Plant Cell Cultures as Source of Cosmetic Active Ingredients
Abstract
:1. Introduction
2. Plant Tissue Culture Techniques
3. Plant Cell Culture Derived Cosmetic Ingredients
3.1. Hydrosoluble and Liposoluble Extracts
Type of extract | Gene expression in skin cells | Main activity in skin cells | References |
---|---|---|---|
Rubus ideaus hydrosoluble extract | iNOS2 and COX2 down-regulation | Anti-inflammatory activity | [6] |
GADD45α and SIRT1induction | DNA protection and repair | ||
Malus domesticus whole lysate | Cyclin B1, Cyclin E1 induction | Reversion of senescence signs | [9] |
Nicotiana sylvestris cell wall preparation | GAD45α, SIRT-1 and SIRT-6 induction | DNA protection and repair | [10] |
COL I and COL III induction; MMP1, MMP3 and MMP9 down-regulation | Collagen synthesis and protection | ||
Lycopersicon esculentum hydrosoluble extract | COL I and COL III induction; MMP1, MMP3 and MMP9 down-regulation | Collagen synthesis and protection | [11] |
GADD45α and SIRT1 induction | DNA protection and repair | ||
Coffea bengalensis hydrosoluble extract | INV, FLG, AQP3 induction | Epidermal hydration | [12] |
COL I and COL III induction | Collagen synthesis | ||
Verbascoside in Syringa vulgaris/Buddleja davidii cell cultures | – | Antioxidant, anti-inflammatory activities | [13,14] |
Trans-resveratrol in Vitis vinifera cell cultures | – | Antioxidant activity | [15] |
Vitis vinifera LME and LCE mixture | COLI and HAS3 induction; Proteasome stimulation | Hydration and cell detoxifying activity | [16] |
Dolichos biflorus hydrosoluble extract | iNOS2, COX2, IL1β, IL6 and IL8 down-regulation; DNA repair mechanism activation | Anti-inflammatory activity and UV damage protection | [17] |
Paclitaxel in Taxus cuspidate cambial meristematic cell cultures | – | UV protection and anti-cancer properties | [18] |
3.2. Plant Cell Wall Derived Active Ingredients
3.3. Extracts with Reduced Content of Potentially Toxic Compounds
3.4. Extracts Enriched in Desired Metabolites
3.5. Additional Advantages and Limitations of Plant Cell Culture Extracts
4. Summary and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fowler, M. Plant cell culture: Natural products and industrial application. Biotechnol. Genet. Eng. Rev. 1984, 10, 41–67. [Google Scholar] [CrossRef]
- Lee, E.; Jin, Y.; Park, J.; Yoo, Y.; Hong, S.; Amir, Z.; Yan, Z.; Kwon, E.; Elfisk, A.; Tomlinson, S.; et al. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 2010, 28, 1213–1217. [Google Scholar] [CrossRef]
- Chermahini, S.; Majid, F.; Sarmidi, M. Cosmeceutical value of herbal extracts as natural ingredients and novel technologies in anti-aging. J. Med. Plants Res. 2011, 5, 3074–3077. [Google Scholar]
- Moscatiello, R.; Baldan, B.; Navazio, L. Plant cell suspension cultures. Methods Mol. Biol. 2013, 953, 77–93. [Google Scholar]
- Draelos, Z. Plant stem cells and skin care. Cosmet. Dermatol. 2012, 25, 395–396. [Google Scholar]
- Barbulova, A.; Tito, A.; Carola, A.; Bimonte, M.; de Laurentis, F.; DʼAmbrosio, P.; Apone, F.; Colucci, G. Raspberry stem cell extract to protect skin from inflammation and oxidative stress. Cosmet. Toilet. 2010, 125, 38–47. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Celik, F.; Ercisli, S. Lipid and fatty acid composition of wild and cultivated red raspberry fruits (Rubus idaeus L.). J. Med. Plants Res. 2009, 3, 583–585. [Google Scholar]
- Schmid, D.; Schurch, C.; Blum, P.; Belser, E.; Zulli, F. Plant stem cell extract for longevity of skin and hair. SOFW J. 2008, 5, 30–35. [Google Scholar]
- Apone, F.; Tito, A.; Carola, A.; Arciello, S.; Tortora, A.; Filippini, L.; Monoli, I.; Cucchiara, M.; Gibertoni, S.; Chrispeels, M.; et al. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. J. Biotechnol. 2010, 145, 367–376. [Google Scholar] [CrossRef]
- Tito, A.; Carola, A.; Bimonte, M.; Barbulova, A.; Arciello, S.; de Laurentiis, F.; Monoli, I.; Hill, J.; Gibertoni, S.; Colucci, G.; et al. A tomato stem cell extract, containing antioxidant compounds and metal chelating factors, protects skin cells from heavy metal induced damages. Int. J. Cosmet. Sci. 2011, 33, 543–552. [Google Scholar] [CrossRef]
- Bimonte, M.; Tito, A.; Carola, A.; Barbulova, A.; Monoli, I.; Cucchiara, M.; Hill, J.; Colucci, G.; Apone, F. Coffea bengalensis for anti-wrinkle and skin toning applications. Cosmet. Toilet. 2011, 126, 644–650. [Google Scholar]
- Korkina, G.; Mikhalʼchik, E.; Suprun, V.; Pastore, S.; dal Toso, R. Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides. Cell. Mol. Biol. 2007, 53, 84–91. [Google Scholar]
- Vertuani, S.; Beghelli, E.; Scalambra, E.; Malisardi, G.; Copetti, S.; dal Toso, R.; Baldisserotto, A.; Manfredini, S. Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetics and pharmaceautical topical formulations. Molecules 2011, 16, 7068–7080. [Google Scholar] [CrossRef]
- Donnez, D.; Jeandet, P.; Clèment, C.; Court, E. Bioproduction of resveratrol and stibene derivatives by plant cells and microorganisms. Trends Biotechnol. 2009, 27, 706–713. [Google Scholar] [CrossRef]
- Carola, A.; Tito, A.; Bimonte, M.; Mustilli, A.; Cucchiara, M.; Monoli, I.; Hill, J.; Apone, F.; Colucci, G. Liposoluble extracts of Vitis vinifera grape marc and cell cultures with synergistic anti-ageing effects. Househ. Pers. Care Today 2012, 7, 42–46. [Google Scholar]
- Bimonte, M.; Tito, A.; Carola, A.; Barbulova, A.; Apone, F.; Colucci, G.; Cucchiara, M.; Hill, J. Dolichos cell culture extract for protection against UV damage. Cosmet. Toilet. 2014, 129, 46–56. [Google Scholar]
- Hackenberg, S.; Scherzed, A.; Harnisch, W.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. 2012, 3, 87–93. [Google Scholar]
- Tuteja, N. Links mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007, 428, 419–438. [Google Scholar] [CrossRef]
- Krishnan, N.; Dickman, M.; Becker, F. Proline modulates the intracellular environment and protects mammalian cells against oxidative stress. Free Radic. Biol. 2008, 44, 671–681. [Google Scholar] [CrossRef]
- Chrispeels, M.; Sadava, D.; Cho, Y. Enhancement of extension biosynthesis in aging disks of carrot storage tissues. J. Exp. Biol. 1974, 25, 1157–1166. [Google Scholar]
- Ringli, C.; Keller, B.; Ryser, U. Glycine-rich proteins as structural components of plant cell walls. Cell. Mol. Life Sci. 2001, 58, 1430–1441. [Google Scholar] [CrossRef]
- Eom, Y.; Chung, C.; Kim, S.; Kim, H.; Park, H.; Hwang, I.; Kim, H. Cosmeceutical properties of polysaccharides from the root bark of Ulmus davidianavar japonica. J. Cosmet. Sci. 2006, 57, 355–367. [Google Scholar]
- Friedman, M. Tomato glycoalkaloids: Role in the plant and in the diet. J. Agric. Food Chem. 2002, 50, 5751–5780. [Google Scholar]
- Thyssen, J.; Mennè, T. Metal allergy—A review on exposures, penetration, genetics, prevalence and clinical implications. Chem. Res. Toxicol. 2010, 23, 309–318. [Google Scholar] [CrossRef]
- Serafini, M.; Testa, M. Redox ingredients for oxidative stress prevention: The unexplored potentiality of coffee. Clin. Dermatol. 2009, 27, 225–229. [Google Scholar]
- Kobayashi, T.; Yasuda, M.; Lijima, K.; Toriizuka, K.; Cyong, J.; Nagasawa, H. Effects of coffee cherry on the imune system in SHN mice. Anticancer Res. 1997, 16, 1827–1830. [Google Scholar]
- Herman, A.; Herman, A.P. Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol. Physiol. 2013, 26, 8–14. [Google Scholar] [CrossRef]
- Lou, Y.; Peng, Q.; Nolan, B.; Wagner, C.; Lu, Y. Oral administration of caffeine during voluntary exercise markedly decreases tissue fat and stimulates apoptosis and cyclin B1 in UVB-treated skin of hairless p53-knockout mice. Carcinogenesis 2010, 31, 671–678. [Google Scholar] [CrossRef]
- Jeandet, P.; Delaunois, B.; Aziz, A.; Donnez, D.; Vasserot, Y.; Cordelier, S.; Court, E. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J. Biomed. Biotechnol. 2012, 2012, 579089. [Google Scholar]
- Roberts, C. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 2007, 3, 387–395. [Google Scholar] [CrossRef]
- RNCOS Industry Research Solutions. Available online: http://www.marketresearch.com/RNCOS-v3175/ (accessed on 18 April 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Barbulova, A.; Apone, F.; Colucci, G. Plant Cell Cultures as Source of Cosmetic Active Ingredients. Cosmetics 2014, 1, 94-104. https://doi.org/10.3390/cosmetics1020094
Barbulova A, Apone F, Colucci G. Plant Cell Cultures as Source of Cosmetic Active Ingredients. Cosmetics. 2014; 1(2):94-104. https://doi.org/10.3390/cosmetics1020094
Chicago/Turabian StyleBarbulova, Ani, Fabio Apone, and Gabriella Colucci. 2014. "Plant Cell Cultures as Source of Cosmetic Active Ingredients" Cosmetics 1, no. 2: 94-104. https://doi.org/10.3390/cosmetics1020094
APA StyleBarbulova, A., Apone, F., & Colucci, G. (2014). Plant Cell Cultures as Source of Cosmetic Active Ingredients. Cosmetics, 1(2), 94-104. https://doi.org/10.3390/cosmetics1020094