Population Density and Spatial–Temporal Activity Pattern of the Tibetan Wolf in Dulan, Qinghai, China
Simple Summary
Abstract
1. Introduction
2. Study Method
2.1. Study Area
2.2. Set up Camera Traps
2.3. Data Analysis
2.3.1. Independent Captures
2.3.2. Estimate Population Size
2.3.3. Capture Rate
2.3.4. Activity Rhythm
3. Results
3.1. Population Size
3.2. Habitat Types and Altitude Preferences
3.3. Activity Rhythm
3.3.1. Daily Activity Rhythm
3.3.2. Seasonal Variation in Activities
4. Discussion
4.1. Population Denstiy
4.2. Habitat Type and Elevational Preferences
4.3. Activity Rhythm
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elbroch, L.M.; Ferguson, J.M.; Quigley, H.; Craighead, D.; Thompson, D.J.; Wittmer, H.U. Reintroduced Wolves and Hunting Limit the Abundance of a Subordinate Apex Predator in a Multi-Use Landscape. Proc. R. Soc. B. 2020, 287, 20202202. [Google Scholar] [CrossRef] [PubMed]
- Laikre, L.; Allendorf, F.W.; Aspi, J.; Carroll, C.; Dalén, L.; Fredrickson, R.; Wheat, C.H.; Hedrick, P.; Johannesson, K.; Kardos, M.; et al. Planned Cull Endangers Swedish Wolf Population. Science 2022, 377, 162. [Google Scholar] [CrossRef]
- Morell, V. Massive Wolf Kill Disrupts Long-Running Yellowstone Park Study. Montana 2022, 15, 20. [Google Scholar]
- Chapron, G.; Epstein, Y.; Ouro Ortmark, M.; Helmius, L.; Ramírez Loza, J.P.; Bétaille, J.; López-Bao, J.V. European Commission May Gut Wolf Protection. Science 2023, 382, 275. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, B.; Dou, L. Local Villagers’ Perceptions of Wolves in Jiuzhaigou County, Western China. PeerJ 2015, 3, e982. [Google Scholar] [CrossRef]
- Werhahn, G.; Hennelly, L.M.; Lyngdoh, S.J.; Habib, B.; Viranta, S.K.; Shrotriya, S. Canis lupus ssp. chanco (Amended Version of 2023 Assessment) 2024. The IUCN Red List of Threatened Species 2024: e.T223987824A258477123. Available online: https://www.iucnredlist.org/species/223987824/258477123 (accessed on 28 June 2025).
- Dhendup, T.; Letro; Tandin; Wangdi, S. Distribution and Potential Habitat of the Vulnerable Himalayan Wolf Canis lupus Chanco in Bhutan. Oryx 2025, 59, 119–122. [Google Scholar] [CrossRef]
- Jansson, E.; Harmoinen, J.; Ruokonen, M.; Aspi, J. Living on the Edge: Reconstructing the Genetic History of the Finnish Wolf Population. BMC Evol. Biol. 2014, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, R.T. Human-Caused Wolf Mortality Persists for Years after Discontinuation of Hunting. Sci. Rep. 2023, 13, 11084. [Google Scholar] [CrossRef] [PubMed]
- Mooney, J.A.; Marsden, C.D.; Yohannes, A.; Wayne, R.K.; Lohmueller, K.E. Long-Term Small Population Size, Deleterious Variation, and Altitude Adaptation in the Ethiopian Wolf, a Severely Endangered Canid. Mol. Biol. Evol. 2023, 40, msac277. [Google Scholar] [CrossRef]
- Hernández-Alonso, G.; Ramos-Madrigal, J.; Sun, X.; Scharff-Olsen, C.H.; Sinding, M.-H.S.; Martins, N.F.; Ciucani, M.M.; Mak, S.S.; Lanigan, L.T.; Clausen, C.G.; et al. Conservation Implications of Elucidating the Korean Wolf Taxonomic Ambiguity through Whole-Genome Sequencing. Ecol. Evol. 2023, 13, e10404. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, Z.; Han, E.; Hou, R.; Zhang, L.; Galaverni, M.; Huang, J.; Liu, H.; Silva, P.; Li, P.; et al. Hypoxia Adaptations in the Grey Wolf (Canis lupus Chanco) from Qinghai-Tibet Plateau. PLoS Genet. 2014, 10, e1004466. [Google Scholar] [CrossRef]
- Lu, W.; Ya-Ping, M.; Qi-Jun, Z.; Zhang, Y.-P.; Savolainen, P.; Guo-Dong, W. The Geographical Distribution of Grey Wolves (Canis lupus) in China: A Systematic Review. Zool. Res. 2016, 37, 315–326. [Google Scholar]
- Rutledge, L.Y.; Desy, G.; Fryxell, J.M.; Middel, K.; White, B.N.; Patterson, B.R. Patchy Distribution and Low Effective Population Size Raise Concern for an At-Risk Top Predator. Divers. Distrib. 2017, 23, 79–89. [Google Scholar] [CrossRef]
- Pamenter, M.E.; Hall, J.E.; Tanabe, Y.; Simonson, T.S. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front. Genet. 2020, 11, 743. [Google Scholar] [CrossRef]
- Werhahn, G.; Senn, H.; Ghazali, M.; Karmacharya, D.; Sherchan, A.M.; Joshi, J.; Kusi, N.; López-Bao, J.V.; Rosen, T.; Kachel, S.; et al. The Unique Genetic Adaptation of the Himalayan Wolf to High-Altitudes and Consequences for Conservation. Global Ecol. Conserv. 2018, 16, e00455. [Google Scholar] [CrossRef]
- Shrotriya, S.; Reshamwala, H.S.; Lyngdoh, S.; Jhala, Y.V.; Habib, B. Feeding Patterns of Three Widespread Carnivores—The Wolf, Snow Leopard, and Red Fox—In the Trans-Himalayan Landscape of India. Front. Ecol. Evol. 2022, 10, 815996. [Google Scholar] [CrossRef]
- Werhahn, G.; Kusi, N.; Li, X.; Chen, C.; Zhi, L.; Martín, R.L.; Sillero-Zubiri, C.; Macdonald, D.W. Himalayan Wolf Foraging Ecology and the Importance of Wild Prey. Global Ecol. Conserv. 2019, 20, e00780. [Google Scholar]
- Qiao, J.; Gong, X.; Jia, W.; Jia, G.; Jiang, Y.; Zhou, H.; Li, J.; Wen, A.; Wang, J. Distribution, Group Size, and Activity Rhythms of Wolves in Gongga Mountain, Sichuan. J. Mammal. 2023, 43, 248–257. [Google Scholar]
- Li, X.; He, Y.; Chen, X.; Yi, Y.; Huang, H.; Dong, Z.; Bian, Z.; Zhao, X.; Shi, X.; Lv, Z. Distribution, Habitat Influences, and Spatiotemporal Niche Relationships of Large Carnivores in Dingqing County, Tibet. J. Mammal. 2024, 44, 681–694. [Google Scholar]
- Cong, W.; Zhang, Y.; Huang, T.; Li, J.; Xu, J.; Zhang, S.; Li, H.; Xue, Y.; Zhang, Y. Diet Composition and Nutritional Ecological Niche Differentiation of Co-Distributed Carnivorous Mammals in the Altyn Mountains National Nature Reserve. J. Mammal. 2024, 44, 695–705. [Google Scholar]
- Chai, Y.; Mao, X.; Gaima, C.; Lin, Q.; Li, G.; Sun, N. Preliminary Study on the Spatiotemporal Relationship between Leopards and Co-Distributed Carnivores in the Southern Sanjiangyuan Region. J. Mammal. 2024, 44, 706–716. [Google Scholar]
- Zhang, Y.; Wang, W.; Yang, Y.; Zhou, M.; Zhi, M.; Xiao, J.; Yu, Y.; Zhang, Z.; Dai, Q. Wolf Den Site Selection in the Zoige Plateau Wetlands. J. Mammal. 2024, 44, 771–780. [Google Scholar]
- Qiao, J.; Ji, P.; Li, Q.; Qian, Z.; Li, X.; Ruan, G.; Jiang, Y.; Wang, J. Habitat Suitability Analysis for Wolves in Gongga Mountain, Sichuan. J. Mammal. 2024, 44, 762–770. [Google Scholar]
- Chen, J.-Y.; Zhang, L.-J.; Wang, A.-M.; Nasendelger, B.; Yuan, L.; Bao, W.-D. Population, Distribution and Food Composition of Wolves (Canis lupus) at Saihanwula Nature Reserve, Inner Mongolia. Zool. Res. 2011, 32, 232–235. [Google Scholar]
- Liu, S.; Chu, H.; Han, L. Conflicts between Canis lupus and Community Nomads in the Mt.Kalamaili Ungulate Nature Reserve, Xinjiang, China. Arid. Zone Res. 2013, 30, 681–688. [Google Scholar]
- Tian, T.; Chen, X.; Pan, H.; Jin, Y.; Zhang, X.; Xiang, Y.; Song, D.; Yang, B.; Zhang, L. Habitat Selection Differences of Two Sympatric Large Carnivores in the Southwestern Mountains of China. Diversity 2023, 15, 968. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Dormann, C.F.; Huijbregts, M.A.J. Population Density Estimates for Terrestrial Mammal Species. Global Ecol. Biogeogr. 2022, 31, 978–994. [Google Scholar] [CrossRef]
- Mace, G.M.; Collen, B.; Fuller, R.A.; Boakes, E.H. Population and Geographic Range Dynamics: Implications for Conservation Planning. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3743–3751. [Google Scholar] [CrossRef]
- Kiffner, C.; Binzen, G.; Cunningham, L.; Jones, M.; Spruiell, F.; Kioko, J. Wildlife Population Trends as Indicators of Protected Area Effectiveness in Northern Tanzania. Ecol. Indic. 2020, 110, 105903. [Google Scholar] [CrossRef]
- Garant, D. Natural and Human-Induced Environmental Changes and Their Effects on Adaptive Potential of Wild Animal Populations. Evol. Appl. 2020, 13, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Marucco, F.; Boiani, M.V.; Dupont, P.; Milleret, C.; Avanzinelli, E.; Pilgrim, K.; Schwartz, M.K.; von Hardenberg, A.; Perrone, D.S.; Friard, O.P.; et al. A Multidisciplinary Approach to Estimating Wolf Population Size for Long-Term Conservation. Conserv. Biol. 2023, 37, e14132. [Google Scholar] [CrossRef]
- Zeng, Y.; Han, H.; Gong, Y.; Qubi, S.; Chen, M.; Qiu, L.; Huang, Y.; Zhou, H.; Wei, W. Feeding Habits and Foraging Patch Selection Strategy of the Giant Panda in the Meigu Dafengding National Nature Reserve, Sichuan Province, China. Environ. Sci. Pollut. Res. 2023, 30, 49125–49135. [Google Scholar] [CrossRef]
- Costello, C.M.; Cain, S.I.; Nielson, R.M.; Servheen, C.; Schwartz, C.C. Response of American Black Bears to the Non-Motorized Expansion of a Road Corridor in Grand Teton National Park. Ursus 2013, 24, 54–69. [Google Scholar] [CrossRef]
- Ordiz, A.; Støen, O.-G.; Sæbø, S.; Kindberg, J.; Delibes, M.; Swenson, J.E. Do Bears Know They Are Being Hunted? Biol. Conserv. 2012, 152, 21–28. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The Influence of Human Disturbance on Wildlife Nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and Ecological Effects of the World’s Largest Carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef]
- Carter, N.H.; Shrestha, B.K.; Karki, J.B.; Pradhan, N.M.B.; Liu, J. Coexistence between Wildlife and Humans at Fine Spatial Scales. Proc. Natl. Acad. Sci. USA 2012, 109, 15360–15365. [Google Scholar] [CrossRef]
- Kong, D.; Yang, X.; Zhong, X.; Dao, M.; Zhu, Y. Diurnal Time Budget and Behavior Rhythm of Wintering Black-Necked Crane (Grus nigricollis) at Dashanbao in Yunnan. Zool. Res. 2008, 29, 2. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, R.; Singh, V.P.; Xu, C.-Y.; Fan, K.; Shen, Z.; Wang, G.; Zhao, J. Dynamic Vulnerability of Ecological Systems to Climate Changes across the Qinghai-Tibet Plateau, China. Ecol. Indic. 2022, 134, 108483. [Google Scholar] [CrossRef]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic Downgrading of Planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef]
- Ripple, W.J.; Beschta, R.L. Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems? Bioscience 2004, 54, 755. [Google Scholar] [CrossRef]
- Ripple, W.J.; Beschta, R.L. Wolf Reintroduction, Predation Risk, and Cottonwood Recovery in Yellowstone National Park. For. Ecol. Manag. 2003, 184, 299–313. [Google Scholar] [CrossRef]
- Fortin, D.; Beyer, H.L.; Boyce, M.S.; Smith, D.W.; Duchesne, T.; Mao, J.S. Wolves Influence Elk Movements: Behavior Shapes a Trophic Cascade in Yellowstone National Park. Ecology 2005, 86, 1320–1330. [Google Scholar] [CrossRef]
- Hebblewhite, M.; White, C.A.; Nietvelt, C.G.; McKenzie, J.A.; Hurd, T.E.; Fryxell, J.M.; Bayley, S.E.; Paquet, P.C. Human Activity Mediates a Trophic Cascade Caused by Wolves. Ecology 2005, 86, 2135–2144. [Google Scholar] [CrossRef]
- Smith, D.W.; Peterson, R.O.; Houston, D.B. Yellowstone after Wolves. Bioscience 2003, 53, 330. [Google Scholar] [CrossRef]
- Ripple, W.J.; Beschta, R.L. Restoring Yellowstone’s Aspen with Wolves. Biol. Conserv. 2007, 138, 514–519. [Google Scholar] [CrossRef]
- Wen, X.; Cheng, X.; Dong, Y.; Wang, Q.; Lin, X. Analysis of the Activity Rhythms of the Great Gerbil (Rhombomys opimus) and Its Predators and Their Correlations Based on Infrared Camera Technology. Glob. Ecol. Conserv. 2020, 24, e01337. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, K.; Wang, X.; Krzton, A.; Xia, W.; Li, D. Research on Space Occupancy, Activity Rhythm and Sexual Segregation of White-Lipped Deer (Cervus albirostris) in Forest Habitats of Jiacha Gorge on Yarlung Zangbo River Basin Based on Infrared Camera Technology. Biology 2023, 12, 815. [Google Scholar] [CrossRef] [PubMed]
- Green, A.M.; Chynoweth, M.W.; Şekercioğlu, Ç.H. Spatially Explicit Capture-Recapture Through Camera Trapping: A Review of Benchmark Analyses for Wildlife Density Estimation. Front. Ecol. Evol. 2020, 8, 563477. [Google Scholar] [CrossRef]
- Caravaggi, A.; Banks, P.B.; Burton, A.C.; Finlay, C.M.V.; Haswell, P.M.; Hayward, M.W.; Rowcliffe, M.J.; Wood, M.D. A Review of Camera Trapping for Conservation Behaviour Research. Remote Sens. Ecol. Conserv. 2017, 3, 109–122. [Google Scholar] [CrossRef]
- Kays, R.; Arbogast, B.S.; Baker-Whatton, M.; Beirne, C.; Boone, H.M.; Bowler, M.; Burneo, S.F.; Cove, M.V.; Ding, P.; Espinosa, S.; et al. An Empirical Evaluation of Camera Trap Study Design: How Many, How Long and When? Methods Ecol. Evol. 2020, 11, 700–713. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. REVIEW: Wildlife Camera Trapping: A Review and Recommendations for Linking Surveys to Ecological Processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
- Li, S.; Wang, D.; Xiao, Z.; Li, X.; Wang, T.; Feng, L.; Wang, Y. Camera-Trapping in Wildlife Research and Conservation in China: Review and Outlook. Biodivers. Sci. 2014, 22, 685–695. [Google Scholar] [CrossRef]
- Zhang, S. Analysis of the Climate Characteristics of Temperature and Gale during the Recent 28 Years in Dulan County. J. Agric. Catastrophology 2020, 10, 150–151. [Google Scholar]
- Ma, Y.; Yi, J. Analysis of Climate Change Characteristics in Southeast Qaidam Basin from 1961 to 2010. Mod. Agric. Sci. Technol. 2017, 215–216. [Google Scholar]
- Wang, D.; Sai, Q.; Wang, Z.; Zhao, H.; Lian, X. Spatiotemporal Overlap among Sympatric Pallas’s Cat (Otocolobus manul), Tibetan Fox (Vulpes ferrilata) and Red Fox (V. vulpes) in the Source Region of the Yangtze River. Biodivers. Sci. 2022, 30, 21365. [Google Scholar] [CrossRef]
- Xiao, H.X. Variations and Impact Factors of NDVI in Dulan County of Qinghai Province. Bull. Soil Water Conserv. 2011, 204–207. [Google Scholar]
- Liang, Z. Preliminary Discussion on the Ecosystem Service Function of Grassland in Dulan County of Qinghai Province and Its Valuation. Anim. Husb. Feed Sci. 2011, 32, 52–54. [Google Scholar]
- Linlin, L.; Wei, W.; Ye, L.; Ping, C.; Yonghong, S.; Jun, Y.; Feng, Y. Investigation and Analysis of Ungulate Population Size in Dulan, Qinghai Province. For. Grassl. Resour. Res. 2020, 3, 63–66. [Google Scholar]
- Zhou, G.; Ren, H.; Liu, T.; Zhou, L.; Ji, Y.; Song, X.; Lv, X. A New Regional Vegetation Mapping Method Based on Terrain-Climate-Remote Sensing and Its Application on the Qinghai-Tibet Plateau. Sci. China Earth Sci. 2023, 66, 237–246. [Google Scholar]
- O’Brien, T. On the Use of Automated Cameras to Estimate Species Richness for Large-and Medium-Sized Rainforest Mammals. Anim. Conserv. 2008, 11, 179. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C. Estimating Animal Density Using Camera Traps without the Need for Individual Recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Gese, E.M.; Mech, L.D. Dispersal of Wolves (Canis lupus) in Northeastern Minnesota, 1969–1989. Can. J. Zool. 1991, 69, 2946–2955. [Google Scholar] [CrossRef]
- Xiaonan, D.; Wenwen, C.; Yuan, W.; Congcong, D.; Lei, H.; Hongjun, C. The Largest Gray Wolf (Canis lupus) Home Ranges in the World May Exist in the Mount Kalamaili Ungulate Nature Reserve, Xinjiang, China. Acta Theriol. Sin. 2016, 36, 452–458. [Google Scholar]
- Droghini, A.; Boutin, S. The Calm during the Storm: Snowfall Events Decrease the Movement Rates of Grey Wolves (Canis lupus). PLoS ONE 2018, 13, e0205742. [Google Scholar] [CrossRef]
- Mech, L.D.; Cluff, H.D. Movements of Wolves at the Northern Extreme of the Species’ Range, Including during Four Months of Darkness. PLoS ONE 2011, 6, e25328. [Google Scholar] [CrossRef]
- Kuzyk, G.W.; Rohner, C.; Schmiegelow, F.K. Travel Rates of Wolves, Canis lupus, in Relation to Ungulate Kill Sites in Westcentral Alberta. Can. Field-Nat. 2005, 119, 573–577. [Google Scholar] [CrossRef]
- Liu, F.; Li, D.; Wu, J. Using Infra-Red Cameras to Survey Wildlife in Beijing Songshan National Nature Reserve. Acta Ecol. Sin. 2012, 32, 730–739. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Kays, R.; Kranstauber, B.; Carbone, C.; Jansen, P.A. Quantifying Levels of Animal Activity Using Camera Trap Data. Methods Ecol. Evol. 2014, 5, 1170–1179. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating Overlap of Daily Activity Patterns from Camera Trap Data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Linkie, M.; Ridout, M.S. Assessing Tiger–Prey Interactions in Sumatran Rainforests. J. Zool. 2011, 284, 224–229. [Google Scholar] [CrossRef]
- Viviano, A.; Mori, E.; Fattorini, N.; Mazza, G.; Lazzeri, L.; Panichi, A.; Strianese, L.; Mohamed, W.F. Spatiotemporal Overlap between the European Brown Hare and Its Potential Predators and Competitors. Animals 2021, 11, 562. [Google Scholar] [CrossRef]
- Schmid, F.; Schmidt, R. Multivariate Extensions of Spearman’s Rho and Related Statistics. Stat. Probab. Lett. 2007, 77, 407–416. [Google Scholar]
- Li, Y. A Review on Estimating Population Size of Large and Medium-Sized Mammals. Biodivers. Sci. 2021, 29, 1700–1717. [Google Scholar] [CrossRef]
- Li, Z.; Du, M.; Zhu, Y.; Wang, D.; Li, Z.; Wang, T. A Practical Guide for Estimating the Density of Unmarked Populations Using Camera Traps. Biodivers. Sci. 2023, 31, 22422. [Google Scholar] [CrossRef]
- Harris, G.M.; Butler, M.J.; Stewart, D.R.; Rominger, E.M.; Ruhl, C.Q. Accurate Population Estimation of Caprinae Using Camera Traps and Distance Sampling. Sci. Rep. 2020, 10, 17729. [Google Scholar] [CrossRef]
- Apps, P.J.; McNutt, J.W. How Camera Traps Work and How to Work Them. Afr. J. Ecol. 2018, 56, 702–709. [Google Scholar] [CrossRef]
- Palencia, P.; Barroso, P.; Vicente, J.; Hofmeester, T.R.; Ferreres, J.; Acevedo, P. Random Encounter Model Is a Reliable Method for Estimating Population Density of Multiple Species Using Camera Traps. Remote Sens. Ecol. Conserv. 2022, 8, 670–682. [Google Scholar] [CrossRef]
- Wei, Y.; Jiang, G. Overview of Monitoring Methods for Tigers, Leopards and Ungulate Prey. Biodivers. Sci. 2022, 30, 21551. [Google Scholar] [CrossRef]
- Nakashima, Y. Potentiality and Limitations of N-Mixture and Royle-Nichols Models to Estimate Animal Abundance Based on Noninstantaneous Point Surveys. Popul Ecol. 2020, 62, 151–157. [Google Scholar] [CrossRef]
- Mclaren, A.A.; Patterson, B.R. Seasonal Space Use and Movement of a Grey Wolf (Canis lupus) in a Protected Archipelago in Lake Superior, Ontario. Am. Midl. Nat. 2021, 185, 249–259. [Google Scholar] [CrossRef]
- Nordli, K.; Wabakken, P.; Eriksen, A.; Sand, H.; Wikenros, C.; Maartmann, E.; Zimmermann, B. Spatial and Temporal Cohesion of Parents and Offspring in a Social Large Carnivore. Anim. Behav. 2023, 197, 155–167. [Google Scholar] [CrossRef]
- Jiménez, J.; Cara, D.; García-Dominguez, F.; Barasona, J.A. Estimating Wolf (Canis lupus) Densities Using Video Camera Traps and Spatial Capture–Recapture Analysis. Ecosphere 2023, 14, e4604. [Google Scholar] [CrossRef]
- Mattioli, L.; Canu, A.; Passilongo, D.; Scandura, M.; Apollonio, M. Estimation of Pack Density in Grey Wolf (Canis lupus) by Applying Spatially Explicit Capture-Recapture Models to Camera Trap Data Supported by Genetic Monitoring. Front. Zool. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Panwar, A.; Goyal, S.P.; Sathyakumar, S. Space Use by Woolly Wolf Canis lupus Chanco in Gangotri National Park, Western Himalaya, India. Front. Ecol. Evol. 2022, 9, 782339. [Google Scholar] [CrossRef]
- Roffler, G.H.; Pilgrim, K.L.; Zarn, K.E.; Schwartz, M.K.; Levi, T. Variation in Adult and Pup Wolf Diets at Natal Den Sites Is Influenced by Forest Composition and Configuration. Ecol. Evol. 2023, 13, e9648. [Google Scholar] [CrossRef]
- Sovie, A.R.; Romanski, M.C.; Orning, E.K.; Marneweck, D.G.; Nichols, R.; Moore, S.; Belant, J.L. Temporal Variation in Translocated Isle Royale Wolf Diet. Ecol. Evol. 2023, 13, e9873. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, F.; Lovari, S.; Mancino, V.; Burrini, L.; Rossa, M. Food Habits of Wolves and Selection of Wild Ungulates in a Prey-Rich Mediterranean Coastal Area. Mamm. Biol. 2019, 99, 119–127. [Google Scholar] [CrossRef]
- Tédonzong, L.R.D.; Willie, J.; Makengveu, S.T.; Lens, L.; Tagg, N. Variation in Behavioral Traits of Two Frugivorous Mammals May Lead to Differential Responses to Human Disturbance. Ecol. Evol. 2020, 10, 3798–3813. [Google Scholar] [CrossRef]
- Cantera, I.; Coutant, O.; Jézéquel, C.; Decotte, J.-B.; Dejean, T.; Iribar, A.; Vigouroux, R.; Valentini, A.; Murienne, J.; Brosse, S. Low Level of Anthropization Linked to Harsh Vertebrate Biodiversity Declines in Amazonia. Nat. Commun. 2022, 13, 3290. [Google Scholar] [CrossRef] [PubMed]
- Kuzyk, G.W.; Kneteman, J.; Schmiegelow, F.K. Winter Habitat Use by Wolves, Canis lupus, in Relation to Forest Harvesting in West-Central Alberta. Can. Field-Nat. 2004, 118, 368–375. [Google Scholar] [CrossRef]
- Bernal, J.F.; Packard, J.M. Differences in Winter Activity, Courtship, and Social Behavior of Two Captive Family Groups of Mexican Wolves (Canis lupus Baileyi). Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 1997, 16, 435–443. [Google Scholar] [CrossRef]
- Johnson, I.; Brinkman, T.; Lake, B.; Brown, C. Winter Hunting Behavior and Habitat Selection of Wolves in a Low-Density Prey System. Wildl. Biol. 2017, 2017, wlb.00290. [Google Scholar] [CrossRef]
- Ferreiro-Arias, I.; García, E.J.; Palacios, V.; Sazatornil, V.; Rodríguez, A.; López-Bao, J.V.; Llaneza, L. Drivers of Wolf Activity in a Human-Dominated Landscape and Its Individual Variability Toward Anthropogenic Disturbance. Ecol. Evol. 2024, 14, e70397. [Google Scholar] [CrossRef]
- Braithwaite, L.; Turner, J.; Kelly, J. Studies on the Arboreal Marsupial Fauna of Eucalypt Forests Being Harvested for Wood Pulp at Eden, Nsw Iii. Relationships Between Faunal Densities, Eucalypt Occurrence and Foliage Nutrients, and Soil Parent Materials. Wildl. Res. 1984, 11, 41–48. [Google Scholar] [CrossRef]
- Tobler, M.W.; Carrillo-Percastegui, S.E.; Leite Pitman, R.; Mares, R.; Powell, G. An Evaluation of Camera Traps for Inventorying Large- and Medium-sized Terrestrial Rainforest Mammals. Anim. Conserv. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Hierarchical Spatial Capture–Recapture Models for Estimating Density from Trapping Arrays. In Camera Traps in Animal Ecology; O’Connell, A.F., Ed.; Springer: Tokyo, Japan, 2011; pp. 163–190. [Google Scholar]
- Janeiro-Otero, A.; Álvarez, X.; Crespo, C.F.; Valero, E.; Dormann, C.F. Grey Wolf Feeding Habits and Their Geographical Variation in Northwest Spain. Food Webs 2022, 32, e00248. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Zhou, C.; Shao, X.; Shi, Z.; Li, H.; Su, H.; Qin, R.; Chang, T.; Hu, X.; et al. Alpine Grassland Degradation and Its Restoration in the Qinghai–Tibet Plateau. Grasses 2023, 2, 31–46. [Google Scholar] [CrossRef]
- Lin, L.; Sun, R.; Guo, X. Exploration of the Relationship between Human Activity and Sustainable Development on the Alpine Meadows of the Qinghai-Tibet Plateau: History, Dilemma, and Strategy. Pratacultural Sci. 2024, 41, 1865–1882. [Google Scholar]
- Wang, Z.; Wang, Q.; Wu, X.; Zhao, L.; Yue, G.; Nan, Z.; Wang, P.; Yi, S.; Zou, D.; Qin, Y.; et al. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas. PLoS ONE 2017, 12, e0169732. [Google Scholar] [CrossRef] [PubMed]
- Kohl, M.T. Diel Predator Activity Drives a Dynamic Landscape of Fear. Ecol. Monogr. 2018, 88, 638–652. [Google Scholar] [CrossRef]
- Theuerkauf, J.; Jȩdrzejewski, W.; Schmidt, K.; Okarma, H.; Ruczyński, I.; Śniezko, S.; Gula, R. Daily Patterns and Duration of Wolf Activity in the Białowieza Forest, Poland. J. Mammal. 2003, 84, 243–253. [Google Scholar] [CrossRef]
- Martínez-Abraín, A.; Llinares, Á.; Llaneza, L.; Santidrián Tomillo, P.; Pita-Romero, J.; Valle-García, R.J.; Formoso-Freire, V.; Perina, A.; Oro, D. Increased Grey Wolf Diurnality in Southern Europe under Human-Restricted Conditions. J. Mammal. 2023, 104, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Bryce, C.M.; Dunford, C.E.; Pagano, A.M.; Wang, Y.; Borg, B.L.; Arthur, S.M.; Williams, T.M. Environmental Correlates of Activity and Energetics in a Wide-Ranging Social Carnivore. Anim. Biotelem. 2022, 10, 1. [Google Scholar] [CrossRef]
- Blount, J.D.; Green, A.M.; Chynoweth, M.; Kittelberger, K.D.; Hipólito, D.; Bojarska, K.; Çoban, E.; Kusak, J.; Şekercioğlu, Ç.H. Seasonal Activity Patterns and Home Range Sizes of Wolves in the Human-dominated Landscape of Northeast Türkiye. Wildl. Biol. 2024, 2024, e01257. [Google Scholar] [CrossRef]
- Vicedo, T.; Meloro, C.; Penteriani, V.; García, J.; Lamillar, M.Á.; Marsella, E.; Gómez, P.; Cruz, A.; Cano, B.; Varas, M.J.; et al. Temporal Activity Patterns of Bears, Wolves and Humans in the Cantabrian Mountains, Northern Spain. Eur. J. Wildl. Res. 2023, 69, 100. [Google Scholar] [CrossRef]
- Romps, S.M. Daily Activity Patterns Among Apex Predators in the Northwest United States. 2022. Available online: https://commons.nmu.edu/celebration_student_scholarship/38/ (accessed on 7 June 2025).
- Diserens, T.A.; Churski, M.; Bubnicki, J.W.; Zalewski, A.; Brzeziński, M.; Kuijper, D.P. Wolf Risk Fails to Inspire Fear in Two Mesocarnivores Suggesting Facilitation Prevails. Sci. Rep. 2022, 12, 16469. [Google Scholar] [CrossRef] [PubMed]
- Milleret, C.; Ordiz, A.; Chapron, G.; Andreassen, H.P.; Kindberg, J.; Månsson, J.; Tallian, A.; Wabakken, P.; Wikenros, C.; Zimmermann, B.; et al. Habitat Segregation between Brown Bears and Gray Wolves in a Human-Dominated Landscape. Ecol. Evol. 2018, 8, 11450–11466. [Google Scholar] [CrossRef]
- Parsons, A.W.; Kellner, K.F.; Rota, C.T.; Schuttler, S.G.; Millspaugh, J.J.; Kays, R.W. The Effect of Urbanization on Spatiotemporal Interactions between Gray Foxes and Coyotes. Ecosphere 2022, 13, e3993. [Google Scholar] [CrossRef]
- Rodríguez-Luna, C.R.; Servín, J.; Valenzuela-Galván, D.; List, R. A Matter of Time Not of Co-Occurrence: Temporal Partitioning Facilitates Coexistence between Coyotes (Canis latrans) and Gray Foxes (Urocyon cinereoargenteus) in Temperate Forests of Mexico. Mamm. Biol. 2024, 104, 363–377. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.; Hacker, C.E.; Zhang, Y.; Li, Y.; Cong, W.; Jin, L.; Li, G.; Wu, B.; Li, D.; et al. Projected Impacts of Climate Change on Snow Leopard Habitat in Qinghai Province, China. Ecol. Evol. 2021, 11, 17202–17218. [Google Scholar] [CrossRef]
- Dai, Y.; Li, Y.; Xue, Y.; Hacker, C.E.; Li, C.; Zahoor, B.; Liu, Y.; Li, D.; Li, D. Mitigation Strategies for Human–Tibetan Brown Bear (Ursus arctos Pruinosus) Conflicts in the Hinterland of the Qinghai-Tibetan Plateau. Animals 2022, 12, 1422. [Google Scholar] [CrossRef]
- Hu, R.; Zou, H.; Wang, Z.; Cao, B.; Peng, Q.; Jing, X.; Wang, Y.; Shao, Y.; Pei, Z.; Zhang, X.; et al. Nutritional Interventions Improved Rumen Functions and Promoted Compensatory Growth of Growth-Retarded Yaks as Revealed by Integrated Transcripts and Microbiome Analyses. Front. Microbiol. 2019, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Nasanbat, B.; Ceacero, F.; Ravchig, S. A Small Neighborhood Well-Organized: Seasonal and Daily Activity Patterns of the Community of Large and Mid-Sized Mammals around Waterholes in the Gobi Desert, Mongolia. Front. Zool. 2021, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.C.; Peters, D.B.; Hageman, R.H. Influence of Temperature on Nitrate Metabolism and Leaf Expansion in Soybean (Glycine max L. Merr.) Seedlings. Plant Physiol. 1976, 58, 12–16. [Google Scholar] [CrossRef]
- Tattersall, G.J.; Sinclair, B.J.; Withers, P.C.; Fields, P.A.; Seebacher, F.; Cooper, C.E.; Maloney, S.K. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol. 2012, 2, 2151–2202. [Google Scholar] [CrossRef] [PubMed]
Habitat | Number of Independent Photos | Number of Cameras | Number of Camera Days | Capture Rate |
---|---|---|---|---|
Alpine shrub | 236 | 14 | 5110 | 1.29 ± 0.3 |
bare rocks | 92 | 14 | 5110 | 2.02 ± 0.5 |
alpine meadow | 64 | 40 | 14,600 | 1.79 ± 0.5 |
Altitudes | Number of Independent Photos | Number of Cameras | Number of Camera Days | Capture Rate |
---|---|---|---|---|
<4000 m | 51 | 11 | 4015 | 1.39 ± 0.5 |
4000–4100 m | 155 | 26 | 9490 | 1.77 ± 0.4 |
4100–4200 m | 68 | 8 | 2920 | 2.40 ± 0.8 |
4200–4300 m | 91 | 12 | 4380 | 2.44 ± 1.6 |
4300–4400 m | 25 | 10 | 3650 | 0.74 ± 0.3 |
>4400 m | 2 | 1 | 365 | 0.82 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Tan, L.; Liu, J.; Chen, X.; Zhao, S.; Wu, G.; Shi, Y.; Song, X.; Xu, A. Population Density and Spatial–Temporal Activity Pattern of the Tibetan Wolf in Dulan, Qinghai, China. Biology 2025, 14, 1273. https://doi.org/10.3390/biology14091273
Guan L, Tan L, Liu J, Chen X, Zhao S, Wu G, Shi Y, Song X, Xu A. Population Density and Spatial–Temporal Activity Pattern of the Tibetan Wolf in Dulan, Qinghai, China. Biology. 2025; 14(9):1273. https://doi.org/10.3390/biology14091273
Chicago/Turabian StyleGuan, Liulin, Liping Tan, Junchen Liu, Xinyang Chen, Shanshan Zhao, Guosheng Wu, Yonghong Shi, Xiao Song, and Aichun Xu. 2025. "Population Density and Spatial–Temporal Activity Pattern of the Tibetan Wolf in Dulan, Qinghai, China" Biology 14, no. 9: 1273. https://doi.org/10.3390/biology14091273
APA StyleGuan, L., Tan, L., Liu, J., Chen, X., Zhao, S., Wu, G., Shi, Y., Song, X., & Xu, A. (2025). Population Density and Spatial–Temporal Activity Pattern of the Tibetan Wolf in Dulan, Qinghai, China. Biology, 14(9), 1273. https://doi.org/10.3390/biology14091273