Cosmetic and Pharmaceutic Products with Selected Natural and Synthetic Substances for Melasma Treatment and Methods of Their Analysis
Abstract
:1. Introduction
2. Melasma and Other Common Hyperpigmentation-Based Skin Disorders
3. Current Methods of Melasma Treatment
4. Chemicals Commonly Used in the Treatment of Melasma
5. Substances of Natural Origin Prepared on the Basis of Plant and Mushroom/Fungi Extracts Showing Skin-Whitening Properties
6. Analytical Methods for Determining the Content of Active Substances Present in Skin-Whitening Formulations
7. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naidoo, L.; Khoza, N.; Dlova, N.C. A Fairer Face, a Fairer Tomorrow? A Review of Skin Lighteners. Cosmetics 2016, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Solano, F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020, 25, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nautiyal, A.; Wairkar, S. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment. Cell Melanoma Res. 2021, 34, 1000–1014. [Google Scholar] [CrossRef] [PubMed]
- AlSalem, S.; Alexis, A. Melasma hyperpigmentation: An overview of current topical therapeutics. Dermatol. Rev. 2023, 4, 38–52. [Google Scholar] [CrossRef]
- McKesey, J.; Tovar-Garza, A.; Pandya, A.G. Melasma Treatment: An Evidence-Based Review. Am. J. Clin. Dermatol. 2020, 21, 173–225. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, A.; Wang, J.; Huang, D.; Deng, Y.; Zhang, X.; Qu, Q.; Ma, W.; Xiong, R.; Zhu, M.; et al. Potential application of natural bioactive compounds as skin-whitening agents: A review. J. Cosmet. Dermatol. 2022, 21, 6669–6687. [Google Scholar] [CrossRef]
- Hollinger, J.C.; Angra, K.; Halder, R.M. Are Natural Ingredients Effective in the Management of Hyperpigmentation? A Systematic Review. J. Clin. Aesthetic Dermatol. 2018, 11, 28–37. [Google Scholar]
- Siahaan, E.A.; Agusman; Pangestuti, R.; Shin, K.-H.; Kim, S.-K. Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar. Drugs 2022, 20, 734. [Google Scholar] [CrossRef]
- Agrawal, S.; Barrow, C.J.; Adholeya, A.; Deshmukh, S.K. Unveiling the dermatological potential of marine fungal species components: Antioxidant and inhibitory capacities over tyrosinase. Biotechnol. Appl. Biochem. 2022, 69, 1252–1266. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Ind. Crop. Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, V.K.; Patil, A.; Blicharz, L.; Kassir, M.; Konnikov, N.; Gold, M.H.; Goldman, M.P.; Galadari, H.; Goldust, M. Medical therapies for melasma. J. Cosmet. Dermatol. 2022, 21, 3707–3728. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-H.; Hwang, Y.-J.; Lee, S.-K.; Park, K.-C. Heterogeneous Pathology of Melasma and Its Clinical Implications. Int. J. Mol. Sci. 2016, 17, 824. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.Y.; Suzuki, I.; Lee, D.J.; Ha, J.; Reiniche, P.; Aubert, J.; Deret, S.; Zugaj, D.; Voegel, J.J.; Ortonne, J.-P. Transcriptional Profiling Shows Altered Expression of Wnt Pathway– and Lipid Metabolism–Related Genes as Well as Melanogenesis-Related Genes in Melasma. J. Investig. Dermatol. 2011, 131, 1692–1700. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.-Y. Recent progress in melasma pathogenesis. Pigment. Cell Melanoma Res. 2015, 28, 648–660. [Google Scholar] [CrossRef]
- Maddaleno, A.S.; Camargo, J.; Mitjans, M.; Vinardell, M.P. Melanogenesis and Melasma Treatment. Cosmetics 2021, 8, 82. [Google Scholar] [CrossRef]
- Chaowattanapanit, S.; Silpa-archa, N.; Kohli, I.; Lim, H.W.; Hamzavi, I. Postinflammatory hyperpigmentation: A comprehensive overview: Treatment options and prevention. J. Am. Acad. Dermatol. 2017, 77, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Neumann, L. Lentigo and Solar Lentigines. In Dermatological Cryosurgery and Cryotherapy; Abramovits, W., Graham, G., Har-Shai, Y., Strumia, R., Eds.; Springer: London, UK, 2016. [Google Scholar]
- Gong, Z.; Lai, W.; Zhao, G.; Wang, X.; Zheng, M.; Li, L.; Yang, Q.; Dang, Y.; Liu, L.; Zou, Y. Efficacy and safety of fluocinolone acetonide, hydroquinone, and tretinoin cream in Chinese patients with melasma: A randomized, double-blind, placebo-controlled, multicenter, parallel-group study. Clin. Drug Investig. 2015, 35, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Pandya, A.P. Melasma: Clinical diagnosis and management options. Australas. J. Dermatol. 2015, 56, 151–163. [Google Scholar] [CrossRef]
- Sarkar, R.; Garg, V.; Bansal, S.; Sethi, S.; Gupta, C. Comparative evaluation of efficacy and tolerability of glycolic acid, salicylic mandelic acid, and phytic acid combination peels in melasma. Dermatol. Surg. 2016, 42, 384–391. [Google Scholar] [CrossRef]
- Dorgham, N.A.; Dorgham, D.A.; Hegazy, R.A.; Sharobim, A.K. Efficacy and Tolerability of Chemical Peeling as A Single Agent for Melasma in Dark-Skinned Patients: A Systematic Review and Meta-analysis of Comparative Trials. J. Cosmet. Dermatol. 2020, 19, 2812–2819. [Google Scholar] [CrossRef]
- Faghihi, G.; Shahingohar, A.; Siadat, A.H. Comparison between 1% tretinoin peeling versus 70% glycolic acid peeling in the treatment of female patients with melasma. J. Drugs Dermatol. 2011, 10, 1439–1442. [Google Scholar] [PubMed]
- Chaudhary, S.; Dayal, S. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma. J. Drugs Dermatol. 2013, 12, 1149–1153. [Google Scholar] [PubMed]
- Hagag Sara, M.M.; Abd Allah, S.H. The effect of topical nano vitamin-C iontophoresis versus the effect of trichloroacetic acid 20% peel in treatment of melasma. Menoufia Med. J. 2022, 35, 489–495. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Yang, F.C.; Cho, B.K. A review of laser and light therapy in melasma. Int. J. Women’s Dermatol. 2017, 3, 11–20. [Google Scholar] [CrossRef]
- Shah, S.D.; Aurangabadkar, S.J. Laser Toning in Melasma. J. Cutan. Aesthetic Surg. 2019, 12, 76–84. [Google Scholar] [CrossRef]
- Mehrabi, J.N.; Bar-Ilan, E.; Wasim, S.; Koren, A.; Zusmanovitch, L.; Salameh, F.; Nelkenbaum, G.I.; Horovitz, T.; Zur, E.; Lim, T.S.; et al. A review of combined treatments for melasma involving energy-based devices and proposed pathogenesis-oriented combinations. J. Cosmet. Dermatol. 2021, 21, 461–472. [Google Scholar] [CrossRef]
- Feng, J.; Shen, S.; Song, X.; Xiang, W. Efficacy and safety of picosecond laser for the treatment of melasma: A systematic review and meta-analysis. Lasers Med. Sci. 2023, 38, 84. [Google Scholar] [CrossRef]
- Küçük, Ö.S. Current treatment approaches for melasma. Bezmialem Sci. 2018, 6, 54–62. [Google Scholar] [CrossRef]
- Tirico, M.C.C.P.; Jensen, D.; Green, C.; Ross, E.V. Short pulse intense pulsed light versus pulsed dye laser for the treatment of facial redness. J. Cosmet. Laser Ther. 2020, 22, 60–64. [Google Scholar] [CrossRef]
- Kaminaka, C.; Furukawa, F.; Yamamoto, Y. The clinical and histological effect of a low-fluence Q-Switched 1064-nm neodymium:Yttrium-aluminum-garnet laser for the treatment of melasma and solar lentigines in asians prospective, randomized, and split-face comparative study. Dermatol. Surg. 2017, 43, 1120–1133. [Google Scholar] [CrossRef]
- Sagduyu, I.E.; Marakli, O.; Oraloglu, G.; Okut, E.B.; Unal, I. Comparison of 1064 nm Q-switched Nd:YAG laser and Jessner peeling in melasma treatment. Dermatol. Ther. 2022, 35, e15970. [Google Scholar] [CrossRef]
- Campos, V. 28379 Case report of effect of a topical antioxidant serum containing vitamin C, ferulic acid, and phloretin after Q-switched laser for treatment of melasma. J. Am. Acad. Dermatol. 2021, 85, AB186. [Google Scholar] [CrossRef]
- Reynal, S.; Martin, E.; Munavalli, G. Energy-based devices for melasma and postinflammatory hyperpigmentation. Dermatol. Rev. 2023, 4, 58–66. [Google Scholar] [CrossRef]
- Chalermchai, T.; Rummaneethorn, P. Effects of a fractional picosecond 1,064 nm laser for the treatment of dermal and mixed type melasma. J. Cosmet. Laser Ther. 2018, 20, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Elmorsy, E.; Aboukhadr, N.; Tayyeb, M.; Taha, A.A.A. Low-power Fractional Carbon Dioxide Laser Followed by Jessner’s Peel versus Jessner’s Peel Alone for the Treatment of Melasma. J. Clin. Aesthetic Dermatol. 2021, 14, 61–67. [Google Scholar]
- Cameli, N.; Abril, E.; Mariano, M.; Berardesca, E. Combined use of monopolar radiofrequency and transdermal drug delivery in the treatment of melasma. Dermatol. Surg. 2014, 40, 748–755. [Google Scholar]
- Wawrzyńczak, A.; Feliczak-Guzik, A.; Nowak, I. Nanosunscreens: From Nanoencapsulated to Nanosized Cosmetic Active Forms. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 25–46. [Google Scholar] [CrossRef]
- Boukari, F.; Jourdan, E.; Fontas, E.; Montaudié, H.; Castela, E.; Lacour, J.P.; Passeron, T. Prevention of melasma relapses with sunscreen combining protection against UV and short wavelengths of visible light: A prospective randomized comparative trial. J. Am. Acad. Dermatol. 2015, 72, 189–190. [Google Scholar] [CrossRef]
- Searle, T.; Al-Niaimi, F.; Ali, F.R. Hydroquinone: Myths and reality. Clin. Exp. Dermatol. 2021, 46, 636–640. [Google Scholar] [CrossRef]
- Schwartz, C.; Jan, A.; Zito, P.M. Hydroquinone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539693/ (accessed on 29 April 2023).
- Phasha, V.; Senabe, J.; Ndzotoyi, P.; Okole, B.; Fouche, G.; Chuturgoon, A. Review on the Use of Kojic Acid-A Skin-Lightening Ingredient. Cosmetics 2022, 9, 64. [Google Scholar] [CrossRef]
- Yang, H.-L.; Lin, C.-P.; Gowrisankar, Y.V.; Huang, P.-J.; Chang, W.-L.; Shrestha, S.; Hseu, Y.-C. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Biochem. Pharmacol. 2021, 185, 114454. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Cho, J.H.; Hong, S.H.; Kim, D.-H.; Jung, H.-Y.; Kang, I.-K.; Cho, Y.-J. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. J. Nat. Med. 2018, 72, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-H.; Yang, J.H.; Shin, J.-W.; Park, K.-C.; Huh, C.-H.; Na, J.-I. Efficacy of liposome-encapsulated 4-n-butylresorcinol and resveratrol cream in the treatment of melasma. J. Cosmet. Dermatol. 2020, 19, 891–895. [Google Scholar] [CrossRef]
- Tokudome, Y.; Hoshi, T.; Mori, S.; Hijikuro, I. Synthesis of Resorcinol Derivatives and their Effects on Melanin Production. Cosmetics 2020, 7, 55. [Google Scholar] [CrossRef]
- Bissett, D.L.; Robinson, L.R.; Raleigh, P.S.; Miyamoto, K.; Hakozaki, T.; Li, J.; Kelm, G.R. Reduction in the appearance of facial hyperpigmentation by topical N-acetyl glucosamine. J. Cosmet. Dermatol. 2007, 6, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. The versatility of azelaic acid in dermatology. J. Dermatol. Treat. 2022, 33, 722–732. [Google Scholar] [CrossRef]
- Kumar, A.; Rao, R.; Yadav, P. Azelaic Acid: A Promising Agent for Dermatological Applications. Curr. Drug Ther. 2020, 15, 181–193. [Google Scholar] [CrossRef]
- da Silva Bergmann, C.L.M.; Pochmann, D.; Bergmann, J.; Brasil Bocca, F.; Proença, I.; Marinho, J.; Mello, A.; Dani, C. The use of retinoic acid in association with microneedling in the treatment of epidermal melasma: Efficacy and oxidative stress parameters. Arch. Dermatol. Res. 2021, 313, 695–704. [Google Scholar] [CrossRef]
- Al Hamzawi, N.K. Nicotinamide as a Skin Whitener: Evidence and Controversies. J. Pharm. Res. Int. 2021, 33, 300–305. [Google Scholar] [CrossRef]
- Pedroso, A.G.; Furtado, G.R.D.; Barbosa, K.L. Niacinamide for the treatment of melasma: An integrative review of randomized clinical trials. Res. Soc. Dev. 2022, 11, e198111133581. [Google Scholar] [CrossRef]
- Boo, Y.C. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants 2021, 10, 1129. [Google Scholar] [CrossRef]
- Saeedi, M.; Khezri, K.; Seyed Zakaryaei, A.; Mohammadamini, H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother. Res. 2021, 35, 4136–4154. [Google Scholar] [CrossRef] [PubMed]
- Zerbinati, N.; Sommatis, S.; Maccario, C.; Di Francesco, S.; Capillo, M.C.; Rauso, R.; Herrera, M.; Bencini, P.L.; Guida, S.; Mocchi, R. The Anti-Ageing and Whitening Potential of a Cosmetic Serum Containing 3-O-ethyl-l-ascorbic Acid. Life 2021, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.A.E.; Ibrahim, A.-S.M.; Mahmoud, A.A. Efficacy and safety of intralesional steroid injection in the treatment of melasma. J. Cosmet. Dermatol. 2021, 20, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Ahramiyanpour, N.; Saki, N.; Akbari, Z.; Shamsi-Meymandi, S.; Amiri, R.; Heiran, A. Efficacy of topical cysteamine hydrochloride in treating melasma: A systematic review. J. Cosmet. Dermatol. 2021, 20, 3593–3602. [Google Scholar] [CrossRef]
- Niazi, S.; Gheisari, M.; Moravvej, H.; Doroodgar, F.; Niazi, F. Efficacy of cysteamine and methimazole in treating melasma: A comparative narrative review. J. Cosmet. Dermatol. 2022, 21, 3867–3875. [Google Scholar] [CrossRef]
- Sitohang, I.B.S.; Ninditya, S. Systemic Glutathione as a Skin-Whitening Agent in Adult. Dermatol. Res. Pract. 2020, 2020, 8547960. [Google Scholar] [CrossRef] [Green Version]
- Konisky, H.; Balazic, E.; Jaller, J.A.; Khanna, U.; Kobets, K. Tranexamic acid in melasma: A focused review on drug administration routes. J. Cosmet. Dermatol. 2023, 22, 1197–1206. [Google Scholar] [CrossRef]
- Chang, Y.-F.; Lee, T.L.; Oyerinde, O.; Desai, S.R.; Aljabban, A.; Bay, C.P.; Bain, P.A.; Chung, H.J. Efficacy and safety of topical agents in the treatment of melasma: What’s evidence? A systematic review and meta-analysis. J. Cosmet. Dermatol. 2023, 22, 1168–1176. [Google Scholar] [CrossRef]
- de Freitas, A.C.P.; Rigon, R.B.; Bagatin, E.; Leonardi, G.R. Perspectives of topical formulations for melasma. Int. J. Dermatol. 2023, 62, 260–268. [Google Scholar] [CrossRef]
- González-Molina, V.; Martí-Pineda, A.; González, N. Topical Treatments for Melasma and Their Mechanism of Action. J. Clin. Aesthetic Dermatol. 2022, 15, 19–28. [Google Scholar]
- Cassiano, D.P.; Espósito, A.C.C.; da Silva, C.N.; Lima, P.B.; Dias, J.A.F.; Hassun, K.; Miot, L.D.B.; Miot, H.A.; Bagatin, E. Update on Melasma-Part II: Treatment. Dermatol. Ther. 2022, 12, 1989–2012. [Google Scholar] [CrossRef] [PubMed]
- Berardesca, E.; Rigoni, C.; Cantù, A.; Laureti, T. Effectiveness of a new cosmetic treatment for melasma. J. Cosmet. Dermatol. 2020, 19, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gutiérrez, A.; Pérez-Martínez, M.; Pena-Rodríguez, E.; Gómez-Escalante, S.; Luis, L.G.S.; González, M.C. Depigmenting topical therapy based on a synergistic combination of compounds targeting the key pathways involved in melasma pathophysiology. Exp. Dermatol. 2023, 32, 611–619. [Google Scholar] [CrossRef]
- Juliano, C.C.A. Spreading of Dangerous Skin-Lightening Products as a Result of Colourism: A Review. Appl. Sci. 2022, 12, 3177. [Google Scholar] [CrossRef]
- Nomakhosi, M.; Heidi, A. Natural options for management of melasma, a review. J. Cosmet. Laser Ther. 2018, 20, 470–481. [Google Scholar] [CrossRef]
- Kim, K.; Huh, Y.; Lim, K.-M. Anti-Pigmentary Natural Compounds and Their Mode of Action. Int. J. Mol. Sci. 2021, 22, 6206. [Google Scholar] [CrossRef]
- Goelzer Neto, C.F.; do Nascimento, P.; da Silveira, V.C.; de Mattos, A.B.N.; Bertol, C.D. Natural sources of melanogenic inhibitors: A systematic review. Int. J. Cosmet. Sci. 2022, 44, 143–153. [Google Scholar] [CrossRef]
- Lee, J.-O.; Kim, E.; Kim, J.H.; Hong, Y.H.; Kim, H.G.; Jeong, D.; Kim, J.; Kim, S.H.; Park, C.; Seo, D.B.; et al. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J. Ginseng Res. 2018, 42, 389–399. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, K.T.; Kim, S.S.; Hur, J.; Ha, S.K.; Cho, C.W.; Choi, S.Y. Inhibitory effects of ginseng seed on melanin biosynthesis. Pharmacogn. Mag. 2014, 10 (Suppl. S2), S272–S275. [Google Scholar]
- Lee, D.Y.; Lee, J.; Jeong, Y.T.; Byun, G.H.; Kim, J.H. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry. J. Ginseng Res. 2017, 41, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Nam, G.; Bae, I.-H.; Park, J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes–keratinocytes and three-dimensional human skin equivalent. J. Ginseng Res. 2019, 43, 300. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kim, J.H.; Hong, H.-D.; Kwon, J.; Lee, E.J.; Jang, M.; Lee, S.-Y.; Han, A.-R.; Nam, T.G.; Hong, S.K.; et al. Ginsenosides Rg5 and Rk1, the skin-whitening agents in black ginseng. J. Funct. Foods 2018, 45, 67–74. [Google Scholar] [CrossRef]
- Celina, Y.; Viardo, V.; Villafuerte, L. A Pilot Study on Aloe vera Leaf Extract in Cream Base for the Clinical Improvement of Melasma: A Split-Face Trial. J. Clin. Investig. Dermatol. 2020, 8, 5. [Google Scholar]
- Hikmawati, D.; Respati, T.; Yuniarti, Y.; Yuniarti, L. In silico analysis of multi-target antimelasma aloe vera compound. In Medical Technology and Environmental Health; Abdullah, A.G., Widiaty, I., Abdullah, C.U., Eds.; CRC Press: London, UK, 2020; pp. 136–140. [Google Scholar] [CrossRef]
- Mikayoulou, M.; Mayr, F.; Temml, V.; Pandian, A.; Vermaak, I.; Chen, W.; Komane, B.; Stuppner, H.; Viljoen, A. Anti-tyrosinase activity of South African Aloe species and isolated compounds plicataloside and aloesin. Fitoterapia 2021, 150, 104828. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Jang, G.Y.; Ji, Y.-J.; Lee, J.H.; Choi, S.J.; Hyun, T.K.; Kim, H.D. Antioxidant and Anti-Melanogenic Activities of Heat-Treated Licorice (Wongam, Glycyrrhiza glabra × G. uralensis) Extract. Curr. Issues Mol. Biol. 2021, 43, 1171–1187. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Montoro, P.; Piacente, S. Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. Cosmetics 2022, 9, 7. [Google Scholar] [CrossRef]
- Lv, J.; Fu, Y.; Cao, Y.; Jiang, S.; Yang, Y.; Song, G.; Yun, C.; Gao, R. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation. Exp. Dermatol. 2020, 29, 149–157. [Google Scholar] [CrossRef] [Green Version]
- de Toledo Bagatin, J.; Bagatin, E.; Campos, P.M.B.G.M. A pilot clinical study to evaluate the effectiveness of olive extract containing hydroxytyrosol for oral and topical treatment of melasma. Biomed. Biopharm. Res. 2020, 17, 48–62. [Google Scholar] [CrossRef]
- Byeon, J.-H.; Alam, M.B.; Kim, K.-C.; Heo, S.; Lim, J.; Kwon, Y.-G.; Zhao, P.; Cha, Y.-H.; Choi, H.-J.; Lee, S.-H. Anti-Melanogenic Effect of Chestnut Spike Extract through Downregulation of Tyrosinase-Related Proteins and Activation of ERK ½. Nat. Prod. Commun. 2018, 13, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.B.; Kirkan, B.; Sarikurkcu, C. Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnaea for the management of oxidative stress, Alzheimer’s disease, hyperglycemia, and melasma. Ind. Crop. Prod. 2019, 127, 82–87. [Google Scholar] [CrossRef]
- Goh, C.L.; Chuah, S.Y.; Tien, S.; Thng, G.; Vitale, M.A.; Delgado-Rubin, A. Double-blind, Placebo-controlled Trial to Evaluate the Effectiveness of Polypodium leucotomos Extract in the Treatment of Melasma in Asian Skin: A Pilot Study. J. Clin. Aesthetic Dermatol. 2018, 11, 14–19. [Google Scholar]
- Parrado, C.; Nicolas, J.; Juarranz, A.; Gonzalez, S. The role of the aqueous extract Polypodium leucotomos in photoprotection. Photochem. Photobiol. Sci. 2020, 19, 831–843. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, E.J.; Ahn, Y.; Park, S.J.; Kim, S.H.; Oh, S.H. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine 2019, 57, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Javedan, K.; Hydarpur, F.; Mohammadi Pour, P.; Najafi, F.; Mirzaeei, S.; Rahimi, R.; Gravandi, M.M.; Farzaei, M.H. The formulation and efficacy of topical Dorema ammoniacum in treating Melasma: A randomized double-blind, placebo-controlled trial. J. Complement. Integr. Med. 2022, 19, 743–751. [Google Scholar] [CrossRef]
- Gryn-Rynko, A.; Sperkowska, B.; Majewski, M.S. Screening and Structure–Activity Relationship for Selective and Potent Anti-Melanogenesis Agents Derived from Species of Mulberry (Genus Morus). Molecules 2022, 27, 9011. [Google Scholar] [CrossRef]
- Jeon, Y.-H.; Choi, S.-W. Isolation, Identification, and Quantification of Tyrosinase and α-Glucosidase Inhibitors from UVC-Irradiated Mulberry (Morus alba L.) Leaves. Prev. Nutr. Food Sci. 2019, 24, 84–94. [Google Scholar] [CrossRef]
- Li, H.X.; Park, J.U.; Su, X.D.; Kim, K.T.; Kang, J.S.; Kim, Y.R.; Kim, Y.H.; Yang, S.Y. Identification of Anti-Melanogenesis Constituents from Morus alba L. Leaves. Molecules 2018, 23, 2559. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.H. Biological Activities of Paper Mulberry (Broussonetia papyrifera): More than a Skin-Lightening Agent. Cosmetics 2022, 9, 112. [Google Scholar] [CrossRef]
- Zhu, W.-F.; Wang, C.-L.; Ye, F.; Sun, H.-P.; Ma, C.-Y.; Liu, W.-Y.; Feng, F.; Abe, M.; Akihisa, T.; Zhang, J. Chemical Constituents of the Seed Cake of Camellia oleifera and Their Antioxidant and Antimelanogenic Activities. Chem. Biodivers. 2018, 15, e1800137. [Google Scholar] [CrossRef]
- Wang, Y.; Du, G.-Y.; Guo, T.; Zou, H.-M.; Jia, D. Skin-whitening mechanism of cumin (Cuminum cyminum L.) extract. Pak. J. Pharm. Sci. 2021, 34, 077–084. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E. Optimization of the Antioxidant Potentials of Red Pitaya Peels and Its In Vitro Skin Whitening Properties. Appl. Sci. 2018, 8, 1516. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.-R.; Lim, W.-C.; Han, A.; Lee, M.-h.; Shin, E.J.; Lee, K.-M.; Nam, T.-G.; Lim, T.-G. Rose Petal Extract (Rosa gallica) Exerts Skin Whitening and Anti-Skin Wrinkle Effects. J. Med. Food 2020, 23, 870–878. [Google Scholar] [CrossRef]
- Shin, E.J.; Han, A.; Lee, M.; Song, Y.-R.; Lee, K.M.; Nam, T.-G.; Lee, P.; Lee, S.-Y.; Lim, T.-G. Extraction conditions for Rosa gallica petal extracts with anti-skin aging activities. Food Sci. Biotechnol. 2019, 28, 1439–1446. [Google Scholar] [CrossRef]
- Li, M.-X.; Xie, J.; Bai, X.; Du, Z.-Z. Anti-aging potential, anti-tyrosinase and antibacterial activities of extracts and compounds isolated from Rosa chinensis cv. ‘JinBian’. Ind. Crop. Prod. 2021, 159, 113059. [Google Scholar] [CrossRef]
- Kaushik, N.; Kim, J.-H.; Nguyen, L.N.; Kaushik, N.K.; Choi, K.-A. Characterization of Bioactive Compounds Having Antioxidant and Anti-Inflammatory Effects of Liliaceae Family Flower Petal Extracts. J. Funct. Biomater. 2022, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-G.; Park, G.-K.; Jang, W.; Kim, B.-Y.; Kim, S.-K.; Kim, Y.-A.; Park, S.-H.; Park, B. Skin-Whitening and Antiwrinkle Proprieties of Maackia amurensis Methanolic Extract Lead Compounds. Processes 2022, 10, 855. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y.; Li, Y. Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential. Antioxidants 2022, 11, 2389. [Google Scholar] [CrossRef]
- Gogoi, R.; Sarma, N.; Pandey, S.K.; Lal, M. Phytochemical constituents and pharmacological potential of Solanum khasianum C.B. Clarke., extracts: Special emphasis on its skin whitening, anti-diabetic, acetylcholinesterase and genotoxic activities. Trends Phytochem. Res. 2021, 5, 47–61. [Google Scholar] [CrossRef]
- Chatatikun, M.; Supjaroen, P.; Promlat, P.; Chantarangkul, C.; Waranuntakul, S.; Nawarat, J.; Tangpong, J.; Chiabchalard, A. Antioxidant and Tyrosinase Inhibitory Properties of an Aqueous Extract of Garcinia atroviridis Griff. ex. T. Anderson Fruit Pericarps. Pharmacogn. J. 2020, 12, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Kanlayavattanakul, M.; Chongnativisit, W.; Chaikul, P.; Lourith, N. Phenolic-rich Pomegranate Peel Extract: In Vitro, Cellular, and In Vivo Activities for Skin Hyperpigmentation Treatment. Planta Med. 2020, 86, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Mat Saad, H.; Tan, C.H.; Lim, S.H.; Manickam, S.; Sim, K.S. Evaluation of anti-melanogenesis and free radical scavenging activities of five Artocarpus species for cosmeceutical applications. Ind. Crop. Prod. 2021, 161, 113184. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Liu, I.-H.; Huang, X.-Z.; Chen, H.-J.; Chang, S.-T.; Chang, M.-L.; Ho, Y.-T.; Chang, H.-T. Antimelanogenesis Effects of Leaf Extract and Phytochemicals from Ceylon Olive (Elaeocarpus serratus) in Zebrafish Model. Pharmaceutics 2021, 13, 1059. [Google Scholar] [CrossRef]
- Smeriglio, A.; D’Angelo, V.; Denaro, M.; Trombetta, D.; Raimondo, F.M.; Germanò, M.P. Polyphenol Characterization, Antioxidant and Skin Whitening Properties of Alnus cordata Stem Bark. Chem. Biodivers. 2019, 16, e1900314. [Google Scholar] [CrossRef]
- Li, M.-X.; Bai, X.; Ma, Y.-P.; Zhang, H.-X.; Nama, N.; Pei, S.-J.; Du, Z.-Z. Cosmetic potentials of extracts and compounds from Zingiber cassumunar Roxb. rhizome. Ind. Crop. Prod. 2019, 141, 111764. [Google Scholar] [CrossRef]
- Ko, G.; Kang, H.R.; Moon, J.Y.; Ediriweera, M.K.; Eum, S.; Bach, T.T.; Cho, S.K. Annona squamosa L. leaves inhibit alpha-melanocyte-stimulating hormone (α-MSH) stimulated melanogenesis via p38 signaling pathway in B16F10 melanoma cells. J. Cosmet. Dermatol. 2019, 19, 1785–1792. [Google Scholar] [CrossRef]
- Deniz, F.S.S.; Orhan, I.E.; Duman, H. Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochem. Lett. 2021, 45, 171–183. [Google Scholar] [CrossRef]
- Sultanov, A.; Lee, E.-H.; Park, H.-J.; Kim, S.-R.; Cho, Y.-J. Antioxidant and skin health-enhancing activities of wild indigo (Baptisia tinctoria) root extracts. Korean J. Food Preserv. 2022, 29, 367–380. [Google Scholar] [CrossRef]
- Younis, M.M.; Ayoub, I.M.; Mostafa, N.M.; El Hassab, M.A.; Eldehna, W.M.; Al-Rashood, S.T.; Eldahshan, O.A. GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. Plants 2022, 11, 918. [Google Scholar] [CrossRef] [PubMed]
- Meziant, L.; Bachir-bey, M.; Bensouici, C.; Saci, F.; Boutiche, M.; Louaileche, H. Assessment of inhibitory properties of flavonoid-rich fig (Ficus carica L.) peel extracts against tyrosinase, α-glucosidase, urease and cholinesterases enzymes, and relationship with antioxidant activity. Eur. J. Integr. Med. 2021, 43, 101272. [Google Scholar] [CrossRef]
- Oh, K.-E.; Shin, H.; Lee, M.K.; Park, B.; Lee, K.Y. Characterization and Optimization of the Tyrosinase Inhibitory Activity of Vitis amurensis Root Using LC-Q-TOF-MS Coupled with a Bioassay and Response Surface Methodology. Molecules 2021, 26, 446. [Google Scholar] [CrossRef]
- Ersoy, E.; Ozkan, E.E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crop. Prod. 2019, 141, 111735. [Google Scholar] [CrossRef]
- Gao, D.; Kim, J.H.; Kim, C.T.; Jeong, W.S.; Kim, H.M.; Sim, J.; Kang, J.S. Evaluation of Anti-Melanogenesis Activity of Enriched Pueraria lobata Stem Extracts and Characterization of Its Phytochemical Components Using HPLC–PDA–ESI–MS/MS. Int. J. Mol. Sci. 2021, 22, 8105. [Google Scholar] [CrossRef] [PubMed]
- Taddeo, V.A.; Epifano, F.; Preziuso, F.; Fiorito, S.; Caron, N.; Rives, A.; de Medina, P.; Poirot, M.; Silvente-Poirot, S.; Genovese, S. HPLC Analysis and Skin Whitening Effects of Umbelliprenin-containing Extracts of Anethum graveolens, Pimpinella anisum, and Ferulago campestris. Molecules 2019, 24, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.H.; Jeon, Y.D.; Cha, J.Y.; Hwang, S.-W.; Lee, H.-Y.; Park, M.; Lee, B.-R.; Shin, M.-K.; Kim, S.-J.; Shin, S.-M.; et al. Antioxidant and skin-whitening effects of aerial part of Euphorbia supina Raf. Extract. BMC Complement. Altern. Med. 2018, 18, 256. [Google Scholar] [CrossRef] [PubMed]
- Sarikurkcu, C.; Sahinler, S.S.; Ceylan, O.; Tepe, B. Onosma pulchra: Phytochemical composition, antioxidant, skin-whitening and anti-diabetic activity. Ind. Crop. Prod. 2020, 154, 112632. [Google Scholar] [CrossRef]
- Ma, X.; Shao, S.; Xiao, F.; Zhang, H.; Zhang, R.; Wang, M.; Li, G.; Yan, M. Platycodon grandiflorum extract: Chemical composition and whitening, antioxidant, and anti-inflammatory effects. RSC Adv. 2021, 11, 10814–10826. [Google Scholar] [CrossRef]
- Han, H.J.; Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Heo, H.J. Anti-Melanogenic Effect of Ethanolic Extract of Sorghum bicolor on IBMX–Induced Melanogenesis in B16/F10 Melanoma Cells. Nutrients 2020, 12, 832. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.Y.; Nyam, K.L. Application of Hibiscus cannabinus L. (kenaf) leaves extract as skin whitening and anti-aging agents in natural cosmetic prototype. Ind. Crop. Prod. 2021, 167, 113491. [Google Scholar] [CrossRef]
- Lin, D.; Wang, S.-H.; Song, T.-Y.; Hsieh, C.-W.; Tsai, M.-S. Safety and efficacy of tyrosinase inhibition of Paeonia suffruticosa Andrews extracts on human melanoma cells. J. Cosmet. Dermatol. 2019, 18, 1921–1929. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Xu, S.; Gao, C.; Liu, J. Inhibitory effects of shell of Camellia oleifera Abel extract on mushroom tyrosinase and human skin melanin. J. Cosmet. Dermatol. 2019, 18, 1955–1960. [Google Scholar] [CrossRef]
- Huang, H.-C.; Wang, S.-S.; Tsai, T.-C.; Ko, W.-P.; Chang, T.-M. Phoenix dactylifera L. Seed Extract Exhibits Antioxidant Effects and Attenuates Melanogenesis in B16F10 Murine Melanoma Cells by Downregulating PKA Signaling. Antioxidants 2020, 9, 1270. [Google Scholar] [CrossRef] [PubMed]
- Chowjarean, V.; Phiboonchaiyanan, P.P.; Harikarnpakdee, S. Skin Brightening Efficacy of Grammatophyllum speciosum: A Prospective, Split-Face, Randomized Placebo-Controlled Study. Sustainability 2022, 14, 16829. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yan, S.L.; Wu, J.Y.; Hsieh, C.W.; Wang, S.H.; Tsai, M.S. Analyses of the Compositions, Antioxidant Capacities, and Tyrosinase-Inhibitory Activities of Extracts from Two New Varieties of Chrysanthemum morifolium Ramat Using Four Solvents. Appl. Sci. 2021, 11, 7631. [Google Scholar] [CrossRef]
- Murata, K.; Suzuki, S.; Miyamoto, A.; Horimoto, M.; Nanko, S.; Mori, D.; Kanamaru, H.; Endo, Y. Tyrosinase Inhibitory Activity of Extracts from Prunus persica. Separations 2022, 9, 107. [Google Scholar] [CrossRef]
- Bilhman, S.; Ramanathan, S.; Dumjun, K.; Wunnoo, S.; Lethongkam, S.; Waen-ngoen, T.; Kaewnopparat, N.; Paosen, S.; Voravuthikunchai, S.P. Value-Added from Microwave-Assisted Extraction of Musa sapientum Waste as an Alternative Safe and Effective Agent for the Treatment of Hyperpigmentation. Waste Biomass Valoriz. 2023, 14, 1477–1488. [Google Scholar] [CrossRef]
- Babbush, K.M.; Babbush, R.A.; Khachemoune, A. Treatment of melasma: A review of less commonly used antioxidants. Int. J. Dermat. 2020, 60, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Na, J.-I.; Shin, J.-W.; Choi, H.-R.; Kwon, S.-H.; Park, K.-C. Resveratrol as a Multifunctional Topical Hypopigmenting Agent. Int. J. Mol. Sci. 2019, 20, 956. [Google Scholar] [CrossRef] [Green Version]
- Boo, Y.C. Human Skin Lightening Efficacy of Resveratrol and Its Analogs: From In Vitro Studies to Cosmetic Applications. Antioxidants 2019, 8, 332. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-H.; Hung, C.-F.; Sung, H.-C.; Yang, S.-C.; Yu, H.-P.; Fang, J.-Y. The bioactivities of resveratrol and its naturally occurring derivatives on skin. J. Food Drug Anal. 2021, 29, 15–38. [Google Scholar] [CrossRef]
- Liu, F.; Qu, L.; Li, H.; He, J.; Wang, L.; Fang, Y.; Yan, X.; Yang, Q.; Peng, B.; Wu, W.; et al. Advances in Biomedical Functions of Natural Whitening Substances in the Treatment of Skin Pigmentation Diseases. Pharmaceutics 2022, 14, 2308. [Google Scholar] [CrossRef]
- Moon, K.; Lee, S.; Park, H.; Cha, J. Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis. J. Microbiol. Biotechnol. 2021, 31, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, X.; Zhao, J.; Du, Q.; Dun, J. Skin pigmentation improvement with resveratrol microemulsion gel using polyoxyethylene hydrogenated castor oil. Drug Dev. Ind. Pharm. 2023, 49, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Sheweita, S.A.; El-Masry, Y.M.; Zaghloul, T.I.; Mostafa, S.K.; Elgindy, N.A. Preclinical studies on melanogenesis proteins using a resveratrol-nanoformula as a skin whitener. Int. J. Biol. Macromol. 2022, 223, 870–881. [Google Scholar] [CrossRef]
- Aung, N.N.; Pengnam, S.; Rojanarata, T.; Patrojanasophon, P.; Opanasopit, P.; Ngawhirunpat, T.; Pamornpathomkul, B. Fabrication of polyvinyl pyrrolidone-K90/Eudragit RL100-based dissolving microneedle patch loaded with alpha-arbutin and resveratrol for skin depigmentation. Biomater. Sci. 2023. accepted manuscript. [Google Scholar] [CrossRef] [PubMed]
- Sharafan, M.; Malinowska, M.A.; Ekiert, H.; Kwaśniak, B.; Sikora, E.; Szopa, A. Vitis vinifera (Vine Grape) as a Valuable Cosmetic Raw Material. Pharmaceutics 2023, 15, 1372. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, M.A.; Billet, K.; Drouet, S.; Munsch, T.; Unlubayir, M.; Tungmunnithum, D.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue, A. Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules 2020, 25, 2203. [Google Scholar] [CrossRef]
- Igielska-Kalwat, J.; Wawrzyńczak, A.; Nowak, I. β-Carotene as an exemplary carotenoid and its application in cosmetic industry. Chemik 2012, 66, 140–144. [Google Scholar]
- Bavarsad, N.; Ali Mapar, M.; Safaezadeh, M.; Latifi, S.M. A double-blind, placebo-controlled randomized trial of skin-lightening cream containing lycopene and wheat bran extract on melasma. J. Cosmet. Dermatol. 2020, 20, 1795–1800. [Google Scholar] [CrossRef]
- Honda, M. Z-Isomers of lycopene and β-carotene exhibit greater skin-quality improving action than their all-E-isomers. Food Chem. 2023, 421, 135954. [Google Scholar] [CrossRef]
- Lima, P.B.; Dias, J.A.F.; Esposito, A.C.C.; Miot, L.D.B.; Miot, H.A. French maritime pine bark extract (pycnogenol) in association with triple combination cream for the treatment of facial melasma in women: A double-blind, randomized, placebo-controlled trial. J. Eur. Acad. Dermatol. Venereol. 2020, 35, 502–508. [Google Scholar] [CrossRef]
- Aladrén, S.; Garre, A.; Valderas-Martínez, P.; Piquero-Casals, J.; Granger, C. Efficacy and Safety of an Oral Nutritional (Dietary) Supplement Containing Pinus pinaster Bark Extract and Grape Seed Extract in Combination with a High SPF Sunscreen in the Treatment of Mild-to-Moderate Melasma: A Prospective Clinical Study. Cosmetics 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Avianggi, H.D.; Indar, R.; Adriani, D.; Riyanto, P.; Muslimin, M.; Afriliana, L.; Kabulrachman, M. The effectiveness of tomato extract on superoxide dismutase (SOD) and severity degree of patients with melasma. Ital. J. Dermatol. Venerol. 2022, 157, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Wang, X.; Zhao, L.; Zhou, Z.; Liu, H.; Wang, B.; Cheng, A.; Zhang, S.; Gao, Y. Novel dissolving microneedles preparation for synergistic melasma therapy: Combined effects of tranexamic acid and licorice extract. Int. J. Pharm. 2021, 600, 120406. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-H.; Chiang, W.-T.; Cheng, M.-C.; Tsai, T.-Y. Effects of Germination Black Soy Milk Fermented with Lactobacillus plantarum TWK10 on Anti-Oxidative and Anti-Melanogenesis. Appl. Sci. 2022, 12, 277. [Google Scholar] [CrossRef]
- Jeon, G.; Ro, H.-S.; Kim, G.-R.; Lee, H.-Y. Enhancement of Melanogenic Inhibitory Effects of the Leaf Skin Extracts of Aloe barbadensis Miller by the Fermentation Process. Fermentation 2022, 8, 580. [Google Scholar] [CrossRef]
- Lee, S.-H.; Eun, C.-H.; Kwon, Y.-S.; Baek, J.-H.; Kim, I.-J. Evaluation of Fermented Extracts of Aloe vera Processing Byproducts as Potential Functional Ingredients. Fermentation 2021, 7, 269. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Chung, Y.-C.; Chen, P.-Y.; Chang, Y.-C.; Chen, W.-L. Fermentation of Chenopodium formosanum Leaf Extract with Aspergillus oryzae Significantly Enhanced Its Physiological Activities. Appl. Sci. 2023, 13, 2917. [Google Scholar] [CrossRef]
- Tianyun, W.; Youmei, W.; Jue, W.; Hongwei, C.; Biao, Q.; Zheng, L. Efficacy and Safety of Topical Therapy with Botanical Products for Melasma: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Med. 2022, 8, 797890. [Google Scholar] [CrossRef]
- Wu, Y.; Choi, M.-H.; Li, J.; Yang, H.; Shin, H.-J. Mushroom Cosmetics: The Present and Future. Cosmetics 2016, 3, 22. [Google Scholar] [CrossRef]
- Badalyan, S.M.; Barkhudaryan, A.; Rapior, S. Medicinal Macrofungi as Cosmeceuticals: A Review. Int. J. Med. Mushrooms 2022, 24, 1–13. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; González-Paramás, A.M.; Ferreira, I.C.F.R. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules 2016, 21, 1372. [Google Scholar] [CrossRef] [Green Version]
- Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Tirillini, B.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S.C.; et al. Evaluation of Antioxidant, Antimicrobial and Tyrosinase Inhibitory Activities of Extracts from Tricholosporum goniospermum, an Edible Wild Mushroom. Antibiotics 2020, 9, 513. [Google Scholar] [CrossRef]
- Ishihara, A.; Ide, Y.; Bito, T.; Ube, N.; Endo, N.; Sotome, K.; Maekawa, N.; Ueno, K.; Nakagiri, A. Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus. Biosci. Biotechnol. Biochem. 2018, 82, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishihara, A.; Sugai, N.; Bito, T.; Ube, N.; Ueno, K.; Okuda, Y.; Fukushima-Sakuno, E. Isolation of 6-hydroxy-L-tryptophan from the fruiting body of Lyophyllum decastes for use as a tyrosinase inhibitor. Biosci. Biotechnol. Biochem. 2019, 83, 1800–1806. [Google Scholar] [CrossRef]
- Pavic, A.; Ilic-Tomic, T.; Glamočlija, J. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model. J. Fungi 2021, 7, 834. [Google Scholar] [CrossRef]
- Im, K.H.; Baek, S.A.; Choi, J.; Lee, T.S. Antioxidant, Anti-Melanogenic and Anti-Wrinkle Effects of Phellinus vaninii. Mycobiology 2019, 47, 494–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razak, D.L.A.; Fadzil, N.H.M.; Jamaluddin, A.; Rashid, N.Y.A.; Sani, N.A.; Manan, M.A. Effects of different extracting conditions on anti-tyrosinase and antioxidant activities of Schizophyllum commune fruit bodies. Biocatal. Agric. Biotechnol. 2019, 19, 101116. [Google Scholar] [CrossRef]
- Abd Razak, D.L.; Jamaluddin, A.; Abd Rashid, N.Y.; Sani, N.A.; Abdul Manan, M. Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity. J. Multidiscip. Res. 2020, 3, 329–342. [Google Scholar] [CrossRef]
- Jeon, D.-H.; Lee, E.-H.; Park, H.-J.; Sultanov, A.; Jung, H.-Y.; Kang, I.-K.; Cho, Y.-J. Antioxidant activity and inhibitory effects of whitening and wrinkle-related enzymes of Polyozellus multiplex extracts. Food Measure. 2023, 17, 1279–1288. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, V.P. Isolation of Bioactive Compounds from Fruit Body of Lentinula edodes (Berk.) Pegler and In Silico Approach using Tyrosinase Target Protein Involved in Melanin Production. Indian J. Pharm. Sci. 2022, 84, 1026–1040. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Jakovljević, D.; Todorović, N.; Wan-Mohtar, W.A.A.Q.I.; Nikšić, M. Ganoderma lucidum as a cosmeceutical: Antiradical potential and inhibitory effect on hyperpigmentation and skin extracellular matrix degradation enzymes. Arch. Biol. Sci. 2019, 71, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Saad, H.M.; Sim, K.S.; Tan, Y.S. Antimelanogenesis and Anti-Inflammatory Activity of Selected Culinary-Medicinal Mushrooms. Int. J. Med. Mushrooms 2018, 20, 141–153. [Google Scholar] [CrossRef]
- Lee, E.J.; Cha, H.J. Inonotus obliquus Extract as An Inhibitor of α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells. Cosmetics 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Sangthong, S.; Pintathong, P.; Pongsua, P.; Jirarat, A.; Chaiwut, P. Polysaccharides from Volvariella volvacea Mushroom: Extraction, Biological Activities and Cosmetic Efficacy. J. Fungi 2022, 8, 572. [Google Scholar] [CrossRef] [PubMed]
- Pintathong, P.; Chomnunti, P.; Sangthong, S.; Jirarat, A.; Chaiwut, P. The Feasibility of Utilizing Cultured Cordyceps militaris Residues in Cosmetics: Biological Activity Assessment of Their Crude Extracts. J. Fungi 2021, 7, 973. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Cheng, K.-C.; Wang, H.-T.; Hsieh, C.-W.; Lai, Y.-J. Extracts of Antrodia cinnamomea mycelium as a highly potent tyrosinase inhibitor. J. Cosmet. Dermatol. 2020, 20, 2341–2349. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Cao, H.; Cui, X.; Guo, H.; Zheng, W.; Zhong, X.; Zhang, Y.; Han, C. Comparing the Cosmetic Effects of Liquid-Fermented Culture of Some Medicinal Mushrooms Including Antioxidant, Moisturizing, and Whitening Activities. Int. J. Med. Mushrooms 2020, 22, 693–703. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chen, Y.-F.; Cheng, M.-J.; Wu, M.-D.; Chen, Y.-L.; Chang, H.-S. Investigations into Chemical Components from Monascus purpureus with Photoprotective and Anti-Melanogenic Activities. J. Fungi 2021, 7, 619. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Grabowska, K.; Apola, A.; Kryczyk-Poprawa, A.; Muszyńska, B. Mycelial culture extracts of selected wood-decay mushrooms as a source of skin-protecting factors. Biotechnol. Lett. 2021, 43, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Zerva, A.; Tsafantakis, N.; Topakas, E. Evaluation of Basidiomycetes Wild Strains Grown in Agro-Industrial Residues for Their Anti-Tyrosinase and Antioxidant Potential and for the Production of Biocatalysts. Fermentation 2021, 7, 19. [Google Scholar] [CrossRef]
- Georgousaki, K.; González-Menéndez, V.; Tormo, J.R.; Tsafantakis, N.; Mackenzie, T.A.; Martín, J.; Gumeni, S.; Trougakos, I.P.; Reyes, F.; Fokialakis, N.; et al. Comoclathrin, a novel potent skin-whitening agent produced by endophytic Comoclathris strains associated with Andalusia desert plants. Sci. Rep. 2022, 12, 1649. [Google Scholar] [CrossRef]
- Chisvert, A.; Benedé, J.L.; Salvador, A. Tanning and Whitening Agents in Cosmetics: Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products, 2nd ed.; Salvador, A., Chisvert, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 6; pp. 107–121. [Google Scholar] [CrossRef]
- Ludek, S.; Wawrzyńczak, A.; Nowak, I.; Feliczak-Guzik, A. Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. Cosmetics 2022, 9, 129. [Google Scholar] [CrossRef]
- Lee, K.B.; Choi, J.; Ahn, S.K.; Na, J.-K.; Shrestha, K.K.; Nguon, S.; Park, S.U.; Choi, S.; Kim, J.K. Quantification of Arbutin in Plant Extracts by Stable Isotope Dilution Gas Chromatography-Mass Spectrometry. Chromatographia 2018, 81, 533–538. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Wójciak, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Hoian, U.; Klimczak, K.; Szczepanek, D.; Sowa, I. Evaluation of the Antioxidant, Cytoprotective and Antityrosinase Effects of Schisandra chinensis Extracts and Their Applicability in Skin Care Product. Molecules 2022, 27, 8877. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Kim, J.K.; Kim, J.; Jung, S.-H.; Lee, K. Characterization of Caffeoylquinic Acids from Lepisorus thunbergianus and Their Melanogenesis Inhibitory Activity. ACS Omega 2020, 5, 30946–30955. [Google Scholar] [CrossRef]
- Tlili, N.; Sarikurkcu, R.T.; Ozer, M.S.; Sarikurkcu, C. Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS) Identification of Phytochemicals and the Effects of Solvents on Phenolic Constituents, Antioxidant Capacity, Skin-Whitening and anti-Diabetic Activity of Onosma mitis. Anal. Lett. 2022, 55, 32–46. [Google Scholar] [CrossRef]
- Song, W.; Zhao, Y.-Y.; Ren, Y.-J.; Liu, L.-L.; Wei, S.-D.; Yang, H.-B. Proanthocyanidins isolated from the leaves of Photinia × fraseri block the cell cycle and induce apoptosis by inhibiting tyrosinase activity in melanoma cells. Food Funct. 2021, 12, 3978–3991. [Google Scholar] [CrossRef]
- Gao, D.; Cho, C.-W.; Kim, J.-H.; Kim, C.-T.; Jeong, W.-S.; Wang, Y.; Li, X.; Kang, J.-S. Extraction and Concentration of Waste Pueraria lobata Stems with Antioxidants and Anti-Melanogenesis Activity as a Novel Skin Whitening Agent for Natural Cosmetic Prototypes. Int. J. Mol. Sci. 2022, 23, 10352. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Głowniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use. Molecules 2020, 25, 3368. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Li, J.; Yang, F.; Yang, K.; Liu, B.; Tong, S.; Yan, J.; Chen, S. A novel high-resolution monophenolase/diphenolase/radical scavenging profiling for the rapid screening of natural whitening candidates from Peaonia lactiflora root and their mechanism study with molecular docking. J. Ethnopharmacol. 2022, 282, 114607. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Yin, B.; Zhai, H.L.; Lua, S.H.; Mi, J.Y. An effective approach to the quantitative analysis of skin-whitening agents in cosmetics with different substrates based on conventional UV-Vis determination. Anal. Methods 2019, 11, 1500–1507. [Google Scholar] [CrossRef]
- Martono, S.; Febriani, I.; Rohman, A. Application of liquid chromatography-photodiode array detector for analysis of whitening agents in cream cosmetics. J. Appl. Pharm. Sci. 2018, 8, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, F.; Sharaf El-Din, M.K.; El-Deen, A.K.; Shimizu, K. A new HPLC-DAD method for the concurrent determination of hydroquinone, hydrocortisone acetate and tretinoin in different pharmaceuticals for melasma treatment. J. Chromatogr. Sci. 2019, 57, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Maggadani, B.; Harmita, H.; Harahap, Y.; Hutabalian, H.L.N. Simultaneous identification and quantification of hydroquinone, tretinoin and betamethasone in cosmetic products by isocratic reversed phase high performance liquid chromatography. Int. J. Appl. Pharm. 2019, 11, 181–185. [Google Scholar] [CrossRef]
- Permana, B.; Tursino, M.H. Simultaneous HPLC Determination of Arbutin, Niacinamide and 3-O-Ethyl Ascorbic Acid in Whitening Cream Products in the Presence of Parabens. J. Chromatogr. Sci. 2023, 61, 241–248. [Google Scholar] [CrossRef]
- Pahade, P.; Bose, D.; Peris-Vicente, J.; Carda-Broch, S.; Durgbanshi, A. Simultaneous detection of hazardous skin whitening agents in Indian cosmetic products using a green chromatographic technique. J. Chromatogr. Open 2021, 1, 100010. [Google Scholar] [CrossRef]
- Sahib, M.N. Screening of two glucocorticoids in non-prescription skin whitening creams purchased via internet in Iraq by HPLC method. J. Appl. Pharm. Sci. 2018, 8, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Butwong, N.; Kunawong, T.; Luong, J.H.T. Simultaneous Analysis of Hydroquinone, Arbutin, and Ascorbyl Glucoside Using a Nanocomposite of Ag@AgCl Nanoparticles, Ag2S Nanoparticles, Multiwall Carbon Nanotubes, and Chitosan. Nanomaterials 2020, 10, 1583. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Y.; Fu, W.; Zhang, P.; Li, L.; Ye, C.; Yu, L.; Zhu, X.; Zhao, S. Seed-mediated growth of Au@Ag core-shell nanorods for the detection of ellagic acid in whitening cosmetics. Anal. Chim. Acta 2018, 1002, 97–104. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Q.; Feng, Y.; Ye, B.-C. A robust electrochemical sensor based on N,S-FeNi3/C for simultaneous detection of hydroquinone and arbutin in cosmetics. Microchim. Acta 2023, 190, 150. [Google Scholar] [CrossRef] [PubMed]
- Repert, S.; Matthes, S.; Rozhon, W. Quantification of Arbutin in Cosmetics, Drugs and Food Supplements by Hydrophilic-Interaction Chromatography. Molecules 2022, 27, 5673. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, D.; Xie, Z. Rapid and Specific Fluorescence Method for the Quantification of Arbutin in Cosmetics. Anal. Lett. 2022, 55, 318–326. [Google Scholar] [CrossRef]
- Khatoon, A.; Syed, J.A.; Buledi, J.A.; Shakeel, S.; Mallah, A.; Solangi, A.R.; Sirajuddin; Sherazi, S.T.H.; Shah, M.R. Bio-green fabrication of bell pepper mediated silver nanoparticles: An efficient material for electrochemical sensing of arbutin in cosmetics. J. Iran. Chem. Soc. 2022, 19, 3659–3672. [Google Scholar] [CrossRef]
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R1223-20221217 (accessed on 29 April 2023).
- Alqarni, M.H.; Alam, P.; Shakeel, F.; Foudah, A.I.; Alshehri, S. Highly Sensitive and Ecologically Sustainable Reversed-Phase HPTLC Method for the Determination of Hydroquinone in Commercial Whitening Creams. Processes 2021, 9, 1631. [Google Scholar] [CrossRef]
- Irfan, M.; Shafeeq, A.; Siddiq, U.; Bashir, F.; Ahmad, T.; Athar, M.; Butt, M.T.; Ullah, S.; Mukhtar, A.; Hussien, M.; et al. A mechanistic approach for toxicity and risk assessment of heavy metals, hydroquinone and microorganisms in cosmetic creams. J. Hazard. Mater. 2022, 433, 128806. [Google Scholar] [CrossRef]
- Arshad, M.; Sadef, Y.; Shakoor, M.B.; Naeem, M.; Bashir, F.; Ahmad, S.R.; Ali, S.; Abid, I.; Khan, N.; Alyemeni, M.N. Quantitative Estimation of the Hydroquinone, Mercury and Total Plate Count in Skin-Lightening Creams. Sustainability 2021, 13, 8786. [Google Scholar] [CrossRef]
- Chuenjitt, S.; Kongsuwan, A.; Phua, C.H.; Saichanapan, J.; Soleh, A.; Saisahas, K.; Samoson, K.; Wangchuk, S.; Promsuwan, K.; Limbut, W. A poly(neutral red)/porous graphene modified electrode for a voltammetric hydroquinone sensor. Electrochim. Acta 2022, 434, 141272. [Google Scholar] [CrossRef]
- Pato, A.H.; Balouch, A.; Alveroglu, E.; Buledi, J.A.; Lal, S.; Mal, D. A Practical Non-Enzymatic, Ultra-Sensitive Molybdenum Oxide (MoO3) Electrochemical Nanosensor for Hydroquinone. J. Electrochem. Soc. 2021, 168, 056503. [Google Scholar] [CrossRef]
- Cotchim, S.; Promsuwan, K.; Dueramae, M.; Duerama, S.; Dueraning, A.; Thavarungkul, P.; Kanatharana, P.; Limbut, W. Development and Application of an Electrochemical Sensor for Hydroquinone in Pharmaceutical Products. J. Electrochem. Soc. 2020, 167, 155528. [Google Scholar] [CrossRef]
- Soltani, H.; Pardakhty, A.; Ahmadzadeh, S. Determination of hydroquinone in food and pharmaceutical samples using a voltammetric based sensor employing NiO nanoparticle and ionic liquids. J. Mol. Liq. 2016, 219, 63–67. [Google Scholar] [CrossRef]
- de Oliveira Moreira, O.B.; de Faria, L.V.; Matos, R.C.; Enes, K.B.; Couri, M.R.C.; de Oliveira, M.A.L. Determination of hydroquinone and benzoquinone in pharmaceutical formulations: Critical considerations on quantitative analysis of easily oxidized compounds. Anal. Methods 2022, 14, 4784–4794. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, B.; Rogiers, V.; Courselle, P.; De Beer, J.O.; De Paepe, K.; Deconinck, E. Development and validation of a fast chromatographic method for screening and quantification of legal and illegal skin whitening agents. J. Pharm. Biomed. Anal. 2013, 83, 82–88. [Google Scholar] [CrossRef] [PubMed]
Chemical Substance | Chemical Structure | References |
---|---|---|
Phenolic Compounds | ||
Hydroquinone | [41,42] | |
Kojic acid | [43] | |
Ellagic acid | [44] | |
4-hydroxyanisole (mequinol) | [12] | |
Ferulic acid | [45] | |
4-n-butylresorcinol | [46,47] | |
N-acetyl-glucosamine | [48] | |
Non-phenolic compounds | ||
Azelaic acid | [49,50] | |
Retinoids / tretinoin | [51] | |
Niacinamide | [52,53] | |
Arbutin | [54,55] | |
L-ascorbic acid | [56] | |
Corticosteroids | [57] | |
Cysteamine | [58,59] | |
Methimazole | ||
Glutathione | [60] | |
Tranexamic acid | [61] |
Chemical Compounds | Origin | Suggested Mechanisms of Action | References |
---|---|---|---|
Ginsenosides (protopanaxadiol, protopanaxatriol, floralginsenoside A, ginsenoside Rd, ginsenoside Re, ginsenoside F1, ginsenoside Rg5 and Rk1) | Ginseng extracts | Suppression of tyrosinase activity | [72,73,74,75,76] |
Aloesin | Aloe extracts | Suppression of tyrosinase activity | [77,78,79] |
Liquiritin, isoliquiritin, isoliquiritigenin, glabridin | Licorice extract | Suppression of tyrosinase activity | [80,81,82] |
Hydroxytyrosol | Olive extract | Suppression of tyrosinase activity | [83] |
Gallic acid, catechin, caffeic acid, syringic acid, rutin, ferulic acid, naringin | Chestnut spike extract | Suppression of tyrosinase activity | [84] |
Hesperidin; kaempferol; apigenin | Stachys cretica subsp. Smyrnaea extract | Suppression of tyrosinase activity | [85] |
Vanillic acid, p-coumaric acid, protocatechuic acid, caffeic acid, ferulic acid, chlorogenic acid isomers | Polypodium leucotomos extract | Melanogenesis inhibition | [86,87] |
Phenolic compounds (e.g., 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol) | Juglans mandshurica fruit extract | Melanogenesis inhibition | [88] |
Cuparene, β-funebrene, barbatene | Dorema ammoniacum gum extract | Suppression of secretory functions and biosynthesis of melanocytes | [89] |
Flavones, flavanones, chalcones, stilbenes, arylobenzofurans | Mulberry (Morus alba L.) extracts | Suppression of tyrosinase activity | [90,91,92] |
Flavonoids, tannins, alkaloids, phenols, saponins, coumarins, glycosides, polysaccharides | Paper Mulberry (Broussonetia papyrifera) extracts | Suppression of tyrosinase activity | [93] |
Flavonoids, lignins, benzenoids | Seed cake of Camellia oleifera extracts | Melanogenesis inhibition | [94] |
Phenolics, flavonoids | Cuminum cyminum L. extract | Suppression of tyrosinase activity | [95] |
L-(+)-ascorbic acid 2,6-dihexadecanoate, 9-octadecenoic acid (Z) methyl ester, N-hexadecanoic acid methyl ester | Pitaya / dragon fruit (Hylocereus spp.) peels extract | Suppression of tyrosinase activity | [96] |
Anthocyanins, polyphenols, flavonoids | Rosa gallica petals extract | Suppression of matrix metalloproteinase (MMP)-1 | [97,98] |
Kaempferol 3-O-α-l-rhamnopyranosyl (1→6)-(2″,3″-O-digalloyl)-β-d-glucopyranoside, multiflorin B, 2-phenylethyl 1-O-β-d-(6′-O-galloyl)-glucopyranoside, ethyl gallate | Rosa chinensis flower extracts | Suppression of tyrosinase activity | [99] |
N,O-di-boc-hydroxylamine, L-(+)-Valinol; 4-aminobenzoic acid, DL-glutamic acid | Flower petal extracts from eight different varieties belonging to the Liliaceae family | Suppression of tyrosinase activity | [100] |
Formononetin, genistein, trans-resveratrol, piceatannol, tectoridin | Maackia amurensis branch extract | Suppression of melanin synthesis by inhibiting the expression of MITF, tyrosinase, TRP-1, and TRP-2 in B16F10 melanoma cells | [101] |
Oxygenated terpenes (e.g., neral, geranial), monoterpene hydrocarbons (e.g., D-limonene, 3-carene) | Litsea cubeba (Lour.) Pers. fruit extracts | Suppression of tyrosinase activity | [102] |
Alkaloids, flavonoids, saponins, steroids, terpenoids, phenols, oxalates, cardiac glycosides | Solanum khasianum C.B. Clarke leaves and berries extracts | Suppression of tyrosinase activity | [103] |
Phenolics, flavonoids | Garcinia atroviridis Griff. ex. T. Anderson fruit pericarp extract | Suppression of tyrosinase activity; melanogenesis inhibition | [104] |
Phenolics | Pomegranate (Punica granatum L.) peel extract | Suppression of cellular melanogenesis through tyrosinase and TRP-2 inhibitions | [105] |
Flavonoids | Artocarpus species (A. altilis, A. heterophyllus, A. integer, A. elasticus, A. rigidus) leaf, peel, and stem bark extracts | Suppression of tyrosinase activity; melanogenesis inhibition | [106] |
Phenolic acid, gallic acid, two flavonoids: myricetin and mearnsetin | Ceylon Olive (Elaeocarpus serratus) leaf extract | Antityrosinase activity, inhibition of melanin formation (in zebrafish embryos) | [107] |
Hydroxycinnamic acids, flavanones, diarylheptanoids | Alnus cordata stem bark extract | Antityrosinase activity | [108] |
(E)-3-(3,4-dimethoxyphenyl)-2-propenal, cis-3-(3,4-dimethoxyphenyl)-4-[(E)-2,4,5-trimethoxystyryl]cyclohex-1-ene, 1-feruloyloxy cinnamic acid, (1E,4E,6E)-1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one, bisdemethoxycurcumin, curcumin | Zingiber cassumunar Roxb. rhizome extracts | Antityrosinase activity | [109] |
ent-kaur-16-en-19-ol, 18-oxokauran-17-yl acetate, β-sitosterol | Annona squamosa L. leaves extracts | Suppression of the tyrosinase activity and expression of proteins associated with melanogenesis | [110] |
Phenolics, flavonoids | Extracts from: (1) the pedicels and leaves of Cotinus coggygria, (2) the pericarpium of Pistacia vera and Garcinia mangostana, (3) the aerial parts of Lamium purpureum spp. purpureum, (4) the flowers of Punica granatum, (5) the seeds of Vitis vinifera | Tyrosinase inhibition | [111] |
Phenolics | Baptisia tinctoria root extract | Tyrosinase inhibition | [112] |
Vitamin E (α-tocopherol), γ-sitosterol, neophytadiene, β-tocopherol, linolenic acid, methyl ester, phytol | Stenocarpus sinuatus leaves extract | Tyrosinase inhibition | [113] |
Flavonoids, flavonol, phenolics, anthocyanin | Ficus carica L. peel extracts | Tyrosinase inhibition | [114] |
ε-viniferin, vitisin B | Vitis amurensis root extract | Tyrosinase inhibition | [115] |
Ferulic acid | Tetragonia tetragonioides extract | Inhibition of melanin synthesis and tyrosinase expression in B16F10 cells | [45] |
p-coumaric acid, gallic acid, quinic acid, chlorogenic acid, malic acid, protocatechuic acid, rutin, quercitrin, isoquercitrin | Hypericum perforatum L., Hypericum calycinum L., Hypericum confertum Choisy extracts | Tyrosinase inhibition | [116] |
Isoflavonoids (puerarin, daidzin) | Pueraria lobata stem extracts | Inhibition of melanin production in the 3-isobutyl-1-methylxanthine-induced B16/F10 cells | [117] |
Coumarine (umbelliprenin) | Anethum graveolens, Pimpinella anisum, Ferulago campestris extracts | Modulation of melanogenesis in cultured murine Melan A cells | [118] |
Gallic acid, protocatechuic acid | Euphorbia supina Raf. extract | Reduction of tyrosinase activity and melanin content in B16F10 melanoma cells | [119] |
Phenolics (apigenin 7-glucoside, rosmarinic acid, hyperoside, hesperidin, luteolin 7-glucosid) | Onosma pulchra extracts | Tyrosinase inhibition | [120] |
Arbutin, syringin, chlorogenic acid, platycoside E, platycodin D3, baicalin, platycodin D, luteolin | Platycodon grandiflorum extract | Inhibition of tyrosinase activity and melanin production in B16F10 melanocytes | [121] |
1,3-O-dicaffeoylglycerol; tricin; 9-hydroxyoctadecadienoic acid | Sorghum bicolor extracts | Inhibition of melanin production in B16F10 melanoma cells | [122] |
Phenolics and flavonoids (chlorogenic acid, caffeic aid, kaempferol, catechin hydrate) | Hibiscus cannabinus L. leaves extract | Inhibition of tyrosinase activity and melanin production in B16F10 melanocytes | [123] |
Polyphenols, flavonoids | Paeonia suffruticosa Andrews | Tyrosinase inhibition | [124] |
Kaempferol compounds (kaempferol 3-O-[α-rhamnopyranosyl-(1→6)-β-glucopyranoside] kaempferol-3,7-O-α-L-dirhamnoside) | Camellia oleifera Abel shell extracts | Tyrosinase inhibition | [125] |
Ferulic acid | Phoenix dactylifera L. seed extract | Inhibition of melanin production in B16F10 melanoma cells | [126] |
Phenolic glycoside (gastrodin) | Grammatophyllum speciosum pseudobulb extract | Inhibition of melanin synthesis | [127] |
Flavonoids, polyphenols, glycans, reducing sugars, chlorogenic acids | Chrysanthemum morifolium Ramat extract | Tyrosinase inhibition | [128] |
Flavanones ((−)-prunin, persiconin, (+)-dihydrokaempferol, (−)-naringenin) | Prunus persica twig extract | Tyrosinase inhibition | [129] |
Vitamin C, vitamin E, phenolics, flavonoid components | Musa sapientum rejected unripe fruit extracts | Tyrosinase inhibition | [130] |
Analyzed Sample | Applied Technique | References |
---|---|---|
Ethanol extracts from Ferula assa-foetida L. | GC-MS | [179] |
Methanol extracts from Acer caesium, Centella asiatica, Matricaria chamomilla, Betula utilis, Dipterocarpus retusus, Rhododendron anthopogon, Didymocarpus albicaulis, Lygodium flexuosum, Eucalyptus citriodora, Melaleuca cajuputi, Phyllanthus reticulatus, Phyllanthus virgatus, Thalictrum foliolosum, Prismatomeris tetrandra, Aegle marmelos, Pedicularis hoffmeisteri, Solanum erianthum, Sonneratia ovata | Stable Isotope Dilution GC-MS | [180] |
Ethanol extracts from Platycodon grandiflorum | HPLC-MS | [121] |
Water extracts from fruits of Schisandra chinensis | UHPLC-MS | [181] |
Ethanol extracts from Lepisorus thunbergianus | HPLC + prep-HPLC + 1H and 13C NMR | [182] |
Methanol extracts from flowering aerial parts of Hypericum perforatum L., Hypericum calycinum L., Hypericum confertum Choisy | LC-MS/MS | [116] |
Ethyl acetate, methanol and water extracts from Onosma pulchra Riedl. | LC-ESI-MS/MS | [120,183] |
Acetone-water extracts from leaves of Photinia × fraseri | HPLC-ESI-MS | [184] |
Enriched powder extracts from stem of Pueraria lobata | MALDI-TOF-MS | [117] |
HPLC(DAD)-MS/MS | [185] | |
Methanol extracts from Vitis amurensis root | LC-Q-TOF-MS coupled with bioassay (tyrosinase inhibitory assay) and response surface methodology | [115] |
Hydroglycolic extracts from Achillea biebersteinii | HPLC-ESI-Q-TOF-MS | [186] |
Etanol, water and ethyl acetate extracts from roots of Paeonia lactiflora | HPLC-ESI-Q-TOF-MS/MS + prep-HPLC + 1H/13C NMR | [187] |
Ethanol extracts from Sorghum bicolor | UHPLC-IMS-Q-TOF MS/MS | [122] |
1,3-butanediol extracts from shell of Camellia oleifera Abel | UHPLC-Q-TOF MS/MS | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzyńczak, A. Cosmetic and Pharmaceutic Products with Selected Natural and Synthetic Substances for Melasma Treatment and Methods of Their Analysis. Cosmetics 2023, 10, 86. https://doi.org/10.3390/cosmetics10030086
Wawrzyńczak A. Cosmetic and Pharmaceutic Products with Selected Natural and Synthetic Substances for Melasma Treatment and Methods of Their Analysis. Cosmetics. 2023; 10(3):86. https://doi.org/10.3390/cosmetics10030086
Chicago/Turabian StyleWawrzyńczak, Agata. 2023. "Cosmetic and Pharmaceutic Products with Selected Natural and Synthetic Substances for Melasma Treatment and Methods of Their Analysis" Cosmetics 10, no. 3: 86. https://doi.org/10.3390/cosmetics10030086
APA StyleWawrzyńczak, A. (2023). Cosmetic and Pharmaceutic Products with Selected Natural and Synthetic Substances for Melasma Treatment and Methods of Their Analysis. Cosmetics, 10(3), 86. https://doi.org/10.3390/cosmetics10030086