Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yield Data Calculation
2.2. Climatic and Fertilization Data Proceeding
3. Results and Discussion
3.1. The Fertilizer Production Supply Chain
3.2. Rising Fuel Prices and the Agricultural Energy Market
3.3. Conflict and Economic Consequences for the Agri-Food Economy
3.4. The Current Market and Geopolitical Situation—General Opinion on Solutions for the Wheat Supply Crisis
- (a)
- Creating expert groups on behalf of the Commission to focus on certain issues in the current situation, e.g., support types provided, crisis preparedness, a group for important production and livestock sectors;
- (b)
- Announcing the EC’s work on implementing market-related exceptional measures that need to be established and finalized as soon as possible to provide aid;
- (c)
- Unlocking the potential of agricultural production, referring to currently important crops (the production cycle does not currently cover all crops), i.e., protein crops, especially for livestock feed; it is proposed to plant protein crops on fallow land.
3.5. The Effects of Climate Change on Global Wheat Production
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panfilova, A.; Gamayunova, V.; Smirnova, I. Influence of fertilizing with modern complex organic-mineral fertilizers to grain yield and quality of winter wheat in the southern steppe of Ukraine. J. Agric. Sci. 2020, 2, 196–201. [Google Scholar]
- Gramlich, A.; Stoll, S.; Stamm, C.; Walter, T.; Prasuhn, V. Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields—A review. Agric. Ecosyst. Environ. 2018, 266, 84–99. [Google Scholar] [CrossRef]
- Möhring, N.; Finger, R. Pesticide-free but not organic: Adoption of a large-scale wheat production standard in Switzerland. Food Policy 2022, 106, 102188. [Google Scholar] [CrossRef]
- Bais-Moleman, A.L.; Schulp, C.J.; Verburg, P.H. Assessing the environmental impacts of production-and consumption-side measures in sustainable agriculture intensification in the European Union. Geoderma 2019, 338, 555–567. [Google Scholar] [CrossRef]
- Mbah, R.E.; Wasum, D.F. Russian-Ukraine 2022 War: A review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada, and Europe. Adv. Soc. Sci. Res. J. 2022, 9, 144–153. [Google Scholar] [CrossRef]
- Pörtner, L.M.; Lambrecht, N.; Springmann, M.; Bodirsky, B.L.; Gaupp, F.; Freund, F.; Gabrysch, S. We need a food system transformation—In the face of the Russia-Ukraine war, now more than ever. One Earth 2022, 5, 470–472. [Google Scholar] [CrossRef]
- FAO. icense: CC BY-NC-SA 3.0 IGOFAOSTAT. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 3 June 2022).
- Liadze, I.; Macchiarelli, C.; Mortimer-Lee, P.; Juanino, P.S. The economic costs of the Russia-Ukraine conflict. NIESR Policy Paper 2022, 32, 1–10. [Google Scholar]
- Kovalenko, N.; Kovalenko, V.; Hutsol, T.; Ievstafiieva, Y.; Polishchuk, A. Economic efficiency and internal competitive advantages of grain production in the central region of Ukraine. Agric. Eng. 2021, 25, 51–62. [Google Scholar] [CrossRef]
- Svanidze, M.; Đurić, I. Global wheat market dynamics: What is the role of the EU and the Black Sea wheat exporters? Agriculture 2021, 11, 799. [Google Scholar] [CrossRef]
- Huzsvai, L.; Zsembeli, J.; Kovács, E.; Juhász, C. Response of Winter Wheat (Triticum aestivum L.) Yield to the Increasing Weather Fluctuations in a Continental Region of Four-Season Climate. Agronomy 2022, 12, 314. [Google Scholar] [CrossRef]
- Ramadas, S.; Kumar, T.K.; Singh, G.P. Wheat production in India: Trends and prospects. In Recent Advances in Grain Crops Research; IntechOpen: Rijeka, Croatia, 2019; Chapter 6. [Google Scholar]
- Zampieri, M.; Toreti, A.; Ceglar, A.; Naumann, G.; Turco, M.; Tebaldi, C. Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Reg. Environ. Chang. 2020, 20, 41. [Google Scholar] [CrossRef] [Green Version]
- Osendarp, S.; Verburg, G.; Bhutta, Z.; Black, R.E.; de Pee, S.; Fabrizio, C.; Ruel, M.T. Act now before Ukraine war plunges millions into malnutrition. Nature 2022, 604, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, P.C.; Gerber, J.S.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Engstrom, P.M.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, Q.; Wang, Q.; Wang, X.; Cai, J.; Huang, M.; Jiang, D. Effects of nitrogen fertilizer on quality characteristics of wheat with the absence of different individual high-molecular-weight glutenin subunits (HMW-GSs). Int. J. Mol. Sci. 2022, 23, 2178. [Google Scholar] [CrossRef]
- Chai, Y.; Chai, Q.; Han, F.; Li, Y.; Ma, J.; Li, R.; Chai, S. Increasing yields while reducing soil nutrient accumulation by straw strip mulching in the dryland wheat (Triticum aestivum L.) cropping system of Northwest China. Agric. Ecosyst. Environ. 2022, 326, 107797. [Google Scholar] [CrossRef]
- Alghamdi, R.S.; Cihacek, L. Do post-harvest crop residues in no-till systems provide for nitrogen needs of following crops? J. Agron. 2022, 114, 835–852. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Darzi-Naftchali, A.; Mokhtassi-Bidgoli, A. Saving environment through improving nutrient use efficiency under intensive use of agrochemicals in paddy fields. Sci. Total Environ. 2022, 822, 153487. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.C.; Becker-Reshef, I.; Murphy, E.; Justice, C. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. J. Appl. Earth. Obs. Geoinf. 2019, 76, 112–127. [Google Scholar] [CrossRef]
- Nordhagen, S.; Lambertini, E.; DeWaal, C.S.; McClafferty, B.; Neufeld, L.M. Integrating nutrition and food safety in food systems policy and programming. Glob. Food Sec. 2022, 32, 100593. [Google Scholar] [CrossRef]
- Rawal, N.; Pande, K.R.; Shrestha, R.; Vista, S.P. Nutrient use efficiency (NUE) of wheat (Triticum aestivum L.) as affected by NPK fertilization. PLoS ONE 2022, 17, e0262771. [Google Scholar] [CrossRef] [PubMed]
- Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine war on global food security: Towards more sustainable and resilient food systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef]
- Ilinova, A.; Dmitrieva, D.; Kraslawski, A. Influence of COVID-19 pandemic on fertilizer companies: The role of competitive advantages. Resour. Policy 2021, 71, 102019. [Google Scholar] [CrossRef]
- Polovyy, V.; Hnativ, P.; Chojnicki, J.; Lahush, N.; Ivaniuk, V.; Avhustynovych, M.; Lukyanik, M. Changes in the agrochemical indices of Luvic Greyzemic Phaeozems under the impact of west Ukraine climate aridization. Soil Sci. Ann. 2022, 73, 146855. [Google Scholar] [CrossRef]
- Le Gouis, J.; Oury, F.X.; Charmet, G. How changes in climate and agricultural practices influenced wheat production in Western Europe. J. Cereal Sci. 2020, 93, 102960. [Google Scholar] [CrossRef]
- Rapacz, M.; Macko-Podgórni, A.; Jurczyk, B.; Kuchar, L. Modeling wheat and triticale winter hardiness under current and predicted winter scenarios for Central Europe: A focus on deacclimation. Agric. For. Meteorol. 2022, 313, 108739. [Google Scholar] [CrossRef]
- Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. Adapting wheat in Europe for climate change. J. Cereal Sci. 2014, 59, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Svetlov, N.M.; Siptits, S.O.; Romanenko, I.A.; Evdokimova, N.E. The effect of climate change on the location of branches of agriculture in Russia. Stud. Russ. Econ. Dev. 2019, 30, 406–418. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does climate change affect the yield of the top three cereals and food security in the World? Earth 2022, 3, 45–71. [Google Scholar] [CrossRef]
- Oleksiak, T.; Spyroglou, I.; Pacoń, D.; Matysik, P.; Pernisová, M.; Rybka, K. Effect of drought on wheat production in Poland between 1961 and 2019. Crop. Sci. 2022, 62, 728–743. [Google Scholar] [CrossRef]
- Senapati, N.; Stratonovitch, P.; Paul, M.J.; Semenov, M.A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2019, 70, 2549–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulson, N.; Janzen, J.; Zulauf, C.; Swanson, K.; Schnitkey, G. Revisiting Ukraine, Russia, and Agricultural Commodity Markets. Farmdoc. Dly. 2022, 12. [Google Scholar]
- Linke, A.M.; Ruether, B. Weather, wheat, and war: Security implications of climate variability for conflict in Syria. J. Peace Res. 2021, 58, 114–131. [Google Scholar] [CrossRef]
- Sulaiman, N.; Pieroni, A.; Sõukand, R.; Polesny, Z. Food Behavior in Emergency Time: Wild Plant Use for Human Nutrition during the Conflict in Syria. Foods 2022, 11, 177. [Google Scholar] [CrossRef]
- Sharma, I.; Tyagi, B.S.; Singh, G.; Venkatesh, K.; Gupta, O.P. Enhancing wheat production-A global perspective. Indian J. Agric. Sci. 2015, 85, 3–13. [Google Scholar]
- Skrypnyk, A.; Klymenko, N.; Tuzhyk, K.; Galaieva, L.; Rohoza, K. Prerequisites and prospects for sustainable development of grain production in Ukraine. Indian J. Agric. Sci. 2021, 7, 90–106. [Google Scholar] [CrossRef]
- Trachova, D.; Belova, I.; Stender, S.; Tomchuk, O.; Danilochkina, O. Rationale for the need to use blockchain technology to record and control operations for the export of grain (the example of Ukraine). Indep. J. Manag. Prod. 2022, 13, s347–s360. [Google Scholar] [CrossRef]
- Veninga, W.; Ihle, R. Import vulnerability in the Middle East: Effects of the Arab spring on Egyptian wheat trade. Food Secur. 2018, 10, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.P.; Pathak, V.N.; Verma, O.P. Interrelationship between yield and its contributing traits in wheat (Triticum aestivum L). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3209–3215. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Guo, J.; Zheng, J.; Wu, L. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agric. Water Manag. 2022, 261, 107380. [Google Scholar] [CrossRef]
- Zhai, L.; Yuan, S.; Feng, Y. The economic effects of export restrictions imposed by major grain producers. Agric. Econ. 2022, 68, 11–19. [Google Scholar] [CrossRef]
- Zhang, J.J.; He, P.; Xu, X.P.; Ding, W.C.; Ullah, S.; Wang, Y.L.; Zhou, W. Nutrient expert improves nitrogen efficiency and environmental benefits for winter wheat in China. Agron. J. 2018, 110, 696–706. [Google Scholar] [CrossRef]
- Horodyska, I.M.; Ternovyi, Y.; Chub, A.; Lishchuk, A.; Draga, M. Technologies of protection and nutrition in agrophytocenoses of legumes for organic seed production. Environ. Eng. Manag. J. 2021, 77, 47–58. [Google Scholar] [CrossRef]
- Vita, P.D.; Taranto, F. Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change. In Advances in Plant Breeding Strategies: Cereals; Springer: Cham, Switzerland, 2019; pp. 471–524. [Google Scholar]
- Brás, T.A.; Seixas, J.; Carvalhais, N.; Jägermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Rozhkov, A.O.; Spilnyk, S.S.; Gepenko, O.V.; Didukh, N.O.; Derevyanko, I.O.; Stankevych, S.V. Influence on fertilization regime on spring barley yields in the southern steppe of Ukraine. Ukr. J. Ecol. 2021, 11, 400–406. [Google Scholar]
- FAO. The Importance of Ukraine and the Russian Federation for Global. Agricultural Markets and the Risks Associated with the Current Conflict. 2022. Available online: https://www.fao.org/3/cb9236en/cb9236en.pdf. (accessed on 25 March 2022).
- Júnior, R.d.S.N.; Ewert, F.; Webber, H.; Martre, P.; Hertel, T.W.; van Ittersum, M.K.; Asseng, S. Needed global wheat stock and crop management in response to the war in Ukraine. Glob. Food Secur. 2022, 35, 100662. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Kruseman, G.; Snapp, S. Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration. Glob. Food Sec. 2022, 35, 100659. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halecki, W.; Bedla, D. Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis. Resources 2022, 11, 118. https://doi.org/10.3390/resources11120118
Halecki W, Bedla D. Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis. Resources. 2022; 11(12):118. https://doi.org/10.3390/resources11120118
Chicago/Turabian StyleHalecki, Wiktor, and Dawid Bedla. 2022. "Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis" Resources 11, no. 12: 118. https://doi.org/10.3390/resources11120118
APA StyleHalecki, W., & Bedla, D. (2022). Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis. Resources, 11(12), 118. https://doi.org/10.3390/resources11120118