Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Optimisation Model of the Spanish Electricity Production Mix
2.2. LCA Framework
3. Results and Discussion
3.1. Electricity Production
3.2. Long-Term Evolution of Life-Cycle Indicators
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bliesner, A.; Liedtke, C.; Welfens, M.J.; Baedeker, C.; Hasselkuß, M.; Rohn, H. “Norm-oriented interpretation learning” and resource use: The concept of “open-didactic exploration” as a contribution to raising awareness of a responsible resource use. Resources 2014, 3, 1–30. [Google Scholar] [CrossRef]
- Liedtke, C.; Bienge, K.; Wiesen, K.; Teubler, J.; Greiff, K.; Lettenmeier, M.; Rohn, H. Resource use in the production and consumption system—The MIPS approach. Resources 2014, 3, 544–574. [Google Scholar] [CrossRef]
- Bahn-Walkowiak, B.; Steger, S. Resource targets in Europe and worldwide: An overview. Resources 2015, 4, 597–620. [Google Scholar] [CrossRef]
- Huysman, S.; Sala, S.; Mancini, L.; Ardente, F.; Alvarenga, R.A.F.; De Meester, S.; Mathieux, F.; Dewulf, J. Toward a systematized framework for resource efficiency indicators. Resour. Conserv. Recycl. 2015, 95, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Collinge, W.O.; Landis, A.E.; Jones, A.K.; Schaefer, L.A.; Bilec, M.M. Dynamic life cycle assessment: Framework and application to an institutional building. Int. J. Life Cycle Assess. 2013, 18, 538–552. [Google Scholar] [CrossRef]
- Loulou, R.; Van Regemorter, D. Deliverable n° 4.2—RS. In Final Report on the Harmonization of Methodologies; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Pietrapertosa, F.; Cosmi, C.; Macchiato, M.; Salvia, M.; Cuomo, V. Life cycle assessment, ExternE and comprehensive analysis for an integrated evaluation of the environmental impact of anthropogenic activities. Renew. Sustain. Energy Rev. 2009, 13, 1039–1048. [Google Scholar] [CrossRef]
- Preiss, P.; Bachmann, T.M. External costs of electrification of road transport: Approach and setting-dependency. In Proceedings of the SETAC Europe 26th Annual Meeting, Nantes, France, 22–26 May 2016.
- Menten, F.; Tchung-Ming, S.; Lorne, D.; Bouvart, F. Lessons from the use of a long-term energy model for consequential life cycle assessment: The BTL case. Renew. Sustain. Energy Rev. 2015, 43, 942–960. [Google Scholar] [CrossRef]
- Herbst, A.; Toro, F.; Reitze, F.; Jochem, E. Introduction to energy systems modelling. Swiss J. Econ. Stat. 2012, 148, 111–135. [Google Scholar]
- Lund, H.; Mathiesen, B.V.; Christensen, P.; Schmidt, J.H. Energy system analysis of marginal electricity supply in consequential LCA. Int. J. Life Cycle Assess. 2010, 15, 260–271. [Google Scholar] [CrossRef]
- Gibon, T.; Wood, R.; Arvesen, A.; Bergesen, J.D.; Suh, S.; Hertwich, E.G. A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environ. Sci. Technol. 2015, 49, 11218–11226. [Google Scholar] [CrossRef] [PubMed]
- Heaps, C.G. Long-range Energy Alternatives Planning (LEAP) System (Software Version 2015.0.27). Available online: https://www.energycommunity.org (accessed on 13 September 2016).
- Colombo, E.; Rocco, M.V.; Toro, C.; Sciubba, E. An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy. Ecol. Model. 2015, 318, 64–74. [Google Scholar] [CrossRef]
- Orsi, F.; Muratori, M.; Rocco, M.; Colombo, E.; Rizzoni, G. A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost. Appl. Energy 2016, 169, 197–209. [Google Scholar] [CrossRef]
- Ekvall, T. Cleaner production tools: LCA and beyond. J. Clean. Prod. 2002, 10, 403–406. [Google Scholar] [CrossRef]
- Wene, C.O. Energy-economy analysis: Linking the macroeconomic and systems engineering approaches. Energy 1996, 21, 809–824. [Google Scholar] [CrossRef]
- Helgesen, P.I. Top-Down and Bottom-up: Combining Energy System Models and Macroeconomic General Equilibrium Models; CenSES: Trondheim, Norway, 2013. [Google Scholar]
- Manne, A.S.; Wene, C.O. MARKAL-MACRO: A Linked Model for Energy-Economy Analysis; Brookhaven National Laboratory: Upton, NY, USA, 1992. [Google Scholar]
- Böhringer, C.; Rutherford, T.F. Combining bottom-up and top-down. Energy Econ. 2008, 30, 574–596. [Google Scholar] [CrossRef]
- Portugal-Pereira, J.; Köberle, A.C.; Soria, R.; Lucena, A.F.P.; Szklo, A.; Schaeffer, R. Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story. Energy 2016. [Google Scholar] [CrossRef]
- Plevin, R.J.; Delucchi, M.A.; Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 2014, 18, 73–83. [Google Scholar] [CrossRef]
- EURELECTRIC. Efficiency in Electricity Generation; Union of the Electricity Industry—EURELECTRIC: Brussels, Belgium, 2003. [Google Scholar]
- Carlsson, J. ETRI 2014—Energy Technology Reference Indicator Projections for 2010–2050; European Commission: Luxembourg, 2014. [Google Scholar]
- ETSAP. International Energy Agency—Energy Technology Systems Analysis Program. Available online: http://www.iea-etsap.org (accessed on 13 September 2016).
- Ajanovic, A.; Dahl, C.; Schipper, L. Modelling transport (energy) demand and policies—An introduction. Energy Policy 2012, 41, 3–16. [Google Scholar]
- INE. Proyección de la Población de España 2014–2064. Available online: http://www.ine.es/prensa/np870.pdf (accessed on 13 September 2016).
- Capros, P.; De Vita, A.; Tasios, N.; Papadopoulos, D.; Siskos, P.; Apostolaki, E.; Zampara, M.; Paroussos, L.; Fragiadakis, K.; Kouvaritakis, N.; et al. EU Energy, Transport and GHG Emissions—Trends to 2050—Reference Scenario 2013; European Commission: Luxembourg, 2013. [Google Scholar]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System—An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- European Council. EUCO 169/14 Conclusions—23/24 October 2014; European Council: Brussels, Belgium, 2014. [Google Scholar]
- United Nations Framework Convention on Climate Change. Adoption of the Paris Agreement; UNFCC: Paris, France, 2015. [Google Scholar]
- International Organization for Standardization. ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- García-Gusano, D.; Iribarren, D.; Martín-Gamboa, M.; Dufour, J.; Espegren, K.; Lind, A. Integration of life-cycle indicators into energy optimisation models: The case study of power generation in Norway. J. Clean. Prod. 2016, 112, 2693–2696. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef]
- Troy, S.; Schreiber, A.; Zapp, P. Life cycle assessment of membrane-based carbon capture and storage. Clean Technol. Environ. Policy 2016, 18, 1641–1654. [Google Scholar] [CrossRef]
- Bauer, C. Life Cycle Assessment of Fossil and Biomass Power Generation Chains; PSI: Villigen, Switzerland, 2008. [Google Scholar]
- Cormos, C.C. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 2012, 42, 434–445. [Google Scholar] [CrossRef]
- Fadeyi, S.; Arafat, H.A.; Abu-Zahra, M.R.M. Life cycle assessment of natural gas combined cycle integrated with CO2 post combustion capture using chemical solvent. Int. J. Greenh. Gas Control 2013, 19, 441–452. [Google Scholar] [CrossRef]
- Science Applications International Corporation; Research and Development Solutions. Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant; National Energy Technology Laboratory: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Kunakemakorn, J.; Wongsuchoto, P.; Pavasant, P.; Laosiripojana, N. Greenhouse gas emission of European pressurized reactor (EPR) nuclear power plant technology: A life cycle approach. J. Sustain. Energy Environ. 2011, 2, 45–50. [Google Scholar]
- Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems. Energy Convers. Manag. 2015, 101, 136–150. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Hondo, H.; Ogawa, Y.; Okano, K.; Yamaji, K.; Katsurai, M. Energy analysis and carbon dioxide emission of Tokamak fusion power reactors. Fusion Eng. Des. 2000, 48, 483–498. [Google Scholar] [CrossRef]
- Kelly, K.A.; McManus, M.C.; Hammond, G.P. An energy and carbon life cycle assessment of industrial CHP (combined heat and power) in the context of a low carbon UK. Energy 2014, 77, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Flury, K.; Frischknecht, R. Life Cycle Inventories of Hydroelectric Power Generation; ESU-Services: Uster, Switzerland, 2012. [Google Scholar]
- Ghandehariun, S.; Kumar, A. Life cycle assessment of wind-based hydrogen production in Western Canada. Int. J. Hydrog. Energy 2016, 41, 9696–9704. [Google Scholar] [CrossRef]
- Raadal, H.L.; Vold, B.I.; Myhr, A.; Nygaard, T.A. GHG emissions and energy performance of offshore wind power. Renew. Energy 2014, 66, 314–324. [Google Scholar] [CrossRef]
- Uihlein, A. Life cycle assessment of ocean energy technologies. Int. J. Life Cycle Assess. 2016, 21, 1425–1437. [Google Scholar] [CrossRef]
- Dahlsten, H. Life Cycle Assessment of Electricity from Wave Power; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2009. [Google Scholar]
- Frischknecht, R.; Itten, R.; Sinha, P.; de Wild-Scholten, M.; Zhang, J.; Fthenakis, V.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems—Report IEA-PVPS T12–04:2015; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Corona, B.; San Miguel, G.; Cerrajero, E. Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. Int. J. Life Cycle Assess. 2014, 19, 1264–1275. [Google Scholar] [CrossRef]
- Kuenlin, A.; Augsburger, G.; Gerber, L.; Maréchal, F. Life cycle assessment and environomic optimization of concentrating solar thermal power plants. In Proceedings of the 26th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Guilin, China, 15–19 July 2013.
- Martín-Gamboa, M.; Iribarren, D.; Dufour, J. On the environmental suitability of high-and low-enthalpy geothermal systems. Geothermics 2015, 53, 27–37. [Google Scholar]
- González-García, S.; Iribarren, D.; Susmozas, A.; Dufour, J.; Murphy, R.J. Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation. Appl. Energy 2012, 95, 111–122. [Google Scholar] [CrossRef]
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Quirós, R.; Gabarrell, X.; Villalba, G.; Barrena, R.; García, A.; Torrente, J.; Font, X. The application of LCA to alternative methods for treating the organic fiber produced from autoclaving unsorted municipal solid waste: Case study of Catalonia. J. Clean. Prod. 2015, 107, 516–528. [Google Scholar] [CrossRef]
- Joos, N.; Hydrogenics, San Diego, CA, USA. Personal communication, 2014.
- Strazza, C.; Del Borghi, A.; Costamagna, P.; Gallo, M.; Brignole, E.; Girdinio, P. Life Cycle Assessment and Life Cycle Costing of a SOFC system for distributed power generation. Energy Convers. Manag. 2015, 100, 64–77. [Google Scholar] [CrossRef]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; Spielmann, M.; et al. Overview and Methodology—Ecoinvent Report No. 1; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Goedkoop, M.; Oele, M.; Leijting, J.; Ponsioen, T.; Meijer, E. Introduction to LCA with SimaPro; PRé Consultants: Amersfoort, The Netherlands, 2013. [Google Scholar]
- Doka, G. Life Cycle Inventories of Waste Treatment Services—Ecoinvent Report No. 13; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2003. [Google Scholar]
- Strazza, C.; Del Borghi, A.; Gallo, M. Development of specific rules for the application of life cycle assessment to carbon capture and storage. Energies 2013, 6, 1250–1265. [Google Scholar] [CrossRef]
- The International EPD® System. PCR 2014:06 Carbon Capture and Storage (CCS) Systems; EPD: Stockholm, Sweden, 2014. [Google Scholar]
- The International EPD® System. PCR 2007:08 Electricity, Steam and Hot/Cold Water Generation and Distribution; EPD: Stockholm, Sweden, 2015. [Google Scholar]
Power Generation Technology | Capital Cost (€/MW) | Fixed Costs (€/MW) | Variable Costs (€/MWh) | Efficiency (%) |
---|---|---|---|---|
Existing coal thermal | - | 50 | 5.5 | 39 |
Existing oil combustion engine | - | 40 | 2.0 | 38 |
Existing natural gas combined cycle (NGCC) | - | 20 | 2.0 | 58 |
Existing cogeneration | - | 40 | 2.4 | 42 |
Existing nuclear—pressurized water reactor (PWR) | - | 50 | 2.5 | 33 |
Existing nuclear—boiling water reactor (BWR) | - | 50 | 2.5 | 33 |
Existing hydropower—dam | - | 20 | 5.0 | 80 |
Existing hydropower—run-of-river (RoR) | - | 20 | 5.0 | 80 |
Existing wind—onshore | - | 20 | 9.7 | 35 |
Existing solar photovoltaics (PV) | - | 20 | 5.0 | 15 |
Existing solar thermal without storage | - | 20 | 8.0 | 14 |
Existing biomass power plant | - | 50 | 8.2 | 35 |
Existing waste-to-energy plant | - | 40 | 6.9 | 27 |
Existing biogas power plant | - | 50 | 3.1 | 36 |
New coal thermal with CO2 capture | 3000 (2550) | 75 (64) | 5.5 | 34 (38) |
New coal—integrated gasif. combined cycle (IGCC) | 2500 (2200) | 63 (55) | 5.0 | 45 (50) |
New NGCC | 850 (700) | 21 (18) | 2.0 | 58 (63) |
New NGCC with CO2 capture | 1500 (1500) | 38 (38) | 8.0 | 50 (55) |
New cogeneration | 880 (700) | 75 (60) | 2.4 | 57 (63) |
New nuclear—III generation | 4500 (3750) | 95 (60) | 2.5 | 37 (38) |
New nuclear—IV generation | (4500) | 103 (95) | 2.5 | 42 (42) |
New hydropower—dam | 3300 (3370) | 50 (51) | 5.0 | 80 (90) |
New hydropower—run-of-river | 5500 (5620) | 83 (84) | 5.0 | 80 (90) |
New wind—onshore | 1400 (1100) | 38 (19) | 9.7 | 35 (42) |
New wind—offshore | 3470 (2280) | 128 (52) | 9.7 | 35 (42) |
New solar PV—plant | 1100 (720) | 28 (18) | 5.0 | 15 (30) |
New solar PV—roof | 1310 (880) | 26 (18) | 5.0 | 15 (30) |
New solar thermal without storage | 3692 (1758) | 148 (70) | 8.0 | 36 (40) |
New solar thermal with storage | 6154 (2461) | 258 (103) | 8.0 | 36 (40) |
New biomass power plant | 4810 (2560) | 106 (56) | 8.2 | 34 (48) |
New waste-to-energy plant | 6080 (4540) | 182 (136) | 6.9 | 27 (42) |
New biogas power plant | 3880 (2300) | 182 (136) | 3.1 | 36 (45) |
New proton exchange membrane fuel cells (PEMFC) | 50,000 (7800) | n.a. | 200 (45) | 36 (39) |
New solid oxide fuel cells (SOFC) | 18,000 (1850) | n.a. | 120 (8) | 53 (61) |
New tidal power plant | 10,700 (1900) | 364 (93) | 0 | 90 (90) |
New wave power plant | 9080 (2300) | 327 (133) | 0 | 80 (80) |
New geothermal power plant | 6970 (5510) | 146 (149) | 0 | 13 (15) |
New nuclear fusion | (100,000) | n.a. | n.a. | 95 (95) |
Electricity Generation Technology | Climate Change (kg CO2 eq/MWh) | Human Health (DALY/MWh) | Resources (MJ/MWh) |
---|---|---|---|
Existing coal thermal | 1052.32 | 1.22 × 10−3 | 12,331.17 |
Existing oil combustion engine | 957.24 | 6.78 × 10−4 | 13,773.55 |
Existing NGCC | 504.82 | 6.04 × 10−5 | 8734.24 |
Existing cogeneration | 541.23 | 1.33 × 10−4 | 9092.20 |
Existing nuclear—PWR | 7.57 | 5.01 × 10−5 | 12,644.54 |
Existing nuclear—BWR | 7.27 | 4.62 × 10−5 | 12,787.30 |
Existing hydropower—dam | 5.34 | 4.93 × 10−6 | 59.07 |
Existing hydropower—RoR | 3.64 | 4.93 × 10−6 | 44.61 |
Existing wind—onshore | 10.78 | 1.34 × 10−5 | 183.51 |
Existing solar PV | 50.01 | 3.83 × 10−5 | 822.98 |
Existing solar thermal without storage | 34.91 | 1.62 × 10−5 | 773.89 |
Existing biomass power plant | 60.24 | 1.66 × 10−4 | 425.20 |
Existing waste-to-energy plant | 0.00 | 0.00 | 0.00 |
Existing biogas power plant | 113.33 | 8.07 × 10−5 | 540.34 |
New cogeneration | 494.23 | 4.61 × 10−5 | 9009.99 |
New NGCC | 478.06 | 2.35 × 10−5 | 8037.68 |
New NGCC with CO2 capture | 255.64 | 4.75 × 10−5 | 11,740.08 |
New wind—onshore | 7.32 | 7.31 × 10−6 | 115.39 |
New wind—offshore | 15.53 | 1.69 × 10−5 | 256.92 |
New solar thermal with storage | 41.51 | 2.61 × 10−5 | 879.05 |
New solar PV—plant | 29.94 | 2.07 × 10−5 | 473.17 |
New solar PV—roof | 24.29 | 1.47 × 10−5 | 393.74 |
New biomass power plant | 2.99 | 5.75 × 10−5 | 502.78 |
New waste-to-energy plant | 0.00 | 0.00 | 0.00 |
New biogas power plant | 122.83 | 6.56 × 10−5 | 1738.72 |
New geothermal power plant | 5.12 | 3.61 × 10−6 | 53.89 |
New wave power plant | 25.75 | 3.53 × 10−5 | 397.43 |
New SOFC | 399.85 | 5.41 × 10−5 | 7195.66 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gusano, D.; Martín-Gamboa, M.; Iribarren, D.; Dufour, J. Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model. Resources 2016, 5, 39. https://doi.org/10.3390/resources5040039
García-Gusano D, Martín-Gamboa M, Iribarren D, Dufour J. Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model. Resources. 2016; 5(4):39. https://doi.org/10.3390/resources5040039
Chicago/Turabian StyleGarcía-Gusano, Diego, Mario Martín-Gamboa, Diego Iribarren, and Javier Dufour. 2016. "Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model" Resources 5, no. 4: 39. https://doi.org/10.3390/resources5040039
APA StyleGarcía-Gusano, D., Martín-Gamboa, M., Iribarren, D., & Dufour, J. (2016). Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model. Resources, 5(4), 39. https://doi.org/10.3390/resources5040039