesses anti-inflammatory capacity mediated by the inhibition and induction of the immune systems in cell lines [33] Downregulates pro-inflammatory mediators (e.g., TNF-α, IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-12, and IFN-γ receptors) and regulates immune system [33] | Anti-inflammatory activity is related to their ability to bind to the lipid A moiety of lipopolysaccharides (LPS) and interference with LPS-CD14 interactions by competing with the LPS-binding peptide [34] |
Antimicrobial activity | Provides antimicrobial activity based on membrane lytic mechanisms whereby peptides can directly affect cell membrane integrity through the formation of transmembrane channels, resulting in cytoplasm leakage and cell death [35] Involved with the inhibition of intracellular activities in nucleic acid, protein and cell-wall synthesis, protein folding, lipopolysaccharide formation, and cell-division progress [35] Induces a loss of regulated iron transport, leading to membrane permeation and DNA damage, and subsequently to bacterial destruction [1] | Peptides with cationic charge (from +2 to +9) show a strong ability to interact with the negatively charged membranes of microorganisms [36] |
Anti-aging properties | Collagenase inhibition Inhibits mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF- κB) signaling pathways, and histone modification [37] Suppresses the activities and expressions of MMP by elevating tissue inhibitors of matrix metalloproteinases (TIMP) levels and blocking activation of MAPK signaling pathway [38] | Low molecular weight peptides (<1 kDa) possess higher inhibitory activity against MMP, p-JNK, p-p38, and p-ERK in MAPK signaling pathways than that of larger molecular weight peptides [39] |
Hyaluronidase inhibition Inhibits the degradation of hyaluronic acid for protecting skin [40] | Hyaluronidase inhibitor capacity depends on molecular weights as follows: large molecular peptides (3–10 kDa) > medium molecular peptides (1–3 kDa) > small molecular peptides (<1 kDa) [41] | |
Tyrosinase inhibition Blocks the active site or chelates copper ions of tyrosinase to inhibit tyrosinase activity [42] Downregulates the activation of microphthalmia-associated transcription factor (MITF), an important event during melanogenesis, to suppress melanin synthesis [43] Downregulates cAMP signaling pathway as an anti-melanogenic activity to inhibit melanin synthesis [1,42,43] | Peptides consisting of amino acids with hydroxyl groups (Ser and Thr), aliphatic amino acid residues (Val, Ala, and Leu), and hydrophobic compounds exhibit great tyrosinase inhibitory activities [44] Peptides with molecular weight < 3 kDa show higher tyrosinase activity that that of the whole collagen hydrolysate [1] | |
Elastase inhibition Downregulates the activation of elastase enzyme to protect mechanical properties of skin tissues that are impaired by overproduction of the enzyme elastase [45] | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Insights into Bioactive Peptides in Cosmetics. Cosmetics 2023, 10, 111. https://doi.org/10.3390/cosmetics10040111
Ngoc LTN, Moon J-Y, Lee Y-C. Insights into Bioactive Peptides in Cosmetics. Cosmetics. 2023; 10(4):111. https://doi.org/10.3390/cosmetics10040111
Chicago/Turabian StyleNgoc, Le Thi Nhu, Ju-Young Moon, and Young-Chul Lee. 2023. "Insights into Bioactive Peptides in Cosmetics" Cosmetics 10, no. 4: 111. https://doi.org/10.3390/cosmetics10040111
APA StyleNgoc, L. T. N., Moon, J. -Y., & Lee, Y. -C. (2023). Insights into Bioactive Peptides in Cosmetics. Cosmetics, 10(4), 111. https://doi.org/10.3390/cosmetics10040111