Assessment of Antioxidant, Anti-Lipid Peroxidation, Antiglycation, Anti-Inflammatory and Anti-Tyrosinase Properties of Dendrobium sulcatum Lindl
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Plant Collection and Extraction
2.3. Determination of Total Phenolic Contents
2.4. Determination of Total Flavonoid Contents
2.5. Antioxidant Activities
2.5.1. Sample Preparation for Antioxidant Activities
2.5.2. DPPH Radical Scavenging Assay
2.5.3. FRAP Assay
2.5.4. ABTS Radical Scavenging Assay
2.6. Anti-Lipid Peroxidation of the Extracts Using TBARS Assay
2.7. Antiglycation of D. sulcatum Extracts Using a BSA-Fructose Assay
2.8. Anti-Inflammatory Activity of D. sulcatum Extracts
2.8.1. Macrophage Cell Culture
2.8.2. MTT Macrophage Cell Viability Assay
2.8.3. Induction of Macrophage Cells
2.8.4. NO Inhibition Assay
2.9. Anti-Tyrosinase Activity of D. sulcatum Extracts
2.10. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Total Flavonoid Contents
3.2. DPPH Radical Scavenging Activity
3.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3.4. ABTS Radical Scavenging Assay
3.5. Anti-Lipid Peroxidation of D. sulcatum Extracts Using TBARS Assay
3.6. Antiglycation of D. sulcatum Extracts Using a BSA-Fructose Assay
3.7. Anti-Inflammatory Activity of D. sulcatum Extracts
3.8. Anti-Tyrosinase Activity of D. sulcatum Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thammasiri, K. Current status of orchid production in Thailand. Acta Hortic. 2015, 1708, 25–33. [Google Scholar] [CrossRef]
- The Botanical Garden Organization. Queen Sirikit Botanic Garden. In Ueang Jampa-Nan; O.S. Printing House: Bangkok, Thailand, 2000; Volume 6, pp. 162–163. [Google Scholar]
- Xu, J.; Guan, J.; Chen, X.J.; Zhao, J.; Li, S.P. Comparison of polysaccharides from different Dendrobium using saccharide mapping. J. Pharm. Biomed. Anal. 2011, 55, 977–983. [Google Scholar] [CrossRef]
- Lam, Y.; Ng, T.B.; Yao, R.M.; Shi, J.; Xu, K.; Sze, S.C.W.; Zhang, K.Y. Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium plants. Evid.-Based Complement. Altern. Med. 2015, 2015, 841752. [Google Scholar] [CrossRef] [Green Version]
- Hadi, H.; Razali, S.N.; Awadh, A.I. A comprehensive review of the cosmeceutical benefits of Vanda species (Orchidaceae). Nat. Prod. Commun. 2015, 10, 1483–1488. [Google Scholar] [PubMed] [Green Version]
- Kanlayavattanakul, M.; Lourith, N.; Chaikul, P. Biological activity and phytochemical profiles of Dendrobium: A new source for specialty cosmetic materials. Ind. Crops Prod. 2018, 120, 61–70. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, T.; Shen, L.; Zhang, J.; Liu, L. Study on the properties of Dendrobium officinale fermentation broth as functional raw material of cosmetics. J. Cosmet. Dermatol. 2022, 21, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.Y.; Yan, M.Q.; Chen, S.H. Review of pharmacological activities of Dendrobium officinale based on traditional functions. Zhongguo Zhong Yao Za Zhi 2013, 38, 489–493. [Google Scholar] [PubMed]
- Jiaranaikulwanitch, J.; Yooin, W.; Chutiwitoonchai, N.; Thitikornpong, W.; Sritularak, B.; Rojsitthisak, P.; Vajragupta, O. Discovery of natural lead compound from Dendrobium sp. against SARS-CoV-2 infection. Pharmaceuticals 2022, 15, 620. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: A review. J. Ethnopharmacol. 2021, 270, 113851. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Ding, X.; Liu, J.; Wang, X.; Hu, L.; Liu, M.; Zhang, C. Anti-inflammatory octahydroindolizine alkaloid enantiomers from Dendrobium crepidatum. Bioorg. Chem. 2020, 100, 103809. [Google Scholar] [CrossRef]
- Li, J.T.; Yin, B.L.; Liu, Y.; Wang, L.Q.; Chen, Y.G. Mono-aromatic constituents of Dendrobium longicornu. Chem. Nat. Compd. 2009, 45, 234–236. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.W.; Gao, H.; Han, H.Y.; Wang, N.L.; Wu, H.M.; Yao, X.S.; Wang, Z. Nine new sesquiterpenes from Dendrobium nobile. Helv. Chim. Acta 2007, 90, 2386–2394. [Google Scholar] [CrossRef]
- Zheng, W.P.; Tang, Y.P.; Zhi, F.; Lou, F.C. Dihydroayapin, a new coumarin compound from Dendrobium densiflorum. J. Asian Nat. Prod. Res. 2000, 2, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, J.K.; Wang, J.; Wang, N.L.; Kurihara, H.; Kitanaka, S.; Yao, X.S. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. J. Nat. Prod. 2007, 70, 24–28. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Jiang, J.; Zhang, Y.; Yin, B. Dendronone, a new phenanthrenequinone from Dendrobium cariniferum. Food Chem. 2008, 111, 11–12. [Google Scholar] [CrossRef]
- Majumder, P.L.; Guha, S.; Sen, S. Bibenzyl derivatives from the orchid Dendrobium amoenum. Phytochemistry 1999, 52, 1365–1369. [Google Scholar] [CrossRef]
- Lu, H.; Yang, K.; Zhan, L.; Lu, T.; Chen, X.; Cai, X.; Zhou, C.; Li, H.; Qian, L.; Lv, G.; et al. Optimization of flavonoid extraction in Dendrobium officinale leaves and their inhibitory effects on tyrosinase activity. Int. J. Anal. Chem. 2019, 2019, 7849198. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Ku, A.F.; Tseng, Y.Y.; Yang, W.B.; Fang, J.M.; Wong, C.H. 6,8-Di-C-glycosyl flavonoids from Dendrobium huoshanense. J. Nat. Prod. 2010, 73, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Margraf, T.; Karnopp, A.R.; Rosso, N.D.; Granato, D. Comparison between Folin-Ciocalteu and prussian blue assays to estimate the total phenolic content of juices and teas using 96-well microplates. J. Food Sci. 2015, 80, 2397–2403. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid.-Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef] [Green Version]
- Wongwad, E.; Pingyod, C.; Saesong, T.; Waranuch, N.; Wisuitiprot, W.; Sritularak, B.; Temkitthawon, P.; Ingkaninan, K. Assessment of the bioactive components, antioxidant, antiglycation and anti-inflammatory properties of Aquilaria crassna Pierre ex Lecomte leaves. Ind. Crops Prod. 2019, 138, 111448. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, R.B.; Ksouri, W.M.; Cluzet, S.; Krisa, S.; Richard, T.; Ksouri, R. Assessment of antioxidant activity and neuroprotective capacity on PC12 cell line of Frankenia thymifolia and related phenolic LC-MS/MS identification. Evid.-Based Complement. Altern. Med. 2016, 2016, 2843463. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Saesong, T.; Allard, P.M.; Queiroz, E.F.; Marcourt, L.; Nuengchamnong, N.; Temkitthawon, P.; Khorana, N.; Wolfender, J.L.; Ingkaninan, K. Discovery of lipid peroxidation inhibitors from Bacopa species prioritized through multivariate data analysis and multi-informative molecular networking. Molecules 2019, 24, 2989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limpeanchob, N.; Jaipan, S.; Rattanakaruna, S.; Phrompittayarat, W.; Ingkaninan, K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol. 2008, 120, 112–117. [Google Scholar] [CrossRef]
- Sun, J.; Liu, W.; Ma, H.; Marais, J.P.J.; Khoo, C.; Dain, J.A.; Rowley, D.C.; Seeram, N.P. Effect of cranberry (Vaccinium macrocarpon) oligosaccharides on the formation of advanced glycation end-products. J. Berry Res. 2016, 6, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Cheenpracha, S.; Park, E.J.; Rostama, B.; Pezzuto, J.M.; Chang, L.C. Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide, Epimuqubilin A. Mar. Drugs 2010, 8, 429–437. [Google Scholar] [CrossRef]
- Wisuitiprot, V.; Ingkaninan, K.; Chakkavittumrong, P.; Wisuitiprot, W.; Neungchamnong, N.; Chantakul, R.; Waranuch, N. Effects of Acanthus ebracteatus Vahl. extract and verbascoside on human dermal papilla and murine macrophage. Sci. Rep. 2022, 12, 1491. [Google Scholar] [CrossRef]
- Rasmussen, C.; Thomas-Virnig, C.; Allen-Hoffmann, B.L. Classical human epidermal keratinocyte cell culture. Methods Mol. Biol. 2013, 945, 161–175. [Google Scholar] [CrossRef]
- Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Tengamnuay, P.; Pengrungruangwong, K.; Pheansri, I.; Likhitwitayawuid, K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int. J. Cosmet. Sci. 2006, 284, 269–276. [Google Scholar] [CrossRef]
- Srisuksomwong, P.; Kaenhin, L.; Mungmai, L. Collagenase and tyrosinase inhibitory activities and stability of facial cream formulation containing cashew leaf extract. Cosmetics 2023, 10, 17. [Google Scholar] [CrossRef]
- Pengdee, C.; Sritularak, B.; Putalun, W. Optimization of microwave-assisted extraction of phenolic compounds in Dendrobium formosum Roxb. ex Lindl. and glucose uptake activity. S. Afr. J. Bot. 2020, 132, 423–431. [Google Scholar] [CrossRef]
- Zhu, A.L.; Hao, J.W.; Liu, L.; Wang, Q.; Chen, N.D.; Wang, G.L.; Liu, X.Q.; Li, Q.; Xu, H.M.; Yang, W.H. Simultaneous quantification of 11 phenolic compounds and consistency evaluation in four Dendrobium species used as ingredients of the traditional Chinese medicine shihu. Front. Nutr. 2021, 8, 771078. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A. The leaf flavonoids of the orchidaceae. Phytochemistry 1979, 18, 803–813. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, Y.H. Traditional uses and pharmacologically active constituents of Dendrobium plants for dermatological disorders: A review. Nat. Prod. Bioprospect. 2021, 11, 465–487. [Google Scholar] [CrossRef] [PubMed]
- Natta, S.; Mondol, M.S.A.; Pal, K.; Mandal, S.; Sahana, N.; Pal, R.; Pandit, G.K.; Alam, B.K.; Das, S.S.; Biswas, S.S.; et al. Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal orchid species from north-eastern Himalayan region of India. S. Afr. J. Bot. 2020, 73, 10414. [Google Scholar] [CrossRef]
- Paudel, M.R.; Chand, M.B.; Pant, B.; Pant, B. Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules 2019, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Athipornchai, A.; Jullapo, N. Tyrosinase inhibitory and antioxidant activities of Orchid (Dendrobium spp.). S. Afr. J. Bot. 2018, 119, 188–192. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Abu, F.; Mat Taib, C.N.; Mohd Moklas, M.A.; Mohd Akhir, S. Antioxidant properties of crude extract, partition extract, and fermented medium of Dendrobium sabin flower. Evid.-Based Complement. Altern. Med. 2017, 2017, 2907219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jo, K.; Byun, B.S.; Han, S.H.; Yu, K.W.; Suh, H.J.; Hong, K.B. Chemical and biological properties of puffed Dendrobium officinale extracts: Evaluation of antioxidant and anti-fatigue activities. J. Funct. Foods 2020, 73, 104144. [Google Scholar] [CrossRef]
- Yüksel, A.K.; Dikici, E.; Yüksel, M.; Işik, M.; Tozoğlu, F.; Köksal, E. Phytochemicals analysis and some bioactive properties of Erica manipuliflora Salisb. (EMS); antibacterial, antiradical and anti-lipid peroxidation. Iran. J. Pharm. Res. 2021, 20, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.; Khan, M.R.; Saeed, N. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves. BMC Complement. Altern. Med. 2013, 13, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, P.U.; Selvi, S.; Devipriya, D.; Murugan, S.; Suja, S. Antitumor and antimicrobial activities and inhibition of in-vitro lipid peroxidation by Dendrobium nobile. Afr. J. Biotechnol. 2009, 8, 2289–2293. [Google Scholar]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Friedman, E.A. Evolving pandemic diabetic nephropathy. Rambam Maimonides Med. J. 2010, 1, e0005. [Google Scholar] [CrossRef] [Green Version]
- Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Mou, Z.; Zhao, Y.; Ye, F.; Shi, Y.; Kennelly, E.J.; Chen, S.; Zhao, D. Identification, biological activities and biosynthetic pathway of Dendrobium alkaloids. Front. Pharmacol. 2021, 12, 605994. [Google Scholar] [CrossRef]
- Hwang, J.S.; Lee, S.A.; Hong, S.S.; Han, X.H.; Lee, C.; Kang, S.J.; Lee, D.; Kim, Y.; Hong, J.T.; Lee, M.K.; et al. Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorg. Med. Chem. Lett. 2010, 20, 3785–3787. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.; Francisco, V.; Perez-Vizcaino, F. Modulation of nitric oxide by flavonoids. Food Funct. 2014, 5, 1653–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.Q.; Shen, X.F.; Hu, B.Y.; Lin, Y.; Igbe, I.; Zhang, C.G.; Zhang, G.L.; Yuan, X.H.; Wang, F. Nitric oxide production inhibition and mechanism of phenanthrene analogs in lipopolysaccharide-stimulated RAW264.7 macrophages. Bioorg. Med. Chem. Lett. 2016, 26, 2521–2525. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC (mg GAE/g Extract) | TFC (mg QE/g Extract) | DPPH (IC50, µg/mL) | FRAP (mmol Fe2+/g Extract) | ABTS (mg TE/g Extract) |
---|---|---|---|---|---|
Stem extract | 46.41 ± 2.22 b | 15.70 ± 1.11 a | 353.43 ± 22.73 c | 0.50 ± 0.04 c | 65.76 ± 3.33 b |
Leaf extract | 43.85 ± 3.85 b | 22.45 ± 2.17 c | 252.17 ± 20.61 b | 0.35 ± 0.05 b | 116.99 ± 3.53 c |
Flower extract | 22.05 ± 2.22 a | 16.03 ± 0.31 b | 797.57 ± 12.16 d | 0.12 ± 0.02 a | 40.73 ± 2.68 a |
Trolox | - | - | 4.44 ± 0.18 a | 10.40 ± 0.30 d | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungsang, T.; Srivilai, J.; Rakasawapokin, P.; Rakasawapokin, P.; Mungmai, L.; Saesue, K.; Aoonboontum, P.; Plukham, N.; Siriwipanan, P.; Chaichanathawikit, P.; et al. Assessment of Antioxidant, Anti-Lipid Peroxidation, Antiglycation, Anti-Inflammatory and Anti-Tyrosinase Properties of Dendrobium sulcatum Lindl. Cosmetics 2023, 10, 43. https://doi.org/10.3390/cosmetics10020043
Rungsang T, Srivilai J, Rakasawapokin P, Rakasawapokin P, Mungmai L, Saesue K, Aoonboontum P, Plukham N, Siriwipanan P, Chaichanathawikit P, et al. Assessment of Antioxidant, Anti-Lipid Peroxidation, Antiglycation, Anti-Inflammatory and Anti-Tyrosinase Properties of Dendrobium sulcatum Lindl. Cosmetics. 2023; 10(2):43. https://doi.org/10.3390/cosmetics10020043
Chicago/Turabian StyleRungsang, Tammanoon, Jukkarin Srivilai, Pawarit Rakasawapokin, Patpitcha Rakasawapokin, Lapatrada Mungmai, Krittanon Saesue, Patteera Aoonboontum, Noppanon Plukham, Pandaree Siriwipanan, Pimchanok Chaichanathawikit, and et al. 2023. "Assessment of Antioxidant, Anti-Lipid Peroxidation, Antiglycation, Anti-Inflammatory and Anti-Tyrosinase Properties of Dendrobium sulcatum Lindl" Cosmetics 10, no. 2: 43. https://doi.org/10.3390/cosmetics10020043
APA StyleRungsang, T., Srivilai, J., Rakasawapokin, P., Rakasawapokin, P., Mungmai, L., Saesue, K., Aoonboontum, P., Plukham, N., Siriwipanan, P., Chaichanathawikit, P., Khorana, N., & Wongwad, E. (2023). Assessment of Antioxidant, Anti-Lipid Peroxidation, Antiglycation, Anti-Inflammatory and Anti-Tyrosinase Properties of Dendrobium sulcatum Lindl. Cosmetics, 10(2), 43. https://doi.org/10.3390/cosmetics10020043