The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Local Spatial Planning in Poland in Relation to Flood Risk Management
2.3. Methods
- Class I (from 25 to 30 points): insusceptible catchments;
- Class II (from 31 to 36 points): catchments with low susceptibility;
- Class III (from 37 to 42 points): susceptible catchments;
- Class IV (from 43 to 48 points): highly susceptible catchments.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičova, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterization of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.D. Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Lumbroso, D.; Gaume, E. Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J. Hydrol. 2012, 414–415, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Gourley, J.J.; Hong, Y.; Flamig, Z.L.; Arthur, A.; Clark, R.; Calianno, M.; Ruin, I.; Ortel, T.; Wieczorek, M.E.; Kirstetter, P.-E.; et al. A unified flash flood database across the United States. Bull. Am. Meteorol. Soc. 2013, 94, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; He, B.; Wan, J.; Jia, P.; Guo, X.; Gao, L.; Maguire, L.W.; Hong, Y. Characterizing the Flash Flooding Risks from 2011 to 2016 over China. Water 2018, 10, 704. [Google Scholar] [CrossRef] [Green Version]
- Bryndal, T. Powodzie błyskawiczne w małych zlewniach karpackich—Wybrane aspekty zarządzania ryzykiem powodziowym. Ann. Univ. Paedagog. Crac. Studia Geogr. 2014, 170, 69–80. [Google Scholar]
- Pociask-Karteczka, J.; Żychowski, J.; Bryndal, T. Zagrożenia związane z wodą—Powodzie błyskawiczne. Gospod. Wodna 2017, 2, 37–42. [Google Scholar]
- Ostrowski, J.; Czarnecka, H.; Glowacka, B.; Krupa-Marchlewska, J.; Zaniewska, M.; Sasim, M.; Moskwicki, T.; Dobrowolski, A. Nagłe powodzie lokalne (flash flood) w Polsce i skala ich zagrożeń. In Wpływ Zmian Klimatu na Środowisko, Gospodarkę i Społeczeństwo. Tom 3, Klęski Żywiołowe a Bezpieczeństwo Wewnętrzne Kraju; Lorenc, H., Ed.; Wydawnictwo IMGW-PIB: Warszawa, Poland, 2012; pp. 123–149. [Google Scholar]
- Parczewski, J. Warunki występowania gwałtownych wezbrań na małych ciekach. Wiadomości Służby Hydrol. Meteorol. 1960, 8, 1–159. [Google Scholar]
- Gaume, E.; Borga, M. Post-flood field investigations in upland catchments after major flash floods: Proposal of a methodology and illustrations. J. Flood Risk Manag. 2008, 1, 175–189. [Google Scholar] [CrossRef]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. Climate modelling: Severe summertime flooding in Europe. Nature 2003, 421, 805–806. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.G.; Koutsoyiannis, D.; Christofides, A.; Efstratiadis, A.; Mamassis, N. A comparison of local and aggregated climate model outputs with observed data. Hydrol. Sci. J. 2010, 55, 1094–1110. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Stakhiv, E.Z. Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol. Sci. J. 2010, 55, 1085–1089. [Google Scholar] [CrossRef]
- Rodzik, J.; Janicki, G.; Zagórski, P.; Zgłobicki, W. Deszcze nawalne na Wyżynie Lubelskiej i ich wpływ na rzeźbę obszarów lessowych. Dok. Geogr. 1998, 11, 45–68. [Google Scholar]
- Rodzik, J.; Janicki, G. Local downpours and their erosion effects. Glob. Chang. 2003, 10, 49–66. [Google Scholar]
- Bryndal, T. Local flash floods in Central Europe: A case study of Poland. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2015, 69, 288–298. [Google Scholar] [CrossRef]
- Mertz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar]
- Weingartner, R.; Barben, M.; Spreafico, M. Floods in mountain areas—An overview based on examples from Switzerland. J. Hydrol. 2003, 282, 10–24. [Google Scholar] [CrossRef]
- Creutin, J.D.; Borga, M. Radar hydrology modifies the monitoring of flashflood hazard. Hydrol. Process. 2003, 17, 1453–1456. [Google Scholar] [CrossRef]
- Bryndal, T. Identyfikacja małych zlewni podatnych na formowanie gwałtownych wezbrań (na przykładzie Pogórza Dynowskiego, Strzyżowskiego i Przemyskiego. Przegląd Geogr. 2011, 83, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Ziemnicki, S. Skutki deszczu nawalnego we wsi Piaski Szlacheckie pod Krasnymstawem. Gospod. Wodna 1956, 11, 476–480. [Google Scholar]
- Gil, E. Spływ wody i procesy geomorfologiczne w zlewniach fliszowych podczas gwałtownej ulewy w Szymbarku w dniu 7 czerwca 1985 roku. Dok. Geogr. 1998, 11, 85–107. [Google Scholar]
- Bryndal, T.; Cabaj, W.; Ciupa, T. Gwałtowne wezbrania małych cieków w Niecce Nidziańskiej. Przegląd Geogr. 2008, 80, 127–146. [Google Scholar]
- Abdelkareem, M. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards 2017, 85, 19–37. [Google Scholar] [CrossRef]
- Costache, R.; Zaharia, L. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment—Case study: Bâsca Chiojdului River catchment (Romania). J. Earth Syst. Sci. 2017, 126, 59. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y. GIS-based dynamic modelling and analysis of flash floods considering land-use planning. Int. J. Geogr. Inf. Sci. 2017, 31, 481–498. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Avand, M.; Janizadeh, S.; Phong, T.V.; Al-Ansari, N.; Ho, L.S.; Das, S.; Le, H.V.; Amini, A.; Bozchaloei, S.K.; et al. GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water 2020, 12, 683. [Google Scholar] [CrossRef] [Green Version]
- Elkhrachy, I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Li, J.; Cheng, W.; Wang, W.; Guo, L. A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China. ISPRS Int. J. Geo Inf. 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.-M.; Shen, S.-L.; Zhou, A.; Yang, J. Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Space Technol. 2019, 84, 31–44. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Zhou, W.-H.; Shen, S.-L.; Zhou, A.-N. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 202103. [Google Scholar] [CrossRef]
- Wilson, E. Adapting to Climate Change at the Local Level: The Spatial Planning Response. Local Environ. 2006, 11, 609–625. [Google Scholar] [CrossRef]
- Onur, A.Z.; Tezer, A. Ecosystem services based spatial planning decision making for adaptation to climate changes. Habitat Int. 2015, 47, 267–278. [Google Scholar] [CrossRef]
- Franczak, P.; Listwan-Franczak, K.; Działek, J.; Biernacki, W. Planowanie przestrzenne na obszarach zalewowych w zlewniach górskich różnego rzędu w dorzeczu górnej Wisły oraz górnej i środkowej Odry. Prace Studia Geogr. 2016, 61, 25–45. [Google Scholar]
- Rannow, S.; Loibl, W.; Greiving, S.; Gruehn, D.; Meyer, B.C. Potential impacts of climate change in Germany—Identifying regional priorities for adaptation activities in spatial planning. Landsc. Urban Plan. 2010, 98, 30. [Google Scholar] [CrossRef]
- Greiving, S.; Fleischhauer, M. National Climate Change Adaptation Strategies of European States from a Spatial Planning and Development Perspective. Eur. Plan. Stud. 2012, 20, 27–48. [Google Scholar] [CrossRef]
- Neuvel, J.M.M. Geographical Dimensions of Risk Management. In The Contribution of Spatial Planning and Geo-ICT to Risk Reduction; Thesis Wageningen University: Wageningen, The Netherlands, 2009. [Google Scholar]
- Ran, J.; Nedovic-Budic, Z. Integrating spatial planning and flood risk management: A new conceptual framework for the spatially integrated policy infrastructure. Comput. Environ. Urban Syst. 2016, 57, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Gralepois, M. What Can We Learn from Planning Instruments in Flood Prevention? Comparative Illustration to Highlight the Challenges of Governance in Europe. Water 2020, 12, 1841. [Google Scholar] [CrossRef]
- Sapountzaki, K.; Wanczura, S.; Casertano, G.; Greiving, S.; Xanthopoulos, G.; Ferrara, F.F. Disconnected policies and actors and the missing role of spatial throughout the risk management cycle. Nat. Hazards 2011, 59, 1445–1474. [Google Scholar] [CrossRef]
- Biernacki, W.; Bokwa, A.; Dziadek, J.; Padło, T. Społeczności Lokalne Wobec Zagrożeń Przyrodniczych i Klęsk Żywiołowych; Wyd. UJ: Kraków, Poland, 2009. [Google Scholar]
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Kobus-Legutko, P.; Nowak, M. The Contemporary Economic Costs of Spatial Chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Uziak, S.; Turski, R. (Eds.) Środowisko Przyrodnicze Lubelszczyzny; Lubelskie Towarzystwo Naukowe: Lublin, Poland, 2009. [Google Scholar]
- Bański, J. Rozwój Obszarów Wiejskich; PWE: Warszawa, Poland, 2017. [Google Scholar]
- Zgłobicki, W.; Karczmarczuk, K.; Baran-Zgłobicka, B. Intensity and Driving Forces of Land Abandonment in Eastern Poland. Appl. Sci. 2020, 10, 3500. [Google Scholar]
- Ustawa z dnia 18 kwietnia 2002 r. o stanie klęski żywiołowej. Dziennik Ustaw 62/2002 poz. 558 (tekst jednolity Dz. U. 2017 poz. 1897). Issued by Prime Minister of Republic of Poland. 2002. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20020620558 (accessed on 20 December 2020).
- Ustawa z dnia 8 marca 1990 r. o samorządzie gminnym. Dziennik Ustaw 16/1999 poz. 95 (tekst jednolity Dz. U. 2020, poz. 713). Issued by Prime Minister of Republic of Poland. 1990. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19900160095 (accessed on 20 December 2020).
- Ustawa z dnia 26 kwietnia 2007 r. o zarządzaniu kryzysowym. Dziennik Ustaw 89/2007 poz. 590 (tekst jednolity Dz. U. 2020 poz. 1856). Issued by Prime Minister of Republic of Poland. 2007. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20070890590 (accessed on 20 December 2020).
- Poskrobko, B.; Poskrobko, T. Zarządzanie Środowiskiem w Polsce; PWE: Warszawa, Poland, 2012. [Google Scholar]
- Wróblewski, D. (Ed.) Zagadnienia Ogólne z Zakresu Zarządzania Ryzykiem i Zarządzania Kryzysowego; Analiza wybranych przepisów; Wyd. CNBOP-PIB: Józefów, Poland, 2014. [Google Scholar]
- Wróblewski, D. (Ed.) Zarządzanie Ryzykiem. Przegląd Wybranych Metodyk; Wyd. CNBOP-PIB: Józefów, Poland, 2018. [Google Scholar]
- Ustawa z dnia 27 Marca 2003 r. o Planowaniu i Zagospodarowaniu Przestrzennym; Dziennik Ustaw 84/2001 poz. (tekst jednolity Dz. U. 2020 poz. 293). Issued by Prime Minister of Republic of Poland. 2003. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20030800717 (accessed on 20 December 2020).
- Nowak, M.J. Decyzje o Warunkach Zabudowy i Zagospodarowania Terenu w Gospodarowaniu i Zarządzaniu Przestrzenią; CeDeWu: Warszawa, Poland, 2012. [Google Scholar]
- Nowak, M.J. Planowanie i Zagospodarowanie Przestrzenne: Komentarz Do Ustawy i Przepisów Powiązanych; Wydawnictwo C.H. Beck: Warszawa, Poland, 2019. [Google Scholar]
- Dyrektywa 2007/60/WE Parlamentu Europejskiego i Rady z dnia 23 października 2007 r. w sprawie oceny ryzyka powodziowego i zarządzania nim. Publisher: Dziennik Urzędowy Unii Europejskiej, L. 228 z 06.11.2007 r. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=OJ:L:2007:288:FULL&from=FI (accessed on 20 December 2020).
- Ustawa z dnia 17 lipca 2017 r. Prawo wodne. Dziennik Ustaw 2017 poz. 1566 (tekst jednolity Dz. U. 2020 poz. 310). Issued by Prime Minister of Republic of Poland. 2017. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 20 December 2020).
- Głosińska, E. Spatial planning in floodplains for implementation by the floods directive in Poland. Geogr. Pol. 2014, 87, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Dutkowiak, I. Prawo Wodne w Procesie Inwestycyjnym; Presscom: Wrocław, Poland, 2018. [Google Scholar]
- Rakoczy, B. Prawo Wodne. Praktyczny Przewodnik; Wolters Kluwer: Warszawa, Poland, 2018. [Google Scholar]
- IT System for the Protection of the Country against Extreme Hazards. Available online: https://wody.isok.gov.pl/imap_kzgw/?gpmap=gpMZP (accessed on 20 December 2020).
- Ustawa z dnia 18 lipca 2001 r. Prawo wodne. Dziennik Ustaww 115/2001 poz. 1229 (Dz. 2015 poz. 2295, tekst jednolity 2017 poz. 1121). Issued by Prime Minister of the Republic of Poland. 2001. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20011151229 (accessed on 20 December 2020).
- Boardman, J.; Vandaele, K.; Evans, R.; Foster, I.D.L. Off-site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use Manag. 2019, 35, 245–256. [Google Scholar] [CrossRef] [Green Version]
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 20 December 2020).
- GUGiK. Available online: http://www.gugik.gov.pl/pzgik (accessed on 20 December 2020).
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 12 December 2020).
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 20 December 2020).
- Meng, M.; Dabrowski, M.; Stead, D. Enhancing Flood Resilience and Climate Adaptation: The State of the Art and New Directions for Spatial Planning. Sustainability 2020, 12, 7864. [Google Scholar] [CrossRef]
- Neuvel, J.M.M.; Van Den Brink, A. Flood risk management in Dutch local spatial planning practices. J. Environ. Plan. Manag. 2009, 52, 865–880. [Google Scholar] [CrossRef]
- Kron, W. Flood Risk = Hazard. Values. Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Martins, B.; Nunes, A.; Lourenço, L.; Velez-Castro, F. Flash Flood Risk Perception by the Population of Mindelo, S. Vicente (Cape Verde). Water 2019, 11, 1895. [Google Scholar] [CrossRef] [Green Version]
- Konieczny, R.; Siudak, M.; Bogdańska-Warmuz, M.; Madej, P.; Walczykiewicz, T. Opracowanie systemu zapobiegania i sposoby ograniczenia skutków powodzi oraz zasad funkcjonowania systemu ostrzeżeń. In Wpływ Zmian Klimatu na Środowisko, Gospodarkę i Społeczeństwo. Tom 3, Klęski Żywiołowe a Bezpieczeństwo Wewnętrzne Kraju; Lorenc, W.H., Ed.; Wydawnictwo IMGW-PIB: Warszawa, Poland, 2012; pp. 281–303. [Google Scholar]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods—A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [Green Version]
Score | Catchment Area (km2) | Circularity Index | Mean Catchment Gradient | Density of River Network (km·km−2) | Mean Length of First-Order Watercourses (km) | Forest Cover (%) | Built-Up Area (%) | Density of Road Network (km·km−2) |
---|---|---|---|---|---|---|---|---|
1 | >60 | >0.7 | <1.75° | <0.15 | >10 | >40 | <0.1 | <0.5 |
2 | 30–59 | 0.6–0.7 | 1.75–1.9° | 0.15–0.19 | 7.5–9.9 | 20–39 | 0.2–1.9 | 0.5–1.4 |
3 | 20–29 | 0.5–0.59 | 2–2.4° | 0.2–0.29 | 5.0–7.4 | 10–19 | 2–4.9 | 1.5–2.9 |
4 | 10–19 | 0.4–0.49 | 2.5–2.9° | 0.3–0.49 | 2.5–4.9 | 5–9 | 5–19.9 | 3–4.9 |
5 | 5–9 | 0.3–0.39 | 3–3.5° | 0.5–0.59 | 1–2.4 | 0.2–5 | 20–40 | 5–10 |
6 | <5 | <0.3 | >3.5° | >0.6 | < 1 | <0.2 | >40 | >10 |
Weight | 1.5 | 0.8 | 2 | 0.8 | 1 | 2 | 0.8 | 1.5 |
Parameter | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Catchment area (km2) | 19.2 | 16.7 | 0.1 | 98.3 |
Mean catchment gradient (o) | 2.53 | 0.74 | 1.27 | 5.88 |
Forest cover (%) | 14.1 | 14.2 | 0.0 | 81.2 |
Circularity index | 0.506 | 0.10 | 0.209 | 0.803 |
Density of river network (km·km−2) | 0.28 | 0.16 | 0.1 | 0.89 |
Mean length of first-order watercourses (km) | 3.13 | 2.33 | 0.8 | 17.4 |
Built-up area (%) | 6.54 | 11.6 | 0 | 99.8 |
Density of road network (km·km−2) | 1.86 | 6.11 | 0.1 | 16.5 |
Class | Number of Catchments | Area (km2) | Proportion of Area (%) |
---|---|---|---|
I | 44 | 1250.82 | 17.3 |
II | 165 | 3654.68 | 50.7 |
III | 129 | 1972.14 | 27.3 |
IV | 31 | 231.79 | 3.2 |
Parameter | Correlation Coefficient |
---|---|
Catchment area | −0.382 |
Mean catchment gradient | 0.218 |
Forest cover | −0.459 |
Built-up areas | 0.405 |
Circularity index | −0.020 |
Density of river network | 0.232 |
Density of road network | 0.063 |
Mean length of first-order watercourses | 0.276 |
Municipalities | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Selected Features | Lublin | Zamość | Fajsławice | Głusk | Grabowiec | Jastków | Konopnica | Rudnik | Skierbieszów | Strzyżewice | Trzeszczany | Uchanie | Żółkiewka |
City | Rural Municipality | ||||||||||||
Area of the unit (km2) | 147 | 30 | 71 | 64 | 128 | 113 | 93 | 89 | 139 | 109 | 90 | 121 | 130 |
Population density (persons/km2) | 2303 | 2103 | 65 | 174 | 31 | 124 | 149 | 34 | 37 | 74 | 46 | 38 | 42 |
Forest cover (%) | 11.4 | 1.6 | 4.0 | 7.7 | 10.3 | 4.9 | 5.9 | 9.2 | 19.9 | 15.9 | 13.5 | 15.5 | 8.7 |
Agricultural land (%) * | 36.8 | 47.1 | 92.3 | 85.9 | 86.8 | 88.5 | 88.8 | 88.1 | 76.1 | 81.2 | 83.1 | 81.4 | 88.7 |
Arable land (%) * | 31.1 | 29.7 | 84.8 | 79.8 | 72.3 | 75.0 | 73.4 | 76.9 | 61.5 | 71.0 | 68.6 | 67.2 | 80.7 |
Built-up and urbanized land (%) ** | 45.9 | 49.3 | 2.8 | 5.1 | 2.5 | 4.5 | 4.7 | 1.9 | 3.4 | 2.7 | 8.1 | 2.4 | 2.1 |
Spatial Planning Documents | |||||||||||||
Existing Spatial Development Plans | |||||||||||||
Local plans (in total) (number) | 94 | 1 | 1 | 16 | 5 | 25 | 7 | 2 | 4 | 1 | 6 | 2 | 1 |
Area covered by local plans (%) | 53.7 | 100 | 100 | 7.6 | 100 | 94.9 | 24.2 | 99.9 | 6.3 | 100 | 99.9 | 2.8 | 12.5 |
Decisions on building conditions and land development issued in 2009–2018 | |||||||||||||
On determining the location of a public purpose investment | 1759 | 0 | 0 | - | 0 | 60 | 0 | 0 | 38 | 0 | 0 | 33 | 15 |
Concerning building conditions (in total) | 7588 | 0 | 0 | - | 0 | 53 | 3292 | 1 | 123 | 0 | 0 | 212 | 66 |
Concerning multi-family housing | 651 | 0 | 0 | - | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 13 | 0 |
Concerning single-family housing | 3241 | 0 | 0 | - | 0 | 44 | 2085 | 1 | 70 | 0 | 0 | 97 | 22 |
Concerning service buildings | 1584 | 0 | 0 | - | 0 | 2 | 107 | 0 | 1 | 0 | 0 | 14 | 1 |
Concerning other buildings | 2112 | 0 | 0 | - | 0 | 7 | 1098 | 0 | 52 | 0 | 0 | 88 | 43 |
Municipality | Area Occupied by the III and IV Susceptibility Class (%) | Flash Floods (FF) Risk (Results of the Study) Flood Hazard Flood Hazard Maps (FHM), Flood Risk Maps (FRM) | Planning Documents | |
---|---|---|---|---|
Lublin | 85.9 | Within the city limits there is a large share of FF risk areas, the highest degree of susceptibility (class IV) covers the catchments of river valleys. Most of the city within the FHM and FRM sheets, small areas are within the water range of Q1% and Q0.2% | The study (2019) delineates the main areas of flood occurrence in river valleys; recommendations for risk areas, the exclusion of buildings in local plans; indicates that flooding may occur locally as a result of torrential rain or thaw (in river valleys and dry valleys). | Local plans (2002, 2005) regulate the problems of flood risk to a small extent. Local plans (2014, 2016, 2018, 2019) indicate areas at risk of flooding with a water range of 1% and 0.2% and at risk of flooding in the event of a dam or flood embankment breakage. |
Zamość | 58.2 | More than half of the city is located in an area of significant FF threat The area entirely within the FHM and FRM sheets, which include river valleys, individual buildings are within Q1% and Q0.2% of water range. | The study (2019) indicates the development of flood protection infrastructure in river valleys, increasing retention and excluding buildings; does not designate areas of particular flood risk. | The local plan (2006) for the entire city does not define the boundaries and ways of management and development of flood-prone areas. |
Fajsławice | 85.1 | Most of the catchment area in the commune is susceptible (class III) to FF. A small fragment of the area is within the FHM and FRM, but apart from the flood risk of 1% and 0.2% | The study (2015) allows for the construction of hydrotechnical structures for water retention or flood protection. | Changes to the local plan (2006, 2014, 2018) do not define the range of flood-prone areas due to the lack of occurrence. |
Głusk | 78.3 | Most of the catchment area in the municipality is susceptible (class III) to FF. River valleys partly within FHM and FRM. | The study (2018) indicates the risk of rainfall and snowmelt floods; defines the boundaries of flood risk areas; excludes from development areas at risk of flooding with water reach of 10%, 1% and 0.2%. | The local plan (1999) for the entire municipality does not indicate the risk of flooding. Changes to the plans (2005, 2006), covering fragments of river valleys, do not indicate a flood risk. |
Grabowiec | 52.1 | More than half of the area is catchment areas susceptible to FF (mainly class III) Fragments of river valleys within the FHM and FRM sheets. | The study (2013) shows that there are no flood risk areas in the municipality. | The local plan (2002) and its changes (2009, 2015) do not define the issues related to flood risk. |
Jastków | 91.5 | Most of the catchments are susceptible (class III) to FF, very susceptible (class IV) are in the S-E part. Partly river valleys within the FHM and FRM sheets, but outside the flood risk of 1% and 0.2%. | The study (2015) prohibits the location of new buildings in river valleys in flood risk areas; sets out the rules of development within plots bordering on riverbanks. | The local plan (2002) does not specify the flood risk. Changes to the local plan apply to small areas and do not include flood risk areas. |
Konopnica | 67.4 | There is a large area of catchments susceptible (class III) and very susceptible (class IV) to FF. Small parts of the area within the FHM and FRM sheets, but outside the flood risk of 1% and 0.2%. | The study (2010) sets the water range of 1% (coincides with the boundaries of the river valley bottoms) and the general principles of management. | The local plan (2002) does not specify the flood risk. |
Rudnik | 81.5 | Most of the catchments in the municipality are susceptible (III) to FF. Only N part located within FHM and FRM, but outside the flood hazard area 1% and 0.2%. | The study (2019) identifies the areas of flood risk and inundation related to ground and water conditions as well as snowmelt and torrential rainfall; | Local plan (2004) unavailable, its content has not been analyzed. The change of the plan (2010) indicates that there is no flood risk in the area covered by the plan. |
Skierbieszów | 61.8 | A large proportion of catchments susceptible to FF (mainly class III). Area within the FHM and FRM sheets, buildings beyond the range of Q1% water, while at Q0.2% individual properties at risk of flooding. | Study (2002)—no information on flood risk; indicates the areas for the location of retention reservoirs. | The local plan (2006), in the area of direct flood risk, prohibits the location of buildings and construction of buildings. |
Strzyżewice | 59.6 | There is a large share of FF susceptible catchments (only class III). Most of the area within the FHM and FRM sheets, individual properties within Q1% water and a few farms at Q0.2%. | The study (2010) indicates areas exposed to flooding—mainly river valleys, including areas within 1% of water reach; determines the location of buildings outside the flood hazard areas. | The local plan (2003) indicates the river valley bottoms as potential flood areas. The change of the plan (2011) designates the areas at risk of flooding with a water range of 1%. |
Trzeszczany | 66.1 | The western part of the area—catchments in susceptibility class III and IV. | Study (1999)—document unavailable, not analyzed. | The local plan (2003) does not specify the risks associated with flooding. Amendments to the plan (2009, 2013, 2015) establish that there are no flood-prone areas. |
Only the middle-eastern part within the boundaries of the FHM and FRM sheets, but outside the flood risk of 1% and 0.2%. | ||||
Uchanie | 53.9 | Main river valley catchment areas endangered by FF (class III and IV). | The study (2017) shows that municipality is only exposed to spring snowmelt or rain flooding. | The local plan (2007) concerns the areas to be afforested, and the second (2017) the location of the pipeline, in both there is no reference to flood risk. |
The western part within the FHM and FRM sheets, but outside the flood risk of 1% and 0.2%. | ||||
Żółkiewka | 50.0 | Half of the area is covered by catchments susceptible to FF (class III). Most of the area within the FHM and FRM sheets, but outside the flood risk of 1% and 0.2%. | The study (2012) indicates a high water range area with a probability of 1% and 0.5%; determines the location of buildings outside the flood hazard areas. | The local plan (2006), in the area of direct flood risk, prohibits the location of buildings and construction of buildings. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran-Zgłobicka, B.; Godziszewska, D.; Zgłobicki, W. The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland). Resources 2021, 10, 14. https://doi.org/10.3390/resources10020014
Baran-Zgłobicka B, Godziszewska D, Zgłobicki W. The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland). Resources. 2021; 10(2):14. https://doi.org/10.3390/resources10020014
Chicago/Turabian StyleBaran-Zgłobicka, Bogusława, Dominika Godziszewska, and Wojciech Zgłobicki. 2021. "The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland)" Resources 10, no. 2: 14. https://doi.org/10.3390/resources10020014
APA StyleBaran-Zgłobicka, B., Godziszewska, D., & Zgłobicki, W. (2021). The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland). Resources, 10(2), 14. https://doi.org/10.3390/resources10020014