Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications
Abstract
:1. Introduction
2. Methods
3. Bioactive Compounds: Dermacosmetic Potential
3.1. Chlorogenic Acids
3.2. Caffeine
4. Coffee By-Products: Chemical Composition, Extraction Methods and Safety
4.1. Coffee Silverskin
4.2. Spent Coffee Grounds
4.3. Bioactives Extraction
4.4. Safety
5. Coffee By-Products in Cosmetic Formulations
5.1. Vehicle and Emollient
5.2. Antioxidant and Anti-Aging
5.3. Photoprotector
5.4. Anti-Cellulite
6. Further Applications
6.1. Acne
6.2. Wound Healing
6.3. Nutraceuticals
7. Commercially Available Products
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CS | Coffee silverskin |
SCG | Spent coffee grounds |
UV ROS | Ultraviolet Reactive oxygen species |
MMPs | Matrix metalloproteinases |
CGA | Chlorogenic acids |
CQA | Caffeoylquinic acids |
FQA | Feruloylquinic acids |
diCQA | Dicaffeoylquinic acids |
ABTS●+ | 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid |
DPPH● | 2,2-diphenyl-1-picrylhydrazyl |
HDFs UVB UVA | Human dermal fibroblasts Ultraviolet B Ultraviolet A |
COX-2 | Cyclooxygenase-2 |
iNOS | Inducible nitric oxide synthase |
LPS | Lipopolysaccharide |
cAMP | Cyclic adenosine monophosphate |
DHT | Dihydrotestosterone |
FRAP | Ferric reducing antioxidant power |
SPF | Sun protection factor |
OTA | Ochratoxin A |
HMF | 5-hydroxymethyl furfural |
MTT | 3-4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide |
LDH | Lactacte dehydrogenase |
TEWL | Transepidermal water loss |
RHE | Reconstituted human epidermis |
GCO | Green coffee oil |
W/O | Water-in-oil |
NLC | Nanostructured lipid carriers |
O/W | Oil-in-water |
References
- Wu, H.; Gu, J.; Bk, A.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Biosci. 2022, 46, 101373. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Clifford, M.N.; Lean, M.E.; Ashihara, H.; Crozier, A. Coffee: Biochemistry and potential impact on health. Food Funct. 2014, 5, 1695–1717. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Herman, A.P. Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol. Physiol. 2013, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Saewan, N. Effect of coffee berry extract on anti-aging for skin and hair—In vitro approach. Cosmetics 2022, 9, 66. [Google Scholar] [CrossRef]
- Alves, R.C.; Rodrigues, F.; Nunes, M.A.; Vinha, A.F.; Oliveira, M.B.P.P. State of the art in coffee processing by-products. In Handbook of Coffee Processing by-Products, 1st ed.; Galanakis, C.M., Ed.; Academic Press: London, UK, 2017; pp. 1–26. [Google Scholar]
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Donner, M.; Gohier, R.; de Vries, H. A new circular business model typology for creating value from agro-waste. Sci. Total Environ. 2020, 716, 137065. [Google Scholar] [CrossRef]
- Dayan, N. Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development, 3rd ed.; William Andrew Inc.: New York, NY, USA, 2008; pp. 206–238, 294–298. [Google Scholar]
- Lee, K.H.; Do, H.K.; Kim, D.Y.; Kim, W. Impact of chlorogenic acid on modulation of significant genes in dermal fibroblasts and epidermal keratinocytes. Biochem. Biophys. Res. Commun. 2021, 583, 22–28. [Google Scholar] [CrossRef]
- Santos, É.M.D.; Macedo, L.M.D.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.P.; Mazzola, P.G. Coffee by-products in topical formulations: A review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Bessada, S. Coffee Silverskin: A review on potential cosmetic applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.H.; Bahuguna, A.; Kim, H.H.; Kim, D.I.; Kim, H.J.; Yu, J.M.; Jung, H.G.; Jang, J.Y.; Kwak, J.H.; Park, G.H.; et al. Potential effect of compounds isolated from Coffea arabica against UV-B induced skin damage by protecting fibroblast cells. J. Photochem. Photobiol. B 2017, 174, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Xue, N.; Liu, Y.; Jin, J.; Ji, M.; Chen, X. Chlorogenic acid prevents UVA-induced skin photoaging through regulating collagen metabolism and apoptosis in human dermal fibroblasts. Int. J. Mol. Sci. 2022, 23, 6941. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.W.; Piao, M.J.; Kim, K.C.; Yao, C.W.; Zheng, J.; Kim, S.M.; Hyun, C.L.; Ahn, Y.S.; Hyun, J.W. The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. Biomol. Ther. 2014, 22, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Kim, Y.W.; Park, Y.; Lee, H.J.; Kim, K.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 2014, 63, 81–90. [Google Scholar] [CrossRef]
- Rodrigues, F.; Palmeira-de-Oliveira, A.; das Neves, J.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B. Coffee silverskin: A possible valuable cosmetic ingredient. Pharm. Biol. 2015, 53, 386–394. [Google Scholar] [CrossRef]
- Toschi, T.G.; Cardenia, V.; Bonaga, G.; Mandrioli, M.; Rodriguez-Estrada, M.T. Coffee silverskin: Characterization, possible uses, and safety aspects. J. Agric. Food Chem. 2014, 62, 10836–10844. [Google Scholar] [CrossRef]
- Hui, A.M.; Jagdeo, J.R.; Brody, N.; Rupani, R. Cutaneous applications of caffeine. In Cosmeceuticals and Active Cosmetics, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2016; pp. 19–31. [Google Scholar]
- Eun Lee, K.; Bharadwaj, S.; Yadava, U.; Gu Kang, S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J. Enzyme Inhib. Med. Chem. 2019, 34, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; de Oliveira, C.A.; Sarruf, F.D.; Parise-Filho, R.; Mauricio, E.; de Almeida, T.S.; Velasco, M.V.R.; Baby, A.R. Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef]
- Lu, Y.P.; Lou, Y.R.; Xie, J.G.; Peng, Q.Y.; Zhou, S.; Lin, Y.; Shih, W.J.; Conney, A.H. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 2007, 28, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Conney, A.H.; Lu, Y.P.; Lou, Y.R.; Kawasumi, M.; Nghiem, P. Mechanisms of caffeine-induced inhibition of UVB carcinogenesis. Front. Oncol. 2013, 3, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriondo-DeHond, A.; Iriondo-DeHond, M.; Del Castillo, M.D. Applications of compounds from coffee processing by-products. Biomolecules 2020, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, R.C.; Esposito, F.; Napolitano, A.; Ritieni, A.; Fogliano, V. Characterization of a new potential functional ingredient: Coffee silverskin. J. Agric. Food Chem. 2004, 52, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Lorbeer, L.; Schwarz, S.; Franke, H.; Lachenmeier, D.W. Toxicological assessment of roasted coffee silver skin (testa of coffea sp.) as novel food ingredient. Molecules 2022, 27, 6839. [Google Scholar] [CrossRef]
- Ribeiro, H.; Marto, J.; Raposo, S.; Agapito, M.; Isaac, V.; Chiari, B.G.; Lisboa, P.F.; Paiva, A.; Barreiros, S.; Simões, P. From coffee industry waste materials to skin-friendly products with improved skin fat levels. Eur. J. Lipid. Sci. Technol. 2013, 115, 330–336. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioproc. Tech. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Cornejo, F.S.; Fernandez-Gomez, B.; Vera, G.; Guisantes-Batan, E.; Alonso, S.G.; Andres, M.I.S.; Sanchez-Fortun, S.; Lopez-Gomez, L.; Uranga, J.A.; et al. Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds. Nutrients 2019, 11, 1411. [Google Scholar] [CrossRef] [Green Version]
- Sousa, G.D.; De Souza Dantas, I.M.F.; De Santana, D.P.; Leal, L.B. New oils for cosmetic O/W emulsions: In vitro/in vivo evaluation. Cosmetics 2018, 5, 6. [Google Scholar] [CrossRef]
- Marijan, M.; Mitar, A.; Jakupovic, L.; Prlic Kardum, J.; Zovko Koncic, M. Optimization of bioactive phenolics extraction and cosmeceutical activity of eco-friendly polypropylene-glycol-lactic-acid-based extracts of olive leaf. Molecules 2022, 27, 529. [Google Scholar] [CrossRef] [PubMed]
- Bondam, A.F.; Diolinda da Silveira, D.; Pozzada dos Santos, J.; Hoffmann, J.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pawlowski, S.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.; Velizarov, S. Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Sci. Total Environ. 2019, 652, 40–47. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 2012, 135, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- Ramon-Goncalves, M.; Gomez-Mejia, E.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Madrid, Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019, 96, 15–24. [Google Scholar] [CrossRef]
- Andrade, K.S.; Gonçalvez, R.T.; Maraschin, M.; Ribeiro-do-Valle, R.M.; Martínez, J.; Ferreira, S.R. Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta 2012, 88, 544–552. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef]
- Ranic, M.; Nikolic, M.; Pavlovic, M.; Buntic, A.; Siler-Marinkovic, S.; Dimitrijevic-Brankovic, S. Optimization of microwave-assisted extraction of natural antioxidants from spent espresso coffee grounds by response surface methodology. J. Clean. Prod. 2014, 80, 69–79. [Google Scholar] [CrossRef]
- Pettinato, M.; Casazza, A.A.; Ferrari, P.F.; Palombo, D.; Perego, P. Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. Food Bioprod. Process. 2019, 114, 31–42. [Google Scholar] [CrossRef]
- Getachew, A.T.; Chun, B.S. Influence of pretreatment and modifiers on subcritical water liquefaction of spent coffee grounds: A green waste valorization approach. J. Clean. Prod. 2017, 142, 3719–3727. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crops Prod. 2015, 76, 946–954. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pereira, C.; Pimentel, F.B.; Alves, R.C.; Ferreira, M.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Are coffee silverskin extracts safe for topical use? An in vitro and in vivo approach. Ind. Crops Prod. 2015, 63, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Antignac, E.; Nohynek, G.J.; Re, T.; Clouzeau, J.; Toutain, H. Safety of botanical ingredients in personal care products/cosmetics. Food Chem. Toxicol. 2011, 49, 324–341. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive by-products: Challenge application in cosmetic industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Rodrigues, F.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B. Cytotoxicity evaluation of a new ingredient with cosmetic proposals incorporated into a hand cream. Toxicol. Lett. 2015, 238, S354. [Google Scholar] [CrossRef]
- Marto, J.; Gouveia, L.F.; Chiari, B.G.; Paiva, A.; Isaac, V.; Pinto, P.; Simões, P.; Almeida, A.J.; Ribeiro, H.M. The green generation of sunscreens: Using coffee industrial sub-products. Ind. Crops Prod. 2016, 80, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, H.M.; Allegro, M.; Marto, J.; Pedras, B.; Oliveira, N.G.; Paiva, A.; Barreiros, S.; Gonçalves, L.M.; Simões, P. Converting spent coffee grounds into bioactive extracts with potential skin antiaging and lightening effects. ACS Sustain. Chem. Eng. 2018, 6, 6289–6295. [Google Scholar] [CrossRef]
- Draelos, Z.D.; Thaman, L.A. Cosmetic Formulation of Skin Care Products; Taylor & Francis: New York, NY, USA, 2006; pp. 118, 251–252, 273–276. [Google Scholar]
- Rodrigues, F.; Matias, R.; Ferreira, M.; Amaral, M.H.; Oliveira, M.B. In vitro and in vivo comparative study of cosmetic ingredients Coffee silverskin and hyaluronic acid. Exp. Dermatol. 2016, 25, 572–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furusawa, M.; Narita, Y.; Iwai, K.; Fukunaga, T.; Nakagiri, O. Inhibitory effect of a hot water extract of coffee “silverskin” on hyaluronidase. Biosci. Biotechnol. Biochem. 2011, 75, 1205–1207. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B. Exploring the antioxidant potentiality of two food by-products into a topical cream: Stability, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2016, 42, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Arias, S.; Zapata-Valencia, S.; Cano-Agudelo, Y.; Osorio-Arias, J.; Vega-Castro, O. Evaluation of the antioxidant and physical properties of an exfoliating cream developed from coffee grounds. J. Food Proc. Eng. 2019, 43, e13067. [Google Scholar] [CrossRef]
- Wagemaker, T.A.L.; Carvalho, C.R.L.; Maia, N.B.; Baggio, S.R.; Guerreiro Filho, O. Sun protection factor, content and composition of lipid fraction of green coffee beans. Ind. Crops Prod. 2011, 33, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Chiari, B.G.; Trovatti, E.; Pecoraro, É.; Corrêa, M.A.; Cicarelli, R.M.B.; Ribeiro, S.J.L.; Isaac, V.L.B. Synergistic effect of green coffee oil and synthetic sunscreen for health care application. Ind Crops Prod. 2014, 52, 389–393. [Google Scholar] [CrossRef]
- Rodrigues, F.; Alves, A.C.; Nunes, C.; Sarmento, B.; Amaral, M.H.; Reis, S.; Oliveira, M.B. Permeation of topically applied caffeine from a food by-product in cosmetic formulations: Is nanoscale in vitro approach an option? Int. J. Pharm. 2016, 513, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; He, W.; Li, X.; Ji, X.; Liu, J. Anti-acne vulgaris effects of chlorogenic acid by anti-inflammatory activity and lipogenesis inhibition. Exp. Dermatol. 2021, 30, 865–871. [Google Scholar] [CrossRef]
- Affonso, R.C.; Voytena, A.P.; Fanan, S.; Pitz, H.; Coelho, D.S.; Horstmann, A.L.; Pereira, A.; Uarrota, V.G.; Hillmann, M.C.; Varela, L.A.; et al. Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med. Cell Longev. 2016, 2016, 1923754. [Google Scholar] [CrossRef] [Green Version]
- Fukagawa, S.; Haramizu, S.; Sasaoka, S.; Yasuda, Y.; Tsujimura, H.; Murase, T. Coffee polyphenols extracted from green coffee beans improve skin properties and microcirculatory function. Biosci. Biotechnol. Biochem. 2017, 81, 1814–1822. [Google Scholar] [CrossRef]
- Cosmetics & Toiletries. Available online: https://www.cosmeticsandtoiletries.com/formulas-products/skin-care/news/21869825/kaffe-bueno-brews-up-skin-care-benefits-with-recycled-coffee-oil (accessed on 27 October 2022).
- Cosmetics & Toiletries. Available online: https://www.cosmeticsandtoiletries.com/formulas-products/anti-aging-face/news/21843445/givaudan-active-beauty-koffeeup-givaudans-upcycled-coffee-oil-for-well-aging (accessed on 27 October 2022).
- Cosmetics & Toiletries. Available online: https://www.cosmeticsandtoiletries.com/roundups/2022/april/news/22159451/mibelle-ag-biochemistry-slvrcoffee-by-mibelle-biochemistry (accessed on 27 October 2022).
Chlorogenic Acids Dermacosmetic Activities | |
---|---|
Antioxidant and anti-aging | Ability to scavenge free radicals [14] Xanthine oxidase inhibition [15] Down-regulation of MMP-1, MMP-3, and MMP-9 [15,16] Up-regulation of procollagen synthesis [15,16] |
Photoprotective and anti-cancer | UV-B absorption [15,17] Protection against UV-induced DNA damage [16,17] |
Anti-inflammatory | Downregulation of pro-inflammatory molecules [18] iNOS and COX-2 inhibition [18] |
Antibacterial | Growth inhibition of Klebsiella pneumoniae, S. epidermidis, and S. aureus [19] |
Caffeine Dermacosmetic Activities | |
---|---|
Thermogenic and anti-cellulite | Lipolytic action through inhibition of phosphodiesterase activity in adipocytes [21] |
Antioxidant and anti-aging | Inhibition of lipid peroxidation induced by ROS [7] Collagenase and elastase inhibition [22] |
Photoprotective | SPF enhancer [23] Inhibit the development of UVB-induced skin cancer [25] Induce apoptosis in UV-damaged keratinocytes [25] |
Hair growth stimulant | Increase blood circulation and inhibition of 5 α-reductase [21] |
By-Product | Method | Optimal Experimental Conditions | Reference |
---|---|---|---|
Coffee silverskin | Solid–liquid extraction | Ethanol:water (50:50) 40 °C for 60 min Constant stirring at 600 rpm | [36] |
Coffee silverskin | Subcritical water extraction | 1 g/50 mL water 1.0–5.3 Mpa 180–270 °C for 17–42 min | [38] |
Coffee silverskin | Pulsed electric field extraction | 12 kV and 100 A Ethanol:water (62.67:37.33) Number of pulses: 1000 PEF strength: 1.37 kV/cm 75 min | [39] |
Coffee silverskin | Ultrasound-assisted extraction | 10 g/50 mL solvent Ethanol:water (70:30) 40 kHz for 120 min at 20 °C | [40] |
Spent coffee grounds | Solid–liquid extraction | 0.3 g/25 mL solvent Ethanol:water (25:75) Constant stirring for 15 min at 60 °C | [41] |
Spent coffee grounds | Ultrasound-assisted extraction | 7 g/210 mL ethanol 55 kHz for 2 h at room temperature | [42] |
Spent coffee grounds | Ultrasound-assisted extraction | 10 g/50 mL solvent Ethanol:water (70:30) 40 kHz for 120 min at 20 °C | [43] |
Spent coffee grounds | Supercritical fluid extraction | CO2 100 bar 323.15 K | [42] |
Spent coffee grounds | Microwave-assisted extraction | Sample: solvent ratio of 1:6 Ethanol:water (20:80) 40 s at 240 W | [44] |
Spent coffee grounds | Microwave-assisted extraction | 2 g/20 mL Ethanol:water (54:46) 500 W 10 min at 423 K | [45] |
Spent coffee grounds | Subcritical water extraction | 6 g 240 °C 40 bar | [46] |
Spent coffee grounds | Subcritical water extraction | 14.1 g/L extract 5.0 MPa 37.9–55.0 min at 160–180 °C | [47] |
By-Product | Formulation | Accomplishments | Limitations | Reference |
---|---|---|---|---|
CS extract | Hand cream | No cytotoxicity No skin and ocular irritancy | NR | [51] |
CS extract | Anti-aging cream | Improvement of skin hydration and firmness Similar results to control Organoleptic acceptance | NR | [55] |
CS extract | Body cream containing two food by-products | Antioxidant and physical stability No toxicity Skin hydration improved Consumer acceptance | NR | [57] |
CS extract | Anti-cellulite NLC formulation with caffeine | Good stability in 180 days Improved caffeine skin permeation vs. CS extract alone | Skin model limitations Only 30% of extracted caffeine could be incorporated | [61] |
SCG oil | W/O creams with 10% SCG oil | Decrease in TWEL Increase in skin moisture Non-irritant Sensory acceptability, similar to control | NR | [33] |
SCG oil | O/W cream | Cosmetic acceptance Decrease in TWEL Increase in hydration and sebum levels | Unpleasant odor | [29] |
SCG oil | W/O sunscreens with physical filters | Skin compatibility Water resistance in vitro and in vivo Surfactant-free | NR | [52] |
SCG extracts | Hydrogel | Elastase and tyrosinase inhibition No cytotoxicity Formulation allowed release and permeation of bioactive substances | Extracts addition altered rheological behavior | [53] |
SGC (dried) | Exfoliating body cream with 4, 6 and 8% SCG | Good texture qualities Exfoliating capacity Emulsion stability 6% of SCG cream showed the best performance | NR | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. https://doi.org/10.3390/cosmetics10010012
Rodrigues R, Oliveira MBPP, Alves RC. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics. 2023; 10(1):12. https://doi.org/10.3390/cosmetics10010012
Chicago/Turabian StyleRodrigues, Raquel, Maria Beatriz Prior Pinto Oliveira, and Rita Carneiro Alves. 2023. "Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications" Cosmetics 10, no. 1: 12. https://doi.org/10.3390/cosmetics10010012
APA StyleRodrigues, R., Oliveira, M. B. P. P., & Alves, R. C. (2023). Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics, 10(1), 12. https://doi.org/10.3390/cosmetics10010012