Histone Deacetylase Inhibitors from Marine Invertebrates
Abstract
:Simple Summary
Abstract
1. A Brief Insight into Histone Deacetylases and Histone Deacetylase Inhibitors
2. Porifera
2.1. Psammaplins
2.2. Yakushinamides
2.3. Halistanol Sulphates
2.4. Azumamides
2.5. Cyclostellettamines and Dehydrocyclostellettamine
2.6. Halenaquinones
3. Cnidaria
4. Echinodermata
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem. Rev. 2018, 118, 1216–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voutsinas, G.E.; Scorilas, A.; Stravopodis, D.J. Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. Int. J. Mol. Sci. 2019, 20, 1291. [Google Scholar]
- Hassell, K.N. Histone Deacetylases and their Inhibitors in Cancer Epigenetics. Diseases 2019, 7, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, N.K.; Hatch, N.D.; Sutton, G.L.; Kling, M.; Vose, J.M.; Joshi, S.S. A novel approach to eliminate therapy-resistant mantle cell lymphoma: Synergistic effects of Vorinostat with Palbociclib. Leuk. Lymphoma 2019, 60, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Elmallah, M.I.Y.; Micheau, O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers 2019, 11, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Librizzi, M.; Longo, A.; Chiarelli, R.; Amin, J.; Spencer, J.; Luparello, C. Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells. Chem. Res. Toxicol. 2012, 25, 2608–2616. [Google Scholar] [CrossRef] [Green Version]
- Librizzi, M.; Chiarelli, R.; Bosco, L.; Sansook, S.; Gascon, J.M.; Spencer, J.; Caradonna, F.; Luparello, C. The Histone Deacetylase Inhibitor JAHA Down-Regulates pERK and Global DNA Methylation in MDA-MB231 Breast Cancer Cells. Materials 2015, 8, 7041–7047. [Google Scholar] [CrossRef] [Green Version]
- Librizzi, M.; Spencer, J.; Luparello, C. Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells. Int. J. Mol. Sci. 2016, 17, 1235. [Google Scholar] [CrossRef] [Green Version]
- Librizzi, M.; Caradonna, F.; Cruciata, I.; Dębski, J.; Sansook, S.; Dadlez, M.; Spencer, J.; Luparello, C. Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA. Chem. Res. Toxicol. 2017, 30, 2187–2196. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, J.; Yan, C.; Li, X.; Zhang, J.; Ling, R. Small molecule HDAC inhibitors: Promising agents for breast cancer treatment. Bioorg. Chem. 2019, 91, 103184. [Google Scholar] [CrossRef]
- Luparello, C.; Asaro, D.M.L.; Cruciata, I.; Hassell-Hart, S.; Sansook, S.; Spencer, J.; Caradonna, F. Cytotoxic Activity of the Histone Deacetylase 3-Selective Inhibitor Pojamide on MDA-MB-231 Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Hong, J. An overview of naturally occurring histone deacetylase inhibitors. Curr. Top. Med. Chem. 2015, 14, 2759–2782. [Google Scholar] [CrossRef] [PubMed]
- Lakshmaiah, K.C.; Jacob, L.A.; Aparna, S.; Lokanatha, D.; Saldanha, S.C. Epigenetic therapy of cancer with histone deacetylase inhibitors. J. Cancer Res. Ther. 2014, 10, 469–478. [Google Scholar] [PubMed]
- He, B.; Dai, L.; Zhang, X.; Chen, D.; Wu, J.; Feng, X.; Zhang, Y.; Xie, H.; Zhou, L.; Wu, J.; et al. The HDAC Inhibitor Quisinostat (JNJ-26481585) Supresses Hepatocellular Carcinoma alone and Synergistically in Combination with Sorafenib by G0/G1 phase arrest and Apoptosis induction. Int. J. Biol. Sci. 2018, 14, 1845–1858. [Google Scholar] [CrossRef] [PubMed]
- Hrgovic, I.; Doll, M.; Pinter, A.; Kaufmann, R.; Kippenberger, S.; Meissner, M. Histone deacetylase inhibitors interfere with angiogenesis by decreasing endothelial VEGFR-2 protein half-life in part via a VE-cadherin-dependent mechanism. Exp. Dermatol. 2017, 26, 194–201. [Google Scholar] [CrossRef]
- Su, Y.; Hopfinger, N.R.; Nguyen, T.D.; Pogash, T.J.; Santucci-Pereira, J.; Russo, J. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors. J. Exp. Clin. Cancer Res. 2018, 37, 314. [Google Scholar] [CrossRef]
- Brandão, F.A.; Derengowski, L.S.; Albuquerque, P.; Nicola, A.M.; Silva-Pereira, I.; Poças-Fonseca, M.J. Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence 2015, 6, 618–630. [Google Scholar] [CrossRef] [Green Version]
- Chopra, V.; Quinti, L.; Khanna, P.; Paganetti, P.; Kuhn, R.; Young, A.B.; Kazantsev, A.G.; Hersch, S. LBH589, A Hydroxamic Acid-Derived HDAC Inhibitor, is Neuroprotective in Mouse Models of Huntington’s Disease. J. Huntingt. Dis. 2016, 5, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Soragni, E.; Gottesfeld, J.M. Translating HDAC inhibitors in Friedreich’s ataxia. Expert Opin. Orphan Drugs 2016, 4, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.I.; Leman, L.J.; Ku, S.; Vickers, C.J.; Olsen, C.A.; Montero, A.; Ghadiri, M.R.; Gottesfeld, J.M. Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells. Bioorg. Med. Chem. Lett. 2017, 27, 3289–3293. [Google Scholar] [CrossRef]
- Brindisi, M.; Saraswati, A.P.; Brogi, S.; Gemma, S.; Butini, S.; Campiani, G. Old but Gold: Tracking the New Guise of Histone Deacetylase 6 (HDAC6) Enzyme as a Biomarker and Therapeutic Target in Rare Diseases. J. Med. Chem. 2020, 63, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Vazzana, M.; Celi, M.; Maricchiolo, G.; Genovese, L.; Corrias, V.; Quinci, E.M.; de Vincenzi, G.; Maccarrone, V.; Cammilleri, G.; Mazzola, S.; et al. Are mussels able to distinguish underwater sounds? Assessment of the reactions of Mytilus galloprovincialis after exposure to lab-generated acoustic signals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 201, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Parisi, M.G.; Mauro, M.; Sarà, G.; Cammarata, M. Temperature increases, hypoxia, and changes in food availability affect immunological biomarkers in the marine mussel Mytilus galloprovincialis. J. Comp. Physiol. B 2017, 187, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Vazzana, M.; Ceraulo, M.; Mauro, M.; Papale, E.; Dioguardi, M.; Mazzola, S.; Arizza, V.; Chiaramonte, M.; Buscaino, G. Effects of acoustic stimulation on biochemical parameters in the digestive gland of Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819). J. Acoust. Soc. Am. 2020, 147, 2414. [Google Scholar] [CrossRef] [PubMed]
- Vazzana, M.; Mauro, M.; Ceraulo, M.; Dioguardi, M.; Papale, E.; Mazzola, S.; Arizza, V.; Beltrame, F.; Inguglia, L.; Buscaino, G. Underwater high frequency noise: Biological responses in sea urchin Arbacia lixula (Linnaeus, 1758). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 242, 110650. [Google Scholar] [CrossRef] [PubMed]
- Hay, M.E. Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Ann. Rev. Mar. Sci. 2009, 1, 193–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zheng, Y.; Shao, C.; Wang, C. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Technol. 2019, 1, 60–94. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, V.; Arizza, V.; Luparello, C.; Mauro, M.; Vazzana, M. Bright Spots in the Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action. Mar. Drugs 2019, 17, 617. [Google Scholar] [CrossRef] [Green Version]
- Luparello, C.; Ragona, D.; Asaro, D.M.L.; Lazzara, V.; Affranchi, F.; Celi, M.; Arizza, V.; Vazzana, M. Cytotoxic Potential of the Coelomic Fluid Extracted from the Sea Cucumber Holothuria tubulosa against Triple-Negative MDA-MB231 Breast Cancer Cells. Biology 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Luparello, C.; Ragona, D.; Asaro, D.M.L.; Lazzara, V.; Affranchi, F.; Arizza, V.; Vazzana, M. Cell-Free Coelomic Fluid Extracts of the Sea Urchin Arbacia lixula Impair Mitochondrial Potential and Cell Cycle Distribution and Stimulate Reactive Oxygen Species Production and Autophagic Activity in Triple-Negative MDA-MB231 Breast Cancer Cells. J. Mar. Sci. Eng. 2020, 8, 261. [Google Scholar] [CrossRef] [Green Version]
- Luparello, C.; Mauro, M.; Lazzara, V.; Vazzana, M. Collective Locomotion of Human Cells, Wound Healing and Their Control by Extracts and Isolated Compounds from Marine Invertebrates. Molecules 2020, 25, 2471. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Lazzara, V.; Punginelli, D.; Arizza, V.; Vazzana, M. Antitumoral compounds from vertebrate sister group: A review of Mediterranean ascidians. Dev. Comp. Immun. 2020, 108, 103669. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, R.W.; Boury-Esnault, N.; Vacelet, J.; Dohrmann, M.; Erpenbeck, D.; De Voogd, N.J.; Santodomingo, N.; Vanhoorne, B.; Kelly, M.; Hooper, J.N. Global diversity of sponges (Porifera). PLoS ONE 2012, 7, e35105. [Google Scholar] [CrossRef] [PubMed]
- De Laubenfels, M.W. The Sponges of the West-Central Pacific; Oregon State Monographs: Studies in Zoology; Oregon State College: Corvallis, OR, USA, 1954; pp. 35–41. [Google Scholar]
- Bergquist, P.R. The Sponges of Micronesia, Part I, The Palau Archipelago. Pac. Sci. 1965, 19, 123–204. [Google Scholar]
- Bergquist, P.R.; Tizard, C.A. Australian Intertidal Sponges from the Darwin Area. Micronesica 1967, 3, 175–202. [Google Scholar]
- Núñez Pons, L.; Calcinai, B.; Gates, R.D. Who’s there?—First morphological and DNA barcoding catalogue of the shallow Hawai’ian sponge fauna. PLoS ONE 2017, 12, e0189357. [Google Scholar] [CrossRef] [Green Version]
- Vacelet, J.; Erpenbeck, D.; Díaz, C.; Ehrlich, H.; Fromont, J. New family and genus for Dendrilla-like sponges with characters of Verongiida. Part I Redescription of Dendrilla lacunosa Hentschel 1912, diagnosis of the new family Ernstillidae and Ernstilla n. g. Zool. Anz. 2019, 280, 14–20. [Google Scholar] [CrossRef]
- Carter, H.J. Descriptions of Sponges from the Neighbourhood of Port Phillip Heads, South Australia, continued. Ann. Mag Nat. Hist. 1886, 18, 34–55. [Google Scholar] [CrossRef]
- Hooper, J.; Schlacher-Hoenlinger, M. Porifera of New Caledonia. Remarks on the check list of shallow water species. In Compendium of Marine Species from New Caledonia; Documents Scientifiques et Techniques, IRD; de Forges, B.R., Payri, C.E., Eds.; Institut de Recherche Pour le Développemel: Paris, France, 2006; pp. 111–115. [Google Scholar]
- McCauley, E.; Radjasa, O.K.; Trainato, A.; Crews, M.S.; Smith, A.; Smith, G.C.; Zerebinski, P.; Sabdono, A.; Crews, P. The UNDIP-UCSC campaign to culture chemically prolific gram-negative bacteria from Indonesian Jaspis sponges. Free Internet J. Org. Chem. 2018, IV, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.S.; Desqueyroux-Faùndez, R.; Hajdu, E. Taxonomic notes on Poecillastra sponges (Astrophorida: Pachastrellidae), with the description of three new bathyal southeastern Pacific species. Sci. Mar. 2011, 75, 477–492. [Google Scholar] [CrossRef]
- Kim, D.; Lee, I.S.; Jung, J.H.; Yang, S.I. Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin-resistant Staphylococcus aureus and the DNA gyrase-inhibitory activity. Arch. Pharm. Res. 1999, 22, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Tabudravu, J.N.; Eijsink, V.G.; Gooday, G.W.; Jaspars, M.; Komander, D.; Legg, M.; Synstad, B.; van Aalten, D.M. Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Bioorg. Med. Chem. 2002, 10, 1123–1128. [Google Scholar] [CrossRef]
- Jiang, Y.; Ahn, E.Y.; Ryu, S.H.; Kim, D.K.; Park, J.S.; Yoon, H.J.; You, S.; Lee, B.J.; Lee, D.S.; Jung, J.H. Cytotoxicity of psammaplin A from a two-sponge association may correlate with the inhibition of DNA replication. BMC Cancer 2004, 4, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Shin, J.; Kwon, H.J. Psammaplin A is a natural prodrug that inhibits class I histone deacetylase. Exp. Mol. Med. 2007, 39, 47–55. [Google Scholar] [CrossRef]
- Piña, I.C.; Gautschi, J.T.; Wang, G.Y.; Sanders, M.L.; Schmitz, F.J.; France, D.; Cornell-Kennon, S.; Sambucetti, L.C.; Remiszewski, S.W.; Perez, L.B.; et al. Psammaplins from the sponge Pseudoceratina purpurea: Inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem. 2003, 68, 3866–3873. [Google Scholar] [CrossRef]
- Mora, F.D.; Jones, D.K.; Desai, P.V.; Patny, A.; Avery, M.A.; Feller, D.R.; Smillie, T.; Zhou, Y.D.; Nagle, D.G. Bioassay for the identification of natural product-based activators of peroxisome proliferator-activated receptor-γ (PPARγ): The marine sponge metabolite psammaplin A activates PPARγ and induces apoptosis in human breast tumor cells. J. Nat. Prod. 2006, 69, 547–552. [Google Scholar] [CrossRef]
- Baud, M.G.; Leiser, T.; Haus, P.; Samlal, S.; Wong, A.C.; Wood, R.J.; Petrucci, V.; Gunaratnam, M.; Hughes, S.M.; Buluwela, L.; et al. Defining the mechanism of action and enzymatic selectivity of psammaplin A against its epigenetic targets. J. Med. Chem. 2012, 55, 1731–1750. [Google Scholar] [CrossRef]
- Zhou, Y.-D.; Li, J.; Du, L.; Mahdi, F.; Le, T.P.; Chen, W.-L.; Swanson, S.M.; Watabe, K.; Nagle, D.G. Biochemical and Anti-Triple Negative Metastatic Breast Tumor Cell Properties of Psammaplins. Mar. Drugs 2018, 16, 442. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.Y.; Jung, J.H.; Na, Y.J.; Kim, H.S. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells. Gynecol. Oncol. 2008, 108, 27–33. [Google Scholar] [CrossRef]
- Mujumdar, P.; Teruya, K.; Tonissen, K.F.; Vullo, D.; Supuran, C.T.; Peat, T.S.; Poulsen, S.A. An Unusual Natural Product Primary Sulfonamide: Synthesis, Carbonic Anhydrase Inhibition, and Protein X-ray Structures of Psammaplin, C. J. Med. Chem. 2016, 59, 5462–5470. [Google Scholar] [CrossRef]
- Salaroglio, I.C.; Mujumdar, P.; Annovazzi, L.; Kopecka, J.; Mellai, M.; Schiffer, D.; Poulsen, S.A.; Riganti, C. Carbonic Anhydrase XII Inhibitors Overcome P-Glycoprotein-Mediated Resistance to Temozolomide in Glioblastoma. Mol. Cancer Ther. 2018, 17, 2598–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujumdar, P.; Kopecka, J.; Bua, S.; Supuran, C.T.; Riganti, C.; Poulsen, S.A. Carbonic Anhydrase XII Inhibitors Overcome Temozolomide Resistance in Glioblastoma. J. Med. Chem. 2019, 62, 4174–4192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratovitski, E.A. Tumor Protein (TP)-p53 Members as Regulators of Autophagy in Tumor Cells upon Marine Drug Exposure. Mar. Drugs 2016, 14, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, W.S.; Kim, W.K.; Han, H.J.; Chung, H.J.; Jang, K.; Kim, H.S.; Kim, S.; Kim, D.; Bae, E.S.; Park, S.; et al. Targeting Histone Methyltransferase DOT1L by a Novel Psammaplin A Analog Inhibits Growth and Metastasis of Triple-Negative Breast Cancer. Mol. Ther. Oncolytics 2019, 15, 140–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilan, M.; Gugel, J.; Van Soest, R.W.M. Taxonomy, reproduction and ecology of new and known Red Sea sponges. Sarsia 2004, 89, 388–410. [Google Scholar] [CrossRef]
- Takada, K.; Imae, Y.; Ise, Y.; Ohtsuka, S.; Ito, A.; Okada, S.; Yoshida, M.; Matsunaga, S. Yakushinamides, Polyoxygenated Fatty Acid Amides That Inhibit HDACs and SIRTs, from the Marine Sponge Theonella swinhoei. J. Nat. Prod. 2016, 79, 2384–2390. [Google Scholar] [CrossRef]
- Marra, M.V.; Bertolino, M.; Pansini, M.; Giacobbe, S.; Manconi, R.; Pronzato, R. Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea). Ital. J. Zool. 2016, 83, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Picton, B.E.; Morrow, C.C. Halichondria Panicea (Pallas, 1766). [In] Encyclopedia of Marine Life of Britain and Ireland. 2016. Available online: http://www.habitas.org.uk/marinelife/species.asp?item=C4840 (accessed on 2 October 2020).
- Ereskovsky, A.; Kovtun, O.A.; Pronin, K.K.; Apostolov, A.; Erpenbeck, D.; Ivanenko, V. Sponge community of the western Black Sea shallow water caves: Diversity and spatial distribution. PeerJ 2018, 6, e4596. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, F.; Kudo, N.; Tomachi, Y.; Nakata, A.; Takemoto, M.; Ito, A.; Tabei, H.; Arai, D.; de Voogd, N.; Yoshida, M.; et al. Halistanol sulfates I and J, new SIRT1-3 inhibitory steroid sulfates from a marine sponge of the genus Halichondria. J. Antibiot. (Tokyo) 2018, 71, 273–278. [Google Scholar] [CrossRef]
- Van Soest, R.W.M.; Beglinger, E.J.; De Voogd, N.J. Mycale species (Porifera: Poecilosclerida) of Northwest Africa and the Macaronesian Islands. Zool. Med. Leiden 2014, 88, 60–109. [Google Scholar]
- Tanita, S.; Hoshino, T. The Demospongiae of Sagami Bay. In Biological Laboratory Imperial Household; Hoikusha Publishing Co. Ltd.: Japan, Osaka, 1989; Volume i–xiii, pp. 1–197. [Google Scholar]
- Nakao, Y.; Yoshida, S.; Matsunaga, S.; Shindoh, N.; Terada, Y.; Nagai, K.; Yamashita, J.K.; Ganesan, A.; van Soest, R.W.; Fusetani, N. Azumamides A-E: Histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew. Chem. Int. Ed. Engl. 2006, 45, 7553–7557. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Carey, K.L.; Nakao, Y.; Fusetani, N.; Packham, G.; Ganesan, A. Total synthesis of azumamide A and azumamide E, evaluation as histone deacetylase inhibitors, and design of a more potent analogue. Org. Lett. 2007, 9, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Maulucci, N.; Chini, M.G.; Micco, S.D.; Izzo, I.; Cafaro, E.; Russo, A.; Gallinari, P.; Paolini, C.; Nardi, M.C.; Casapullo, A.; et al. Molecular insights into azumamide e histone deacetylases inhibitory activity. J. Am. Chem. Soc. 2007, 129, 3007–3012. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Narazaki, G.; Hoshino, T.; Maeda, S.; Yoshida, M.; Maejima, H.; Yamashita, J.K. Evaluation of antiangiogenic activity of azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells. Bioorg. Med. Chem. Lett. 2008, 18, 2982–2984. [Google Scholar] [CrossRef]
- Villadsen, J.S.; Stephansen, H.M.; Maolanon, A.R.; Harris, P.; Olsen, C.A. Total synthesis and full histone deacetylase inhibitory profiling of Azumamides A-E as well as β²-epi-Azumamide E and β³-epi-Azumamide, E. J. Med. Chem. 2013, 56, 6512–6520. [Google Scholar] [CrossRef] [Green Version]
- Maolanon, A.R.; Villadsen, J.S.; Christensen, N.J.; Hoeck, C.; Friis, T.; Harris, P.; Gotfredsen, C.H.; Fristrup, P.; Olsen, C.A. Methyl effect in azumamides provides insight into histone deacetylase inhibition by macrocycles. J. Med. Chem. 2014, 57, 9644–9657. [Google Scholar] [CrossRef]
- De Weerdt, W.H. Family Chalinidae Gray, 1867. In Systema Porifera: A Guide to the Classification of Sponges; Hooper, J.N.A., Van Soest, R.W.M., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 852–873. [Google Scholar]
- Lakwal, V.R.; Kharate, D.S.; Mokashe, S.S. Diversity and distribution of intertidal marine sponges from Ratnagiri coast of Arabian Sea, (M.S.) India. Flora Fauna 2018, 24, 207–216. [Google Scholar]
- Muller, Y. Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: Inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: Inventory]. In Commission Régionale de Biologie Région Nord Pas-de-Calais: France; Christopher Helm: London, UK, 2004; p. 307. [Google Scholar]
- Bakus, G.J.; Nishiyama, G.K. Three species of toxic sponges from Cebu, Philippines (Porifera: Demospongiae). Proc. Biol. Soc. Wash 2000, 113, 1162–1172. [Google Scholar]
- Granito, R.G.; Custódio, M.R.; Rennó, A.C.M. Natural marine sponges for bone tissue engineering: The state of art and future perspective. J. Biomed. Mater. Res. B 2017, 105, 1717–1727. [Google Scholar] [CrossRef]
- Röthig, T.; Voolstra, C.R. Xestospongia testudinaria nighttime mass spawning observation in Indonesia. Galaxea J. CRS 2016, 18, 1–2. [Google Scholar] [CrossRef] [Green Version]
- De Voogd, N.J.; Van Soest, R.W.M. Indonesian sponges of the genus Petrosia Vosmaer (Demospongia: Haplosclerida). Zool. Med. Leiden 2002, 76, 193–209. [Google Scholar]
- Oku, N.; Nagai, K.; Shindoh, N.; Terada, Y.; van Soest, R.W.; Matsunaga, S.; Fusetani, N. Three new cyclostellettamines, which inhibit histone deacetylase, from a marine sponge of the genus Xestospongia. Bioorg Med. Chem. Lett. 2004, 14, 2617–2620. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jang, K.H.; Jeon, J.-E.; Yang, W.-Y.; Sim, C.J.; Oh, K.-B.; Shin, J. Cyclic Bis-1,3-dialkylpyridiniums from the Sponge Haliclona sp. Mar. Drugs 2012, 10, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Shih, S.-P.; Lee, M.-G.; El-Shazly, M.; Juan, Y.-S.; Wen, Z.-H.; Du, Y.-C.; Su, J.-H.; Sung, P.-J.; Chen, Y.-C.; Yang, J.-C.; et al. Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities. Mar. Drugs 2015, 13, 3132–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaku, M.; Kainuma, T.; Ishida-Takaku, T.; Ishigami, S.; Suzuki, H.; Tashiro, S.; van Soest, R.W.; Nakao, Y.; Kurumizaka, H. Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51. Genes Cells 2011, 16, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Takeuchi, T.; Kawabata, T.; Kato, H.; Yamakuma, M.; Matsuo, K.; El-Desoky, A.H.; Losung, F.; Mangindaan, R.E.; de Voogd, N.J.; et al. Halenaquinone inhibits RANKL-induced osteoclastogenesis. Bioorg. Med. Chem. Lett. 2014, 24, 5315–5317. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.Y. Checklist of Marine Biota of China Seas; China Science Press: Beijing, China, 2008; p. 1267. [Google Scholar]
- Janes, M.P.; Mary, A.G. Synopsis of the Family Xeniidae (Cnidaria: Octocorallia): Status and Trends. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012. [Google Scholar]
- Andrianasolo, E.H.; Haramaty, L.; White, E.; Lutz, R.; Falkowski, P. Mode of action of diterpene and characterization of related metabolites from the soft coral, Xenia elongata. Mar. Drugs 2014, 12, 1102–1115. [Google Scholar] [CrossRef] [Green Version]
- Donovan, S. Scanning Em study of the living cyrtocrinid Holopus rangii (Echinodermata, Crinoidea) and implications for its functional morphology. J. Paleontol. 1992, 66, 665–675. [Google Scholar] [CrossRef]
- Kemami Wangun, H.V.; Wood, A.; Fiorilla, C.; Reed, J.K.; McCarthy, P.J.; Wright, A.E. Gymnochromes E and F, cytotoxic phenanthroperylenequinones from a deep-water crinoid, Holopus rangii. J. Nat. Prod. 2010, 73, 712–715. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Li, S.; Yao, H.; Xu, J.; Jiang, S. Synthetic routes and biological evaluation of largazole and its analogues as potent histone deacetylase inhibitors. Molecules 2011, 16, 4681–4694. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.A.; Jayasri, M.A.; Suthindhiran, K. Marine Actinomycetes as potential source for histone deacetylase inhibitors and epigenetic modulation. Lett. Appl. Microbiol. 2015, 61, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Houssen, W.E.; Jaspars, M. 4-Hydroxybenzoyl derivative from the aqueous extract of the hydroid Campanularia sp. J. Nat. Prod. 2005, 68, 453–455. [Google Scholar] [CrossRef] [PubMed]
Compound | Extraction and Isolation | Identification | Ref. |
---|---|---|---|
Azumamides | Extraction in EtOH and MetOH, partitioning between water and Et2O, further extraction with nBuOH, octadecylsilane flash chromatography, gel filtration and octadecylsilane HPLC | Inhibition assay with crude enzymes extracted from K562 cells | [56] |
Cyclostelletamine A and G Dehydrocyclostelletamine D and E from Haliclona sponges | Extraction with EtOH, partitioning between water and Et2O, further extraction with nBuOH, separation by octadecylsilane flash chromatography, further partitioning between CH2Cl2 and 60% MeOH, fractionation of the latter layer by octadecylsilane (aqueous MeOH), TSK G3000S (aqueous MeCN–5% AcOH), and Sephadex LH-20 (CHCl3–MeOH, 1:1) chromatography, further purification by HPLC on phenylethyl-SiO2 (MeCN–H2O, 52:48, containing 0.1% TFA) and finally by HPLC on C30-SiO2 (aqueous n-PrOH containing 0.1% TFA) | Inhibition assay with HDACs partially purified from K562 cells and [3H] acetyl histoneH4 peptide | [64] |
Diterpene from X. elongata | Extraction with CH2Cl2 and then with MeOH, fractionation of the polar crude organic fraction by solid phase extraction cartridge (Reverse-phase C18), chromatography of the fraction eluting with 15% H2O and 85% MeOH on analytical RP HPLC (Phenomenex luna C8) using a gradient elution (starting with 80% water and 20% CH3CN | Inhibition assay with isolated HDACs and fluorogenic substrates | [69] |
Gymnochromes E and F | Successive extractions with EtOH and EtOAc/EtOH (1:1), fractionation on a C-18 stationary phase using vacuum column chromatography, further purification using reversed phase HPLC | Inhibition assay with HDACs partially purified from H1299 cells and [3H] acetyl histoneH4 peptide | [70] |
Halenaquinone | Extraction with MeOH, partitioning between CHCl3 and water, dissolution of the evaporated organic layer into water⁄ MeOHl (1:9), extraction with CHCl3, fractionation and purification by reversed-phase HPLC on a C18 column with aqueous acetonitrile (water:acetonitrile 7:3–3:7, linear gradient | Commercial HDAC Inhibitor Drug Screening assay (BioVision, Milpitas, CA, USA) | [66,67] |
Halistanol sulphates | Extraction with MeOH, CHCl3, and then, n-BuOH, Kupchan procedure to yield an aqueous MeOH layer, separation by octadecylsilane flash chromatography (water/MeOH = 100/0, 80/20, 50/50, 30/70, 0/100, and CHCl3/MeOH/water = 6/4/1), separation of the fraction eluting with water/MeOH = 50/50 by reverse-phase HPLC | SIRT1–3 inhibitory tests by electrophoretic mobility shift assay | [54] |
Psammaplins and bisaprasin | Extraction with 50% MeOH in CH2Cl2, separation by Sephadex LH-20 column (eluted with CH2Cl2/MeOH, 50:50), separation of the active fraction by a semi-preparative HPLC (C18(2), isocratic 63% MeOH in water) | Commercial luminescent assay (HDAC-Glo™, Promega, Madison, WI, USA) | [45] |
Yakushinamides | Extraction with MeOH and EtOH, partitioning with CHCl3 and water and, then, between 90% MeOH and n-hexane, separation of the CHCl3 layer by octadecylsilane flash chromatography using a stepwise gradient elution (20−70% MeOH, 70−90% MeCN, and MeOH), separation of the active fraction by chromatography on silica gel using a stepwise gradient elution (CHCl3−MeOH−water, 98:2:0, 9:1:0, 8:2:0.1, 7:3:0.5, 6:4:1, and 5:5:1), separation by RP-HPLC using two columns connected in tandem with eluent consisting of 8:2 MeOH−phosphate buffer, purification by RP-HPLC with 5:5 MeCN−phosphate buffer | Inhibition assay with recombinant SIRTs and fluorogenic substrates | [52] |
Phylum | Species | Compounds | Effects | Ref. |
---|---|---|---|---|
Porifera | Aplysinella rhax Pseudoceratina purpurea sub Psammaplysilla purpurea Ernstilla lacunose sub Dendrilla lacunosa Jaspis sp. Poecillastra wondoensis | psammaplin A (e,z)-psammaplin A (e,e)-psammaplin A psammaplin E psammaplin K | Activation of peroxisome proliferator-activated receptor γ (PPARγ) in MCF-7 cells and promotion of apoptotic death HDAC isoform selectivity Powerful inhibition of the proliferation and three-dimensional invasive growth of tumor cells, stimulation of the activity of hypoxia-inducible factor (HIF) and upregulation of HIF target genes Growth inhibition and apoptosis promotion on Ishikawa endometrial cancer cells | [48] [49] [50] [51] |
psammaplin A psammaplin C psammaplin A-3091 | Powerful inhibition of carbonic anhydrase XII Anticancer effect against the highly chemorefractory stem component of glioblastoma cells Stimulation of the expression and phosphorylation of TP53 family members Cytotoxicity towards MCF-7 breast cancer and A549 lung cancer cells Significant in vitro and in vivo anti-breast tumorigenesis and antimetastatic activity | [52] [53] [55] [49] [56] | ||
Theonella swinhoei | yakushinamide A | Moderate inhibitory effect on HDACs and sirtuins | [58] | |
Halichondria sp. | halistanol sulphate halistanol sulphate I halistanol sulphate J | Inhibitory activity on SIRT1-3 | [62] | |
Mycale izuensis | azumamides A-E azumamide A azumamide E azumamide C | Moderate cytostatic effect on K562 human leukemia cells and significant anti-angiogenic effect on mouse vascular progenitor cells. Inhibitory activity on total HDACs from HeLa cell extracts with selectivity for HDAC1-4. Strong inhibition of in vitro angiogenesis by mouse induced pluripotent stem cells | [65] [66,67,68] | |
Haliclona sp. | cyclostellettamine N cyclostellettamine Q | Moderate doxorubicin-comparable cytotoxicity towards A549 lung cancer cells and antimicrobial activity against Gram-positive bacteria | [79] | |
Xestospongia sp. | cyclostellettamine A cyclostellettamine G dehydrocyclostellettamine D dehydrocyclostellettamine E | Moderate cytotoxic effect on HeLa human cervix carcinoma, P388 mouse leukemia, and 3Y1 rat fibroblastic cells | [78] | |
Xestospongia vansoesti | halenaquinone | Inhibitory activity on DNA repair and on receptor activator of nuclear factor-κB ligand-mediated osteoclast maturation | [58,81] | |
Petrosia alfiani | polycyclic quinone-type metabolite halenaquinone | Inhibition of pan-HDACs and topoisomerase IIα expression, cytotoxic activity against Molt 4 leukemia cells and in vivo antileukemic effect in mice xenograft assays | [80] | |
Cnidaria | Xenia elongata | diterpene | Induction of programmed death of immortalized apoptosis-competent W2 cells and inhibition of class II B HDAC6 | [85] |
Echinodermata | Holopus rangii | gymnochrome E | Inhibitory activity towards purified HDAC-1 and selective growth impairment of the multidrug-resistant NCI/ADRRes ovarian cancer cell line. Antimicrobic activity against Staphylococcus aureus and its methicillin-resistant strain | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luparello, C.; Mauro, M.; Arizza, V.; Vazzana, M. Histone Deacetylase Inhibitors from Marine Invertebrates. Biology 2020, 9, 429. https://doi.org/10.3390/biology9120429
Luparello C, Mauro M, Arizza V, Vazzana M. Histone Deacetylase Inhibitors from Marine Invertebrates. Biology. 2020; 9(12):429. https://doi.org/10.3390/biology9120429
Chicago/Turabian StyleLuparello, Claudio, Manuela Mauro, Vincenzo Arizza, and Mirella Vazzana. 2020. "Histone Deacetylase Inhibitors from Marine Invertebrates" Biology 9, no. 12: 429. https://doi.org/10.3390/biology9120429
APA StyleLuparello, C., Mauro, M., Arizza, V., & Vazzana, M. (2020). Histone Deacetylase Inhibitors from Marine Invertebrates. Biology, 9(12), 429. https://doi.org/10.3390/biology9120429