A 1.9 nW, Sub-1 V, 542 pA/V Linear Bulk-Driven OTA with 154 dB CMRR for Bio-Sensing Applications
Abstract
:1. Introduction
2. Current Mirrors
3. Bulk-Driven Symmetrical Operational Transconductance Amplifiers
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACM | Advanced Compact Model |
BD | Bulk-driven |
CMOS | Complementary Metal-Oxide Semiconductor |
CM | Current Mirror |
CMR | Common-Mode Range |
CMRR | Common-Mode Rejection Ratio |
GBW | Gain–Bandwidth Product |
OTA | Operational Transconductance Amplifier |
SCCM | Self-Cascode Current Mirror |
IRF | Equivalent Input Referred Noise |
ISCCM | Improved Self-Cascode Current Mirror |
PSRR | Power Supply Rejection Ratio |
SNR | Signal-to-Noise Ratio |
THD | Total Harmonic Distortion |
References
- Khateb, F.; Kulej, T.; Akbari, M.; Kumngern, M. 0.5-V High linear and wide tunable OTA for biomedical applications. IEEE Access 2021, 9, 103784–103794. [Google Scholar] [CrossRef]
- Sanchotene Silva, R.; Pereira Luiz, L.; Cherem Schneider, M.; Galup-Montoro, C. A Test Chip for Characterization of the Series Association of MOSFETs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1967–1971. [Google Scholar] [CrossRef]
- Bano, S.; Narejo, G.; Shan, S. Power Efficient Fully Differential Bulk Driven OTA for Portable Biomedical Application. Electronics 2018, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Ballo, A.; Pennisi, S.; Scotti, G. 0.5 V CMOS Inverter-Based Transconductance Amplifier with Quiescent Current Control. J. Low Power Electron. Appl. 2021, 11, 37. [Google Scholar] [CrossRef]
- Giustolisi, G.; Palumbo, G. A gm/ID-Based Design Strategy for IoT and Ultra-Low-Power OTAs with Fast-Settling and Large Capacitive Loads. J. Low Power Electron. Appl. 2021, 11, 21. [Google Scholar] [CrossRef]
- Centurelli, F.; Della Sala, R.; Monsurrò, P.; Scotti, G.; Trifiletti, A. A 0.3 V Rail-to-Rail Ultra-Low-Power OTA with Improved Bandwidth and Slew Rate. J. Low Power Electron. Appl. 2021, 11, 19. [Google Scholar] [CrossRef]
- Centurelli, F.; Della Sala, R.; Monsurrò, P.; Scotti, G.; Trifiletti, A. A Novel OTA Architecture Exploiting Current Gain Stages to Boost Bandwidth and Slew-Rate. Electronics 2021, 10, 1638. [Google Scholar] [CrossRef]
- Centurelli, F.; Della Sala, R.; Scotti, G.; Trifiletti, A. A 0.3 V, Rail-to-Rail, Ultralow-Power, Non-Tailed, Body-Driven, Sub-Threshold Amplifier. Appl. Sci. 2021, 11, 2528. [Google Scholar] [CrossRef]
- Jayasimha, T.; Vijayalakshmi, A. Low Pass Filter Using ECG Detection for OTA-C. Ir. Interdiscip. J. Sci. Res. 2018, 2, 94–100. [Google Scholar]
- Yehoshuva, C.; Rakhi, R.; Anto, D.; Kaurati, S. 0.5 V, Ultra Low Power Multi Standard Gm-C Filter for Biomedical Applications. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016. [Google Scholar]
- Kulej, T.; Khateb, F. A Compact 0.3-V Class AB Bulk-Driven OTA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 224–232. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F. A 0.3-V 98-dB Rail-to-Rail OTA in 0.18 μm CMOS. IEEE Access 2020, 8, 27459–27467. [Google Scholar] [CrossRef]
- Rodovalho, L.H.; Aiello, O.; Rodrigues, C.R. Ultra-low-voltage inverter-based operational transconductance amplifiers with voltage gain enhancement by improved composite transistors. Electronics 2020, 9, 1410. [Google Scholar] [CrossRef]
- Rodovalho, L.H.; Ramos Rodrigues, C.; Aiello, O. Self-Biased and Supply-Voltage Scalable Inverter-Based Operational Transconductance Amplifier with Improved Composite Transistors. Electronics 2021, 10, 935. [Google Scholar] [CrossRef]
- Toledo, P.; Crovetti, P.; Aiello, O.; Alioto, M. Fully Digital Rail-to-Rail OTA With Sub-1000-μm² Area, 250-mV Minimum Supply, and nW Power at 150-pF Load in 180 nm. IEEE Solid-State Circuits Lett. 2020, 3, 474–477. [Google Scholar] [CrossRef]
- Fassio, L.; Lin, L.; De Rose, R.; Lanuzza, M.; Crupi, F.; Alioto, M. Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW. IEEE J.-Solid-State Circuits 2021, 3134–3144. [Google Scholar] [CrossRef]
- Aiello, O. Design of an Ultra-Low Voltage Bias Current Generator Highly Immune to Electromagnetic Interference. J. Low Power Electron. Appl. 2021, 11, 6. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P.; Alioto, M. A Sub-Leakage PW-Power HZ-Range Relaxation Oscillator Operating with 0.3 V–1.8 V Unregulated Supply. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018; pp. 119–120. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cheng, C.J. Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 53–64. [Google Scholar] [CrossRef]
- Veeravalli, A.; Sánchez-Sinencio, E.; Silva-Martínez, J. Transconductance amplifier structures with very small transconductances: A comparative design approach. IEEE J.-Solid-State Circuits 2002, 37, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Kinget, P.; Steyaert, M.; Van der Spiegel, J. Full analog CMOS integration of very large time constants for synaptic transfer in neural networks. Analog Integr. Circuits Signal Process. 1992, 2, 281–295. [Google Scholar] [CrossRef]
- Fiorelli, R.; Arnaud, A.; Galup-Montoro, C. Series-parallel association of transistors for the reduction of random offset in non-unity gain current mirrors. In Proceedings of the 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No. 04CH37512), Vancouver, BC, Canada, 23–26 May 2004; Volume 1, pp. 1–881. [Google Scholar]
- Arnaud, A.; Fiorelli, R.; Galup-Montoro, C. Nanowatt, sub-nS OTAs, with sub-10-mV input offset, using series-parallel current mirrors. IEEE J.-Solid-State Circuits 2006, 41, 2009–2018. [Google Scholar] [CrossRef]
- Blalock, B.J.; Allen, P.E.; Rincon-Mora, G.A. Designing 1-V op amps using standard digital CMOS technology. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1998, 45, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Tsividis, Y.; Kinget, P. 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J.-Solid-State Circuits 2005, 40, 2373–2387. [Google Scholar] [CrossRef]
- Carrillo, J.M.; Torelli, G.; Valverde, R.P.A.; Duque-Carrillo, J.F. 1-V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE J.-Solid-State Circuits 2007, 42, 508–517. [Google Scholar] [CrossRef]
- Cotrim, E.D.C.; de Carvalho Ferreira, L.H. An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integr. Circuits Signal Process. 2012, 71, 275–282. [Google Scholar] [CrossRef]
- Colletta, G.D.; Ferreira, L.H.; Pimenta, T.C. A 0.25-V 22-nS symmetrical bulk-driven OTA for low-frequency Gm-C applications in 130-nm digital CMOS process. Analog Integr. Circuits Signal Process. 2014, 81, 377–383. [Google Scholar] [CrossRef]
- Sharan, T.; Bhadauria, V. Sub-threshold, cascode compensated, bulk-driven OTAs with enhanced gain and phase-margin. Microelectron. J. 2016, 54, 150–165. [Google Scholar] [CrossRef]
- del Risco Sánchez, A.; Moreno, R.L.; Ferreira, L.H.; Crepaldi, P.C. Biasing technique to improve total harmonic distortion in an ultra-low-power operational transconductance amplifier. IET Circuits Devices Syst. 2019, 13, 920–927. [Google Scholar] [CrossRef]
- Galup-Montoro, C.; Schneider, M.C.; Loss, I.J. Series-parallel association of FET’s for high gain and high frequency applications. IEEE J.-Solid-State Circuits 1994, 29, 1094–1101. [Google Scholar] [CrossRef]
- Comer, D.T.; Comer, D.J.; Li, L. A high-gain complementary metal-oxide semiconductor op amp using composite cascode stages. Int. J. Electron. 2010, 97, 637–646. [Google Scholar] [CrossRef]
- Akbari, M.; Hashemipour, O. A 0.6-V, 0.4-μW bulk-driven operational amplifier with rail-to-rail input/output swing. Analog Integr. Circuits Signal Process. 2016, 86, 341–351. [Google Scholar] [CrossRef]
- Sharan, T.; Chetri, P.; Bhadauria, V. Ultra-low-power bulk-driven fully differential subthreshold OTAs with partial positive feedback for Gm-C filters. Analog Integr. Circuits Signal Process. 2018, 94, 427–447. [Google Scholar] [CrossRef]
- Baek, K.J.; Gim, J.M.; Kim, H.S.; Na, K.Y.; Kim, N.S.; Kim, Y.S. Analogue circuit design methodology using self-cascode structures. Electron. Lett. 2013, 49, 591–592. [Google Scholar] [CrossRef]
- Xu, D.; Liu, L.; Xu, S. High DC gain self-cascode structure of OTA design with bandwidth enhancement. Electron. Lett. 2016, 52, 740–742. [Google Scholar] [CrossRef]
- Niranjan, V.; Kumar, A.; Jain, S.B. Composite transistor cell using dynamic body bias for high gain and low-voltage applications. J. Circuits Syst. Comput. 2014, 23, 1450108. [Google Scholar] [CrossRef]
- Krummenacher, F.; Joehl, N. A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J.-Solid-State Circuits 1988, 23, 750–758. [Google Scholar] [CrossRef]
- Braga, R.A.; Ferreira, L.H.; Coletta, G.D.; Dutra, O.O. A 0.25-V calibration-less inverter-based OTA for low-frequency Gm-C applications. Microelectron. J. 2019, 83, 62–72. [Google Scholar] [CrossRef]
- Schneider, M.C.; Galup-Montoro, C. CMOS Analog Design Using All-Region MOSFET Modeling; Cambridge University Press: Cambridge UK, 2010. [Google Scholar]
- Wilson, G.R. A monolithic junction FET-NPN operational amplifier. IEEE J.-Solid-State Circuits 1968, 3, 341–348. [Google Scholar] [CrossRef]
- De Ceuster, D.; Flandre, D.; Colinge, J.P.; Cristoloveanu, S. Improvement of SOI MOS current-mirror performances using serial-parallel association of transistors. Electron. Lett. 1996, 32, 278–279. [Google Scholar] [CrossRef]
- Rodovalho, L.H. Push–pull based operational transconductor amplifier topologies for ultra low voltage supplies. Analog Integr. Circuits Signal Process. 2020, 1–14. [Google Scholar] [CrossRef]
- Haga, Y.; Zare-Hoseini, H.; Berkovi, L.; Kale, I. Design of a 0.8 Volt fully differential CMOS OTA using the bulk-driven technique. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 220–223. [Google Scholar]
- Ferreira, L.H.; Sonkusale, S.R. A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Trans. Circuits Syst. Regul. Pap. 2014, 61, 1609–1617. [Google Scholar] [CrossRef]
- Kuo, K.C.; Leuciuc, A. A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2001, 48, 937–943. [Google Scholar]
- Galup-Montoro, C.; Schneider, M.C.; Cunha, A.I.A.; de Sousa, F.R.; Klimach, H.; Siebel, O.F. The Advanced Compact MOSFET (ACM) Model for Circuit Analysis and Design. In Proceedings of the 2007 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 16–19 September 2007; pp. 519–526. [Google Scholar] [CrossRef]
- Rodovalho, L.H.; Silva, R.S.; Rodrigues, C.R. A 1V, 450pS OTA Based on Current-Splitting and Modified Series-Parallel Mirrors. In Proceedings of the 2021 IEEE 12th Latin America Symposium on Circuits and System (LASCAS), Arequipa, Peru, 21–24 February 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Jakusz, J.; Jendernalik, W.; Blakiewicz, G.; Kłosowski, M.; Szczepański, S. A 1-nS 1-V Sub-1-µW Linear CMOS OTA with Rail-to-Rail Input for Hz-Band Sensory Interfaces. Sensors 2020, 20, 3303. [Google Scholar] [CrossRef]
- Soares, C.F.; de Moraes, G.S.; Petraglia, A. A low-transconductance OTA with improved linearity suitable for low-frequency Gm-C filters. Microelectron. J. 2014, 45, 1499–1507. [Google Scholar] [CrossRef]
- Huang, Y.; Drakakis, E.M.; Toumazou, C. A 30pA/V–25μA/V linear CMOS channel-length-modulation OTA. Microelectron. J. 2009, 40, 1458–1465. [Google Scholar] [CrossRef]
Mirror | Size (m × (M:N) × W/L) | Size (m × (M:N) × W/L) | ||
---|---|---|---|---|
RCM | M | 4 × (4:1) × 1.0 μm/8.0 μm | M | 4 × (1:4) × 1.0 μm/8.0 μm |
TCM | M | 4 × (4:1) × 1.0 μm/8.0 μm | M | 4 × (1:4) × 1.0 μm/8.0 μm |
M | 4 × (4:1) × 1.0 μm/8.0 μm | |||
ISCCM | M | 4 × (4:1) × 1.0 μm/8.0 μm | M | 4 × (1:4) × 1.0 μm/8.0 μm |
M | 4 × (4:1) × 1.0 μm/8.0 μm | M | 4 × (4:1) × 1.0 μm/8.0 μm |
Trans. | Size (m × (M:N) × W/L) | Trans. | Size (m × (M:N) × W/L) |
---|---|---|---|
M | 4 × (1:4) × 3.0 μm/8.0 μm | M | 2 × (1:8) × 3.0 μm/8.0 μm |
M | 4 × (4:1) × 3.0 μm/8.0 μm | M | 4 × (1:4) × 3.0 μm/8.0 μm |
M | 4 × (4:1) × 3.0 μm/8.0 μm | M | 4 × (1:4) × 3.0 μm/8.0 μm |
M | 4 × (4:1) × 3.0 μm/8.0 μm | M | 4 × (1:4) × 3.0 μm/8.0 μm |
M | 4 × (4:1) × 3.0 μm/8.0 μm | M | 4 × (1:4) × 3.0 μm/8.0 μm |
Conventional BD-OTA | Proposed BD-OTA | |
---|---|---|
DC gain (dB) | 44.5 | 64.2 |
CMRR (dB) | 114 | 154 |
PSRR (dB) | 88.7 | 124 |
GBW (Hz) | 78.47 | 83.14 |
Conventional BD-OTA | Proposed BD-OTA | |
---|---|---|
() | 77.3 | 78.1 |
() | 506 | 542 |
() | 3024.5 | 311.6 |
167.3 | 1739.4 |
Conventional BD-OTA | Proposed BD-OTA | ||
---|---|---|---|
(pA/V) | 506.6 | 546.58 | |
(pA/V) | 7.61 | 7.56 | |
(%) | 1.5 | 1.38 | |
(μV) | 429.8 | 61.47 | |
(mV) | 3.16 | 3.15 |
Feature | This Work (S) | [48] (S) | [49] (M) | [28] (M) | [50] (M) | [51] (M) |
---|---|---|---|---|---|---|
Year | 2021 | 2021 | 2020 | 2014 | 2014 | 2009 |
Tech. (nm) | 180 | 180 | 180 | 130 | 350 | 350 |
Supply (V) | 0.6 | 1 | 1 | 0.25 | 5 | 5 |
(nA/V) | 0.542 | 0.45 | 0.62–6.28 | 22 | 39.5–367.2 | 0.03–25,000 |
(dB) | 64 | 37 | - | - | 52.3–64.7 | - |
Power (μW) | 0.0019 | 0.032 | 0.028–0.270 | 0.01 | 160 | <300 |
CMRR (dB) | 154 | 56 | 56 | - | >44.8 | >80 |
PSRR (dB) | 124 | 36 | 47 | - | - | >80 |
GBW (Hz) | 83.14 | 6.9 | - | - | - | - |
(mV) | 0.06 ± 3.15 | ±20 | 25–50 | ±10.82 | - | |
IRN (μV) | 246 | - | 760 | 100 | - | 635 |
Linear range sym. input (V) | 0.475 | 0.3 | 2 | - | 2 | 2.6 |
THD (%) @ input (V) | [email protected] | [email protected] | 0.18@2 | [email protected] | 0.13@2 | <[email protected] |
SNR (dB) @ THD (%) | 54.8@1 | - | [email protected] | [email protected] | 62@1 | |
Layout area (mm) | 0.0143 | - | 0.027 | 0.053 | 0.006 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchotene Silva, R.; Rodovalho, L.H.; Aiello, O.; Ramos Rodrigues, C. A 1.9 nW, Sub-1 V, 542 pA/V Linear Bulk-Driven OTA with 154 dB CMRR for Bio-Sensing Applications. J. Low Power Electron. Appl. 2021, 11, 40. https://doi.org/10.3390/jlpea11040040
Sanchotene Silva R, Rodovalho LH, Aiello O, Ramos Rodrigues C. A 1.9 nW, Sub-1 V, 542 pA/V Linear Bulk-Driven OTA with 154 dB CMRR for Bio-Sensing Applications. Journal of Low Power Electronics and Applications. 2021; 11(4):40. https://doi.org/10.3390/jlpea11040040
Chicago/Turabian StyleSanchotene Silva, Rafael, Luis Henrique Rodovalho, Orazio Aiello, and Cesar Ramos Rodrigues. 2021. "A 1.9 nW, Sub-1 V, 542 pA/V Linear Bulk-Driven OTA with 154 dB CMRR for Bio-Sensing Applications" Journal of Low Power Electronics and Applications 11, no. 4: 40. https://doi.org/10.3390/jlpea11040040
APA StyleSanchotene Silva, R., Rodovalho, L. H., Aiello, O., & Ramos Rodrigues, C. (2021). A 1.9 nW, Sub-1 V, 542 pA/V Linear Bulk-Driven OTA with 154 dB CMRR for Bio-Sensing Applications. Journal of Low Power Electronics and Applications, 11(4), 40. https://doi.org/10.3390/jlpea11040040