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Abstract: Concerning the significant increase in the negative effects of flash-floods worldwide,
the main goal of this research is to evaluate the power of the Analytical Hierarchy Process (AHP),
fi (kNN), K-Star (KS) algorithms and their ensembles in flash-flood susceptibility mapping. To train
the two stand-alone models and their ensembles, for the first stage, the areas affected in the past by
torrential phenomena are identified using remote sensing techniques. Approximately 70% of these
areas are used as a training data set along with 10 flash-flood predictors. It should be remarked that
the remote sensing techniques play a crucial role in obtaining eight out of 10 flash-flood conditioning
factors. The predictive capability of predictors is evaluated through the Information Gain Ratio (IGR)
method. As expected, the slope angle results in the factor with the highest predictive capability.
The application of the AHP model implies the construction of ten pair-wise comparison matrices for
calculating the normalized weights of each flash-flood predictor. The computed weights are used as
input data in kNN–AHP and KS–AHP ensemble models for calculating the Flash-Flood Potential
Index (FFPI). The FFPI also is determined through kNN and KS stand-alone models. The performance
of the models is evaluated using statistical metrics (i.e., sensitivity, specificity and accuracy) while the
validation of the results is done by constructing the Receiver Operating Characteristics (ROC) Curve
and Area Under Curve (AUC) values and by calculating the density of torrential pixels within FFPI
classes. Overall, the best performance is obtained by the kNN–AHP ensemble model.
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1. Introduction

The climatic changes and land-use changes represent the leading causes of the growth of the
negative effects of flash-floods worldwide and, thus, flash-floods have become one of the most
damaging natural phenomena [1]. Frequently, these risk phenomena generate material damage and
loss of life at international levels [2]. Globally, the number of casualties due to flash-floods between
1996 and 2015 is estimated at 150,061 [3]. Therefore, the study of the susceptibility to this natural
hazard has an increasing weight in the work of present researchers [4].

According to Elkhrachy [5], the flash-flood represents a quick formation of a flood, which is
caused by heavy rainfall taking only a few hours and producing relatively high peak discharges.
The flash-floods occur due to the heavy rainfall which generates an active manifestation of the surface
runoff on slopes. According to Jacinto et al. [6], the flash-flood susceptibility represents the propensity
of an area, given by its physical-geographical characteristics, to be affected by flash-flooding. According
to Khosravi et al. [7], he flash-flood susceptibility should play an essential role in the effective flash-flood
management of basins. Furthermore, Youssef et al. [8] adhere to the fact that flash-flood forecast and
warning activity also should be based on accurate identification of susceptible areas.

Regarding flash-flood warning and assessment, the Flash Flood Guidance (FFG) is considered one
of the effective methods [9]. The FFG can be described as the spatio-temporal and uniform distribution of
the rainfall depth with a specified duration over a basin, which is just enough to produce minor flooding
at the basin outlet [9]. This method can be performed statistically or applying geomorphological
principles [10]. It has been widely used as an operational method for the quick assessment of
localized threats of flash-flooding for large areas. Particularly, it is performed by comparing the
observed (real-time) or predicted rainfall to the computed rainfall depth of the same-duration [11].
The FFG method provides useful information for the operational practice of flash-flood early warnings.
The details of this method are given, for example, by Carpenter et al. [12], Georgakakos [13], or Ntelekos
et al. [14], who also studied the uncertainties in the FFG and its components.

Other methods try to incorporate hydrologic and/or hydraulic models for (flash-)flood
modeling [15]. However, these models are generally time-consuming and require very detailed
and accurate datasets represented mainly by the high-resolution digital elevation model, design rainfall,
roughness parameters or design discharges. Alternately, the flash-flood susceptibility models can be
used in large areas, such as in an entire river basin or a whole country. Moreover, these models take
into account the areas affected by the past flash-floods as the dependent variable, as well as many
independent variables (predictors) which influence the flash-flooding, for example, morphometric
factors (e.g., slope angle), lithology, hydrological soil groups, land use/land cover and the like. These
input datasets can be incorporated into specific models to derive the areas susceptible to flash-floods.

The current trend in flash-flood susceptibility assessment for large areas is mainly focused on using
machine learning, bivariate statistics, and multi-criteria decision-making algorithms. Accordingly,
the preferred machine learning algorithms include artificial neural networks (ANN) [16,17], decision
trees (DT) [7,18], support vector machine (SVM) [19,20], and logistic regression (LR) [21]. Considering
terms of bivariate statistics, the following models can be remarked: frequency ratio (FR) [22], weights
of evidence (WoE) [23], statistical index (SI) [24], certainty factor (CF) [1] and index of entropy (IE) [25].
Regarding the multi-criteria decision making (MCDM), the following techniques are frequently used:
Analytical Hierarchy Process (AHP) [26], VIseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) [27] and Technique for Order of Prioritization by Similarity to Ideal Solution (TOPSIS) [28].

Since the ensembles of machine learning with bivariate statistics and MCDM methods are
considered more accurate than stand-alone models [29,30], their use in the research becomes increasingly
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more frequent. An example in which the machine learning was coupled with multi-criteria decision
making is the attempt of Choubin et al. [31] who computed the flood susceptibility across the
Khiyav–Chai watershed in Iran by using decision trees, a support vector machine, multi-criteria
decision making and their ensemble. Tehrany et al. [32] carried out a flood susceptibility study on the
Kelantan river basin in Malaysia highlighting that the hybrid model, created by the combination of
frequency ratio and SVM, outperformed the DT stand-alone model.

Moreover, during the last years, researchers tried to increase the performance of machine learning
algorithms with different optimization algorithms. Among these attempts is the case study realized by
Ahmadlou et al. [33] in which the optimization of the adaptive neuro-fuzzy inference system (ANFIS)
was performed by two metaheuristic algorithms to estimate the flood susceptibility. Another example
is given by Bui et al. [34] who demonstrated that an extreme learning machine (ELM) optimized
with particle swarm optimization (PSO) outperformed the ANN, SVM and DT models in terms of
flash-flood susceptibility assessment.

Tien Bui et al. [35] highlighted the increase, during the last years, in the number of studies that use
remote sensing in combination with many machine learning models to compute flood susceptibility
maps. The high importance of remote sensing is due to the fact that these techniques play an essential
role in the creation of input datasets for machine learning models. This fact is highlighted also
by Wang et al. [36] who mentioned that the remote sensing images are a reliable source for flood
inventory procedure.

Accordingly, the aim of this study is to define and calculate the Flash-Flood Potential Index (FFPI)
employing two stand-alone models and their ensembles. The k-Nearest Neighbor (kNN) and lazy
K-Star (KS) algorithms are used as stand-alone models while the ensemble methods are represented
by the integration of the AHP technique and both the kNN and KS models. It is worth remarking
that a high percentage of the input datasets in these models are derived through remote sensing (RS)
techniques and geographic information systems (GIS). Assessment of the models’ performances are
carried out through several statistical measures. Regarding the validation of the FFPI maps, the ROC
Curves and the share of torrential pixels in each FFPI class are used. The upper and middle part
of the Prahova river basin in Romania is selected as the study area since it is considered one of the
most affected regions by flash-flooding [4]. The novelty of this study, i.e., difference in respect to the
previous similar studies, is seen in the application of the K-Star (KS) model as well as the two ensemble
models (kNN–AHP and KS–AHP), which are used for the first time for flash-flood or, in general, flood
susceptibility mapping.

2. Study Area

The location of the upper and middle parts of the Prahova river basin is in the south-central part
of Romania. The study area is defined by the parallels of 45◦32′21.85′′N and 45◦00′23.33′′N and the
meridians of 25◦27′32.00′′E and 26◦27′10.19′′E (Figure 1). The total area of the selected basin part is
2600 km2.

The study area is characterized by the elevations between 128 m and 2505 m on the highest
mountain peaks. The study area is spread on both the Carpathian region and the Subcarpathian region
and it is characterized by a mean slope angle of 12.43◦ [37]. The lithology of the study area contains
hard rocks, flysch and sedimentary rocks such as sand, gravel and loess. The amount of precipitation
in the Subcarpathian region is approximately 600 mm/year, while in the Carpathian region it increased
to 1200 mm/year. During the summer, heavy rainfalls frequently generate severe flash-flood events.
Land-use also substantially influences the surface runoff genesis. Thus, the built-up surfaces that create
favorable conditions for flash-flood occurrence are spread approximately on 10% of the selected basin
area. The afforestation represents 48.2%. Regarding the soil characteristics, the hydrological soil group
A covers 801 km2, hydrological soil group B has an area of 727 km2 and the hydrological soil group D
covers 682 km2. It should be noted that the hydrological soil group D, which has the highest potential
in the genesis of surface runoff, covers around 25% of the selected basin area.
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Figure 1. Location of the study area.

3. Data

Given the fact that this study aims at the mapping of areas that are highly susceptible to
flash-flooding, only the geospatial data were used for the analysis. Particularly, it should be mentioned
that the RS and GIS were applied to process the input dataset used in the present research.

3.1. Inventory of Torrential Areas

The inventory of torrential areas is mandatory to correctly assess the relationship between the
selected influencing factors and flash-flood susceptibility [37]. Based on the work of Costache and
Zaharia [38], the surfaces, such as ravines and gullies, were used for analysis, representing the actual
torrential microforms. The remote sensing techniques were involved in this stage of the study and the
aerial imagery from the Google Earth application was used to delineate the areas affected by torrential
processes within the study area (Figure 1). The validation of these areas was performed by field surveys
using a professional GNSS device. Finally, a total surface of 260 km2, representing torrential areas and
containing about 289,000 pixels, was delineated (Figure 1). This surface represents approximately 10%
of the entire territory covered by the study area (2600 km2).

3.2. Flash-Flood Conditioning Factors

To compute the FFPI for the study area, ten flash-flood variables were selected. Seven morphometric
factors based on the digital elevation model (DEM) and the other three factors were obtained from
vector databases. The DEM for the study area was generated from the Shuttle Radar Topography
Mission (SRTM), which has a spatial resolution of 30 m, using RS techniques [39]. The DEM included in
the SRTM database was obtained based on measurements carried out through the Synthetic Aperture
Radar (SAR) interferometry [40]. Based on the DEM, the following variables were derived: slope angle,
aspect, plan curvature, profile curvature, convergence index, topographic position index (TPI) and
topographic wetness index (TWI). Thus, the application of RS techniques was crucial for obtaining the
accurate DEM and, consequently, seven flash-flood conditioning factors. Moreover, the RS techniques,
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namely the supervised classification method, had a vital contribution in the delimitation of land-use
categories. These land-use categories were further used to obtain the Curve Number, which is one of
the most critical flash-flood predictors. The flash-flood predictors, along with their influence on runoff

generation, are described in the following text.
Lithology has an important influence on surface runoff genesis because this factor controls the

water infiltration rate. The lithological classes for the research area were extracted from the digital
version of the Geological Map of Romania (1:200,000). Around 40% of the study area is built with
marls, flysch and conglomerates. The lithological map was subsequently converted to 30 m raster
(Figure 2a). Regarding the convergence index (Ci), its importance for the computation of flash-flood
potential was highlighted in many of the previous studies [38,41–43]. The river valleys are highlighted
by the negative values of this morphometric parameter, while the positive ones indicate the interfluvial
zones. The Ci values were classified into the following five classes: (−96)–(−3), (−3)–(−2), (−2)–(−1),
(−1)–0 and 0–95 (Figure 2b). Profile curvature differentiates the areas prone to runoff (negative values)
from those (positive values) which are less susceptible to surface runoff [43]. More than 50% of the
torrential pixels belong to the class between −8.2 and 0 (Figure 2c). Curve Number (CN) (Figure 2d)
is widely used to estimate the direct runoff based on a given rainfall event. Concerning a specific
territory, the CN values, which may range between 0 to 100, are derived based on the land-use
categories and hydrological soil groups (HSG) [37,44–46]. The HSG control the infiltration rate, the
soil moisture and surface runoff, while the land-use has a high influence on surface runoff due to
the different Manning coefficients [47,48]. The HSG were derived from the vector format of the Soil
Map of Romania (1:200,000). Moreover, the land-use/land-cover was derived from the CORINE Land
Cover (2018) database. It should be mentioned that the CORINE Land Cover dataset was obtained
by the supervised classification of Sentinel-2 and Landsat 8 images. Using the natural breaks (Jenks)
classification, the resulting CN values were classified as follows: 0–43, 43–52, 52–69, 69–80, 80–89,
88–100 (Figure 3d). The values between 43 and 80 cover 70% of the total basin area and approximately
correspond to 45% of the torrential areas. Plan curvature is a flash-flood predictor which highlights the
surfaces which are characterized by convergent or divergent runoff. Thus, this morphometric factor is
very useful in analyzing the areas susceptible to surface runoff. The highest share (58%) of the study
area corresponds to the plan curvature values from 0.1 to 0.5 (Figure 2e). Modified Fournier Index
(MFI), as another flash-flood conditioning factor, describes the spatial variability of rainfall intensity
within a specific region [37,49]. The following Equation (1) can be used to calculate the MFI values [50]:

MFI =
12∑

i=1

P2
i

P
(1)

where Pi is the monthly average amount of precipitation for month i in mm, and P is the average
annual rainfall.

The average amount of precipitation from 23 meteorological stations located inside and around
the study area was used (Figure 1). Based on the work of Kourgialas and Karatzas [50], the spatial
variability of the precipitation was modeled with the use of Spline interpolation. Finally, the MFI
values were derived by using the precipitation amount in raster format and Equation (1). These values
were reclassified into five classes using natural breaks (Jenks) algorithm: 53.56–57.43, 57.44–62.83,
62.84–68.69, 68.7–75.14, 75.15–83.46 (Figure 2f). The class between 53.76 and 57.43 quantifies around
28% of the study area. The highest percentage of torrential pixels (36.6%) is included in the MFI class
between 68.7 and 75.14. According to the vast majority of studies [48,51–56], slope degree has the
highest impact on the generation of surface runoff. This morphometric flash-flood predictor was
derived from the DEM (Figure 3a). The following classes were established for slope angle: 0–3◦, 3–7◦,
7–15◦, 15–25◦ and >25◦ [49]. Although the slope class between 15◦ and 25◦ contains almost 40% of
the torrential areas, the highest density of torrential pixels was recorded in the class higher than 25◦.
Thus, the slope class higher than 25◦, which quantifies 7.08% of the total study area, includes 20.7%
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of the total surface of torrential areas (Figure 4). This situation can be explained by the high velocity
of water runoff that is recorded on slopes higher than 25◦. The torrential relief microforms also are
present in a high percentage (32.8%) on slopes between 7◦ and 15◦ because the gravitational force is
high enough to generate rapid surface runoff.
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The values of TPI denote the elevation difference between a grid cell and the neighboring cells [57].
The resulting TPI values were classified as follows: (−34.82)–(−2.08); (−2.08)–(−0.84); (−0.83)–0.14;
0.15–1.12; 1.13–27.96. The highest share (45%) is represented by the TPI class from (−0.83) to 0.14
(Figure 3b). TWI is an important runoff predictor which was computed based on Equation (2) [58]:

TWI = ln
(
α

tan β

)
(2)

where α is the cumulative upslope area draining through a point (per unit contour length), and tan β is
the slope angle at the point.
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The classification of the TWI values is as follows: −9.7–4.5; 4.6–8.4; 8.5–12; 13–15; 16–25 (Figure 3c).
The largest areas correspond to the medium TWI class (8.5–12) which has a total share of 29% (Figure 4).

Aspect is a flash-flood predictor, derived from the DEM, which values were divided into ten
classes. Slope aspect has an indirect role on the surface runoff due to its influence on the other factors
such as rainfall regime, soil humidity, and solar radiation. Having a percentage of 15%, eastern
and south-western slopes occupy the most extensive surfaces (Figure 3d). Eastern surfaces contain
approximately 20% of the total torrential pixels (Figure 4).
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4. Background of the Employed Algorithms

4.1. Analytical Hierarchy Process (AHP)

The AHP belongs to multi-criteria decision-making methods that solve complex problems
in a simpler way [59]. The AHP model is based on the active participation of decision-makers within
the entire methodological workflow [60]. Many studies applied this method for the evaluation of
susceptibility to other natural hazards [26,36,52,61,62]. By using this method, an unstructured problem
is broken into many components. The workflow applied in the AHP model can be described within
the following five main steps [63]:

(i) Defining objectives and dividing the unstructured problem into its components.
(ii) Determining the detailed criteria and alternatives.
(iii) Creation of the pair-wise comparison matrix, which is constructed based upon the expert

opinion regarding the influence of each factor or factor class/category to flash-flood occurrence.
The relative value of a factor can range from 1 to 9 when that factor is more important than another
and conversely from 1/2 to 1/9 when that factor is less important than another [64].

(iv) Computing the relative weights of each criterion (flash-flood predictors) using the
eigenvalue technique.

(v) Computing the consistency ratio (CR) using Equations (3) and (4).

CI =
λmax − n

n− 1
(3)

where λ is the largest eigenvalue of the matrix which can be determined from the comparison matrix,
and n is the number of flash-flood predictors or the number of factor classes/categories.

CR =
CI
RI

(4)

where RI is the random consistency index which relates to the number of factors included in the
comparison matrix [65].

When the CR value is less than 0.1, then it can be stated that the comparison is consistent [65].

4.2. k-Nearest Neighbor (kNN)

According to Marjanovic et al. [66], this simple machine learning algorithm classifies a point in
n-dimensional input space, taking into account the value of class containing the k-closest neighboring
elements using the training dataset. Therefore, this method is used especially in predictive analysis [67].
Basically, in the kNN algorithm, the elements of the same geographical site will have the same
characteristics if they are located near each other [68]. This algorithm uses a simple voting system to
attribute, to a spatial object, a new class value that is most common in the neighboring instances [66].
The new class value is assigned according to a distance metric that exists between the new spatial
object and the k-nearest neighbor. Usually, to define this metric, the Euclidean distance is calculated as
follows (Equation (5)) [69]:

d(x, x′) =
√
(x1 − z1)

2 + (x2 − z1)
2 + · · ·+ (xn − zn)

2 =

√√ n∑
i

(xi − zi)
2 (5)

where xi is the coordinate for x point and zi is the coordinate for z point.
Other distance measures such as Manhattan, Chebyshev, and Hamming can be more suitable for

other model settings.
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Regarding the present study, the kNN algorithm estimated the conditional probability for each
class of flash-flood predictor (X) to belong to the torrential class (y = 1) or non-torrential class (y = 0).
The conditional probability can be determined using Equation (6) [70]:

P(y = j
∣∣∣X = x) =

1
k

∑
i∈T

I(y(i) = j) (6)

where i is the torrential or non-torrential pixel within training dataset, T, k is the number of torrential
or non-torrential pixels, which are located in the proximity of each class of flash-flood predictors.

The k value represents a positive integer which is equal to the number of neighbors used to
calculate the new class value for a specific spatial object (Figure 5). Therefore, the determination
process of an optimal k value is critical due to influences on a considerable measure of the results of the
kNN model and the accuracy of the flash-flood susceptibility map. A low value of k may lead to a large
prediction variance while a large value of k may cause a large model bias.
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4.3. Lazy K-Star (KS) Algorithm

To the best of our knowledge, the presented approach represents the first attempt to determine
the susceptibility to a specific natural hazard through the use of a lazy K-Star (KS) algorithm. The KS
algorithm is an instance-based learning algorithm which creates explicitly the shortest string that
connects two instances using the Kolmogorov distance [71]. The total probability of all paths from
instance a to an instance b represents the probability function used in a KS algorithm and is defined as
follows (Equation (7)):

P∗
(b

a

)
=

∑
tεp:t(a)=b

P(t) (7)

where P∗ is the probability function, t represents the value of T, which is the set of
transformations predefined.

Thus, the KS function is written as follows (Equation (8)):

KS
(b

a

)
= − log2 P∗

(b
a

)
(8)

Apart from the fact that it is not considered exactly a distance function, the KS algorithm also has
the following properties highlighted in Equations (9) and (10) [72]:

KS(b/a) ≥ 0 (9)

KS(c/b) + KS(b/a) ≥ KS(c/a) (10)
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The implementation of the KS model requires, at the beginning of the training process, a correct
estimation of optimal parameters for X0 (real numbers) and s (symbolic attributes) [73]. Concerning
each type of parameter, the probability distribution includes a number of instances varying from 1 to
N. The number of instances is equal to N in that case, if all the instances are equally weighted [73].
Different functions of conditional probability (P∗) can be used to estimate this number based on
Equation (11) [71]:

n0 ≤

(∑
b P∗

(
b
a

))2

∑
b P∗

(
b
a

)2 ≤ N (11)

where N is the total number of training instances and n0 is the smallest distances from a.
The main advantage of a KS algorithm is represented by its high effectiveness when it works with

large data sets and, also, by the fact that this model is robust to noisy training data [74].
To compute the FFPI values using the KS algorithm, Weka 3.9 software [75] was used.

5. Proposed Methodology for Predicting Flash-Flood Potential

The entire methodological workflow is graphically illustrated in Figure 6. As it can be observed,
the flash-flood susceptibility was computed through two stand-alone and two ensemble methods.
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5.1. Establishment of Flash-Flood Database

During the first step of the methodological workflow, the flash-flood database for the study
area was established applying the ArcGIS 10.5 software. The database that was used in this study
includes the spatial extension of the 10 flash-flood predictors described in Section 3.2 and a total
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surface of 260 km2 (around 289,000 pixels) containing areas with torrential phenomena. According to
literature [16,32,35], to obtain a higher performance of the machine learning models, another sample
with non-torrential areas was generated for the training process, which has the same number of pixels
(289,000) as in the case of the torrential regions. These surfaces were randomly selected from territories
with a slope angle below 3◦. The slopes lower than 3◦ were chosen due to their very low potential for
surface runoff; these surfaces were generally not influenced by torrential phenomena. Therefore, it was
likely that flash-flooding would occur on these surfaces.

It should be mentioned that all three aforementioned elements of the flash-flood database were
processed into 30 m resolution rasters.

5.2. Selection of Flash-Flood Predictors Applying Information Gain Ratio (IGR) Method

The uncorrelated flash-flood predictors, i.e., predictors having very low predictive capability,
with flash-flood phenomena may generate noisy input data, which may result in decreased predictive
capability of the applied models [76]. Concerning this, the IGR method was employed to evaluate
the predictive capability of the selected flash-flood predictors [77]. Particularly, a high value of IGR
demonstrates that the flash-flood predictor has a high predictive capability.

IGR for each flash-flood predictor was computed with the use of Equations (12)–(15) [76]:

IGR(D, F) =
Entropy(D) − Entropy(D, F)

SplitEntropy(D, F)
(12)

Entropy(D) = −
2∑

i=1

(Yi, F)
|D|

log2
n(Yi, F)
|D|

(13)

Entropy(D, F) = −
m∑

j=1

Dj

|D|
Entropy(D) (14)

SplitEntropy(D, F) = −
m∑

j=1

∣∣∣Dj
∣∣∣

|D|
log2

∣∣∣Dj
∣∣∣

|D|
(15)

where D is the training dataset composed of n input samples, n (Yi, D) is the number of samples in the
training data D belonging to the class label Yi (torrential, non-torrential).

Weka 3.9 software was employed to estimate the predictive ability of each flash-flood predictor.

5.3. Computing the AHP Weights for Factor Classes/Categories

The computation of the AHP weights for each factor class/category was carried out after the
construction of 10 pair-wise comparison matrices, each one corresponding to each flash-flood predictor.
Therefore, by assigning a relative dominant value, each factor and class/category in the same flash-flood
predictor was rated against every other. The entire workflow and all the matrices therein used Microsoft
Excel 2016 according to the steps described in Section 4.1. The quality of the comparisons was tested
by using the consistency ratio calculated according to Equation (4). The AHP weights were used as
input in the kNN and KS models.

5.4. Training and Validation Dataset Preparation

Concerning the majority of the studies approaching the assessment of susceptibility to natural
hazards using machine learning algorithms, the initial dataset consists of training and validating pixels.
According to literature [34,78–80], a percentage of 70% and 30% of the dataset was used to train and
validate the models, respectively. Regarding the present case, both the torrential and non-torrential
samples were divided according to the aforementioned percentages. Thus, the training dataset contains
202,300 torrential pixels (≈182 km2) or 70% and 202,300 non-torrential pixels (≈182 km2), also 70%.
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The validating dataset includes 86,700 torrential pixels (≈78 km2) or 30%, and 86,700 non-torrential
pixels (≈78 km2), also 30%. The Subset Features tool of ArcGIS 10.5 software was employed to establish
the training and validation datasets.

Furthermore, each pixel from the training and validation samples was attributed the normalized
values (between 0 and 1) of the initial numerical factors and the categories of the categorical factors.
According to literature [81], the machine learning models require that the input data are normalized
using the same range, since the bias may occur in the results due to the bigger magnitude of the initial
untransformed data. The normalization was performed in terms of the work by Amiri et al. [82]. This
dataset was applied for training the kNN and KS stand-alone models. Regarding terms of kNN–AHP
and KS–AHP ensembles, the pixels from the training and validation samples were assigned the AHP
weights calculated according to the methodology described in Sections 4.1 and 5.3.

5.5. Configuration and Training of Flash-Flood Potential Models

The entire training process of the kNN stand-alone and kNN–AHP ensemble was performed
with the help of XLSTAT Microsoft Excel 2016 software. Regarding this, the training and validation
data in GIS format was converted into tabular format to be imported into Microsoft Excel 2016.
Further, an essential step in the computation of FFPI through the kNN stand-alone model and
kNN–AHP ensemble was the determination of the optimal number of Nearest Neighbors or k-number.
Thus, a 10-fold cross-validation procedure was employed, based on the work of Nguyen et al. [83],
to find the best k-value. Therefore, the best k-number was estimated by modifying the k-values until
the highest classification accuracy, calculated for both kNN and kNN–AHP, was reached. The best
k-values were 19 for kNN and 18 for kNN–AHP.

Concerning the training of the KS stand-alone and KS–AHP ensemble, Weka 3.9 software was
used. Regarding this, in the first step, the same data used for kNN models were converted into
Comma Separated Values (CSV) format to be imported into the Weka 3.9 software. Using the Weka
software, the performance of the KS models is dependent on the quality of training data, but it is
highly influenced also by the selection of a global blending parameter. Similar to the procedure applied
by Naji et al. [84], the best value of a global blending parameter for both the KS and KS–AHP was
established after a trial and error procedure, taking into account the classification accuracy. Concerning
terms of the KS stand-alone model, the best global blending parameter was established at 16 while for
the KS–AHP ensemble model, the best global blending value was 20.

5.6. Evaluation of the Model Performance

After configuring and running the models, the quality of the results was evaluated through several
statistical indices like Sensitivity, Specificity, and Accuracy. The description and detailed definitions of
these indices were included in several studies regarding the flash-flood or landslide susceptibility [4,85].
The statistical measures used in this study were calculated through the following Equations (16)–(18):

Sensitivity =
TP

TP + FN
(16)

Speci f icity =
TN

FP + TN
(17)

Accuracy =
TP + TN

TP + FP + TN + FN
(18)

where FP (false positive) and FN (false negative) are the number of pixels erroneously classified.

5.7. Flash-Flood Potential Mapping and Results Validation

Once the best configuration for the four models was established, the algorithms were run, and the
flash-flood predictor importance was determined. These importance values were finally used to derive
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the FFPI. The importance flash-flood predictors determined through the kNN and KS stand-alone
models were multiplied with the rasters without AHP weights, while the importance derived through
the application of the kNN–AHP and KS–AHP ensembles was multiplied with the rasters having
assigned the AHP weights. Regarding these operations, the ArcGIS 10.5 software was applied.

During the first stage, the validation of flash-flood potential mapping was made by calculating
the share of training and validating samples in the computed FFPI classes. This is a widely used
method for results validation [38], by which the total percentage of training and validation pixels that
correspond to the high and very high FFPI class can be quantified.

During the second stage, the results validation was done through the Receiver Operating
Characteristic (ROC) Curve, which belongs to widely used methods for the assessment of the model
accuracy [86,87]. The acquired results and existing torrential areas were compared when creating the
ROC Curve. Therefore, both the success and prediction rates were created to assess the reliability
and accuracy of the FFPI maps. Regarding this, the training 70% of the torrential areas were used
to create the success rate, while the validating 30% of torrential areas were used to construct the
prediction rate. The Area Under Curve (AUC) in the case of the success rate follows how the model
classified the results. Considering the case of the prediction rate, it highlights the accuracy of the
results. The model is defined as efficient when the value of AUC is close to 1. When the AUC value is
close to 0, it highlights a non-informative model [88]. The AUC value can be estimated through the
following Equation (19) [3]:

AUC =
(
∑

TP +
∑

TN)

(P + N)
(19)

where TP (true positive) and TN (true negative) are the numbers of pixels that are correctly classified,
P is the total number of pixels with torrential phenomena and N is the total number of pixels without
torrential phenomena.

6. Results and Discussion

6.1. Predictive Ability of Flash-Flood Conditioning Factors

The results of the IGR method, which was applied to determine the predictive ability of the
selected flash-flood conditioning factors, are shown in Figure 7.
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Figure 7. Flash-flood conditioning factors and their predictive ability.

Based on the results of the analysis, slope angle was the most significant flash-flood conditioning
factor with an average predictive ability of 0.9, followed by curve number (0.87) profile curvature
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(0.79), Modified Fournier Index (0.69), lithology (0.63), plan curvature (0.58), TWI (0.51), convergence
index (0.46), TPI (0.39) and aspect (0.29). It can be observed that the lowest value of average merit was
0.29, which signifies that all the factors are important in a flash-flood occurrence process and, therefore,
were taken into account for the presented analysis.

6.2. AHP Weights Results

Table S1 from the Supplementary Materials showed all possible pair-wise comparisons between
the classes of the selected flash-flood predictors. The weight values that indicate the importance of
each class/category were also included in Table 1. Among all class/categories, the highest importance,
equal to 0.633, was achieved by the profile curvature class between 0.9 and 9.7, followed by the plan
curvature class between 0.1 and 0.5 (0.512), slope angles higher than 25◦ (0.507) and convergence index
class between −96 and −3 (0.485).

Mentioned in Section 4.2, the evaluation of the consistency of expert judgments was assessed
through the Consistency Ratio (CR) values, which were computed for each comparison matrix.
According to Table 1, all CR values are less than 0.1, which demonstrates that all the comparisons
between the class/categories within the same predictor are consistent. Table 2 also highlights the values
of several parameters used to determine the weights of each factor or the CR value.

Table 1. Properties of comparison matrices in the Table S1 previous Table 1.

Factors N λmax CI RI CR

Slope angle 5 5.196 0.049 1.12 0.040
TPI 5 5.029 0.007 1.12 0.010
TWI 5 5.058 0.014 1.12 0.010
Curve Number 6 6.105 0.021 1.24 0.017
Lithology 12 13.12 0.101 1.53 0.066
Profile curvature 3 3.039 0.019 0.58 0.030
Plan curvature 3 3.109 0.054 0.58 0.090
Slope aspect 9 9.200 0.025 1.45 0.020
Convergence index 5 5.099 0.025 1.12 0.020
Modified Fournier Index 5 5.043 0.011 1.12 0.010

N—number of classes; CI—consistency index; RI—random consistency index; CR—consistency ratio;
TPI—topographic position index; TWI—topographic wetness index.

6.3. Application of kNN and kNN–AHP Ensemble Model

Based on the cross-validation procedure, the optimal k-value was estimated to be used for training
purposes of the kNN individual model and kNN–AHP ensemble. Regarding the kNN stand-alone
model, it can be seen that the highest accuracy (82.7%) was reached with a number of 19 nearest
neighbors, while in the case of the kNN–AHP ensemble, the most accurate model (82.1%) results
in a number of 18 nearest neighbors (Figure 8).

Considering terms of Sensitivity and Specificity, the two kNN-based models achieved good
performance. The kNN stand-alone achieved a Sensitivity of 0.805 in the case of the training sample
and 0.79 in the case of the validating sample. Regarding Specificity, it reached the value of 0.854
(training sample) and 0.841 (validation sample). Concerning the kNN–AHP ensemble, the Sensitivity
was calculated at 0.797 in terms of training areas and 0.805 for validating areas. The same model
achieved a Specificity value of 0.85 for training areas and 0.811 for the validating sample (Table 2).

Stated in Section 5.7, the importance of each factor, in terms of Flash-Flood Potential Index—k-Nearest
Neighbor(FFPIkNN) and Flash-Food Potential Index—k-Nearest Neighbot–Analytical Hierarchy Process
(FFPIkNN–AHP), were derived. Regarding terms of FFPIkNN, the slope angle result was the factor with the
highest importance, having a weight of 20.9%. The rest of the factors resulted in the following weights:
curve number (19.8%), lithology (12.2%), MFI (10.9), convergence index (9.9%), TPI (8.2%), TWI (7.4%),
plan curvature (6.1%), profile curvature (2.9%) and aspect (1.7%). Furthermore, the importance was
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included in map algebra to calculate the FFPIkNN. The FFPIkNN values (0.04–0.96) (Figure 9a), were
reclassified into five classes based on the natural breaks (Jenks) method. This grading method is
considered the most appropriate for the classification of values into the classes [89]. Very low flash-flood
potential values ranged between 0.04 and 0.26 and their share of the study area is approximately 11.3%.
According to Figure 9a, these surfaces can be found mostly along the main river valleys. The second
class has a share of approximately 33.9% and relates to the surfaces with low flash-flood potential.
The medium FFPIkNN values are spread homogenously across the study area and are included in the
range 0.43–0.56. Concurrently, the middle class of flash-flood potential covers 31% and spreads across
the whole study area. Altogether, the fourth and fifth FFPIkNN classes have a share of 23.8% (Figure 10),
being located mainly in the northern part of the selected basin. Furthermore, the values of high and
very high flash-flood potential vary from 0.57 to 0.96.Remote Sens. 2020, 12, 106  16  of  28 
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Table 2. Model performance based on the training and validating datasets.

Models Sample True
Positive

True
Negative

False
Positive

False
Negative Sensitivity Specificity Accuracy

kNN
Training 172,362 147,766 25,271 41,875 0.805 0.854 0.827

Validating 71,373 72,943 13,750 18,917 0.790 0.841 0.815

kNN–AHP
Training 166,392 149,694 26,407 42,468 0.797 0.850 0.821

Validating 63,203 63,920 14,862 15,299 0.805 0.811 0.808

KS
Training 154,893 149,026 30,764 43,678 0.780 0.829 0.803

Validating 63,402 53,218 14,313 11,604 0.845 0.788 0.818

KS–AHP
Training 152,754 142,657 25,547 40,419 0.791 0.848 0.817

Validating 52,347 51,934 18,012 5589 0.904 0.742 0.815

kNN—k-Nearest Neighbor; kNN-AHP—k-Nearest Neighbor—Analytical Hierarchy Process; KS—K Star;
KS-AHP—K Star—Analytical Hierarchy Process.

Concerning terms of the kNN–AHP ensemble, the highest weight was reached again by the slope
angle (21.4%). The weights of the rest of the factors are as follows: curve number (19.3%), lithology
(13.2%), MFI (11.2%), convergence index (8.1%), TPI (7.4%), TWI (6.6%), plan curvature (5.7%), profile
curvature (4.3%) and aspect (2.8%). Similar to FFPIAHP and FFPIkNN, the values of flash-flood potential,
which this time vary between 0.03 and 0.35, were classified into five classes based on the natural breaks
(Jenks) method (Figure 9b). The values in the class between 0.03 and 0.14 relate to the areas with a very
low potential for flash-flooding. A percentage of 7.42% of the study area is covered by surfaces where
the flash-floods are the least probable. Low FFPIkNN–AHP values recorded a share of around 26.74%,
while the medium values had the share of approximately 34.98%. FFPIkNN–AHP values higher than 0.21
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belong to areas which have high to very high flash-flood potential. These areas recorded a share of
30.8% and can be found, especially, in the northern half of the study area.
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6.4. Application of KS and KS–AHP Ensemble Model

According to Table 2, the Accuracy of the KS stand-alone model resulted in the value of around
0.803, referring to the training sample, and 0.818 in the case of validating sample. Considering the same
model, the Sensitivity was 0.78 (training sample) and 0.845 (validating sample), while the Specificity
reached 0.829 (training sample) and 0.788 (validating sample). Concerning terms of the KS–AHP
ensemble, the Accuracy was established at 0.817 in the case of the training sample and 0.815 in the case
of the validating sample. Moreover, the Sensitivity reached a value of 0.791 for the training sample
and 0.904 for the validating sample. Regarding the Specificity, it reached the value of 0.848 (training
sample) and 0.742 (validating sample). These values show good performance achieved by the models.

The training process of the two aforementioned models led to the calculation of normalized
importance for each flash-flood predictor. Regarding the estimation process of the FFPIKS, the slope
angle had the highest impact (20.5%). The other factors resulted as follows: curve number (18.3%),
lithology (14.9%), MFI (13.4%), convergence index (10.8%), TPI (9%), TWI (6%), plan curvature (4.9%),
profile curvature (1.9%) and aspect (0.4%) (Figure 11).Remote Sens. 2020, 12, 106  19  of  28 
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Figure 11. The importance of flash-flood conditioning factors within FFPI models.

FFPIKS values ranging between 0.07 and 0.89 and were divided into five classes with the use
of the natural breaks (Jenks) method. The lowest flash-flood potential recorded a share of around
7.42%, while the low FFPIKS values, ranging from 0.23 to 0.38, occupied 26.74% of the total study area
(Figure 12a). Medium values of flash-flood potential, determined through the KS algorithm, covered
approximately 34.98% of the study area and were distributed homogenously across the study area.
A percentage of 30.83% of the total area was represented by the areas corresponding to the high and
very high classes of FFPIKS. Their values (0.52 to 0.89) were distributed over compact and large areas
within the northern half of the research area.

FFPIKS–AHP was spatially modelled by assigning the following weights for each flash-flood
conditioning factor: slope angle was 20.8%, curve number was 19.2%, lithology was 16.5%, MFI was
13.3%, convergence index was 11.4%, TPI was 5.9%, TWI was 5.1%, plan curvature was 3.5%, profile
curvature was 2.7% and aspect was 1.6%. Therefore, the values in the range between 0.05 and 0.53
were reclassified into five classes based on the natural breaks (Jenks) method. The interval between
0.05 and 0.14 covered an area equal to 6.58% of the studied river basin and corresponded to the very
low flash-flood susceptibility. The share of the second class, showing the low values of FFPIKS–AHP,
was approximately 21.38% and it spread in almost all the regions. Furthermore, it can be seen that
36.03% of the study area corresponded to medium values of FFPIKS–AHP. Like in the case of FFPIKS,
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medium values of FFPIKS–AHP have a homogeneous spatial distribution. Altogether, the fourth and
fifth class of flash-flood potential totalled around 36.12% of the study area (Figure 12b).Remote Sens. 2020, 12, 106  20  of  28 
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6.5. Results Validation

6.5.1. Share of Torrential Pixels in FFPI Classes

Concerning terms of the share of training areas in the high and very high FFPI class, the kNN–AHP
ensemble model resulted in the best performance with a percentage of 85.75%. This model is followed
by the KS model (84.21%), KS–AHP ensemble model (81.35%) and kNN model (79.45%). The most
accurate results, regarding the share of validating areas in the high and very high FFPI class, also
were obtained by the kNN–AHP ensemble model (79.74%), followed by the KS–AHP ensemble model
(76.99%), KS model (75.23%) and kNN model (74.9%) (Table 3).
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Table 3. Share of torrential pixels in Flash-Flood Potential Index (FFPI) classes.

FFPI Class
Training Areas Validating Areas

kNN kNN–AHP KS KS–AHP kNN kNN–AHP KS KS–AHP

Very low 1.43% 2.5% 1.57% 2.56% 5.43% 4.21% 3.95% 4.8%
Low 5.67% 4.32% 3.88% 7.44% 7.43% 5.12% 6.43% 6.89%

Medium 13.45% 7.43% 10.34% 8.65% 12.24% 10.93% 14.39% 11.32%
High 27.52% 31.43% 35.43% 25.73% 32.45% 31.73% 29.54% 33.45%

Very high 51.93% 54.32% 48.78% 55.62% 42.45% 48.01% 45.69% 43.54%

FFPI—Flash-Flood Potential Index.

6.5.2. Receiver Operating Characteristic (ROC) Curve

The highest performance, regarding the success rate, was reached by the kNN–AHP ensemble
model (Area Under Curve (AUC) = 0.901). The KS–AHP model resulted in an AUC equal to 0.886,
KS model (AUC = 0.882) and kNN model (AUC = 0.873) (Figure 13a). The best prediction also was
made by the kNN–AHP ensemble model (AUC = 0.896), while the KS model resulted in an AUC
equal to 0.887, the KS–AHP model (AUC = 0.878) and the kNN model (AUC = 0.852) (Figure 13b).
Overall, it can be stated that the performance of all models used was very good regarding the validation
of results.
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Figure 13. Receiver Operating Characteristics (ROC) curves and Area Under Curve (AUC) values
based on training dataset (a) success rate; and validating dataset (b) prediction rate. kNN—k-Nearest
Neighbor; kNN-AHP—k-Nearest Neighbor—Analytical Hierarchy Process; KS—K Star; KS-AHP—K
Star—Analytical Hierarchy Process.
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7. Conclusions

The accurate identification of highly susceptible areas is the basis for adopting the main
non-structural measures intended to prevent the negative impacts of flash-floods. Taking this
context, the presented article proposed a complex methodology for identifying the areas susceptible to
flash-flooding in the upper and middle parts of the Prahova river basin. The methodology adopted
was based on the computation of FFPI using two machine learning models (k-Nearest Neighbor (kNN)
and KS (K-star)) and their novel ensemble with an Analytical Hierarchy Process (AHP). The prediction
power of the ensemble models, namely kNN–AHP and KS–AHP, also was tested. The weights
determined by the pair-wise comparison matrices were used as input data for kNN–AHP and KS–AHP
ensembles. Furthermore, ten flash-flood predictors were selected through the IGR method, along
with 70% of torrential areas. These predictors, as well as 70% of torrential area, were used to train
the models. The validation of the results was performed with the use of the other 30% of torrential
areas. The assessment of the model performances was done by the computation of several statistical
measures. Regarding the validation of the results, it was carried out in two steps: i) by the share of
torrential areas in the FFPI classes; ii) through the Receiver Operating Characteristics ROC Curve.
Concerning the ROC Curve, the best model was the kNN–AHP ensemble for both success rate (AUC
= 0.901) and prediction rate (AUC = 0.896). It should be remarked that when the kNN was used in
combination with other models for determining the susceptibility to different natural hazards, it also
obtained very good performances. An example in this regard was provided by Bui et al. [90] who
calculated the landslide susceptibility in Vietnam through a combination of a fuzzy kNN algorithm
with differential evolution optimization. The AUC of the success rate in that case was 0.944, while for
the prediction rate it was 0.841.

Areas which resulted in high to very high flash-flood potential had a share between 23.8%
(FFPIkNN) and 36.12% (FFPIKS–AHP). These surfaces were found, especially, in the north-western part
characterized by the presence of tourist localities, which creates the premise of a high vulnerability
degree to flash-flood occurrence. These localities were frequently affected by floods and flash-floods in
the following years: 2005, 2006, 2010, 2014, 2017 and 2018 [91].

The main novelty of the presented research is considered to be the use of the KS model, which,
to the best of our knowledge, is the first attempt to use it for the assessment of susceptibility to natural
hazards, as well as the application of the two ensembles for estimating the FFPI. Even if the kNN–AHP
method achieved the highest accuracy, the KS was used for FFPI computation due to its advantages
presented in Section 4. These advantages are highlighted by the higher performances obtained by
the KS stand-alone model in comparison with the kNN stand-alone model. Nevertheless, it was
observed that, when the input data was represented by reclassified predictors, having assigned the
AHP coefficients, the performance of the kNN–AHP exceeded the performance of the KS–AHP.

This study provides results which are applicable for effective spatial planning as well as for
improving the flash-flood forecast and warning activities conducted by the National Institute of
Hydrology and Water Management of Romania.
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