Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing and Treatment of Insects
2.2. Determination of Detoxification Enzyme Activity of S. frugiperda Larvae
2.3. Determination of Food Utilization of S. frugiperda Larvae
2.4. Determination of Larval Weight and Developmental Duration of S. frugiperda
2.5. Statistical Analysis
3. Results
3.1. Detoxification Enzyme Activity of S. frugiperda Exposure to Phenols
3.2. Food Utilization of S. frugiperda Larvae After Exposure to Phenols
3.3. Larval Body Weight of S. frugiperda After Exposure to Phenols
3.4. Developmental Duration of S. frugiperda Larvae After Exposure to Phenols
3.5. Pupal Duration of S. frugiperda After Exposure to Phenols
3.6. Adult Longevity of S. frugiperda After Exposure to Phenols
3.7. Comprehensive Analysis of the Effects of S. frugiperda After Exposure to Phenols
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, W.; Tayyab, M.; Khalil, F.; Hua, Z.; Huang, Z.; Chen, H.Y.H. Silicon-mediated plant defense against pathogens and insect pests. Pestic. Biochem. Physiol. 2020, 168, 10464. [Google Scholar] [CrossRef] [PubMed]
- Perez-Hernandez, C.X.; Dattilo, W.; Corona-Lopez, A.M.; Toledo-Hernandez, V.H.; Del-Val, E. Buprestid trophic guilds differ in their structural role shaping ecological networks with their host plants. Arthropod-Plant Interact. 2023, 17, 65–76. [Google Scholar] [CrossRef]
- Hafeez, M.; Ullah, F.; Khan, M.M.; Li, X.; Zhang, Z.; Shah, S.; Imran, M.; Assiri, M.A.; Fernandez-Grandon, G.M.; Desneux, N.; et al. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: A review. Environ. Sci. Pollut. Res. 2022, 29, 1746–1762. [Google Scholar] [CrossRef]
- Wan, J.; Huang, C.; Li, C.-Y.; Zhou, H.-X.; Ren, Y.-L.; Li, Z.-Y.; Xing, L.-S.; Zhang, B.; Qiao, X.; Liu, B.; et al. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agric. 2021, 20, 646–663. [Google Scholar] [CrossRef]
- Li, X.R.; Li, Y.; Wang, W.; He, N.; Tan, X.L.; Yang, X.Q. LC50 of lambda-cyhalothrin stimulates reproduction on the moth Mythimna separata (Walker). Pestic. Biochem. Physiol. 2019, 153, 47–54. [Google Scholar] [CrossRef]
- Bao, H.B.; Shao, X.S.; Zhang, Y.X.; Deng, Y.Y.; Xu, X.Y.; Liu, Z.W.; Li, Z. Specific synergist for Neonicotinoid insecticides: IPPA08, a cis-Neonicotinoid compound with a unique oxabridged substructure. J. Agric. Food Chem. 2016, 64, 5148–5155. [Google Scholar] [CrossRef]
- Yang, X.M.; Wyckhuys, K.A.G.; Jia, X.P.; Nie, F.Y.; Wu, K.M. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manag. 2021, 282, 111949. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef]
- Qu, Y.Y.; Xiao, D.; Liu, J.J.; Chen, Z.; Song, L.F.; Desneux, N.; Benelli, G.; Gao, X.W.; Song, D.L. Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 2017, 26, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.L.; Chen, X.J.; Zhao, M.; Wang, J.J.; Meng, Z.Y.; Dong, S.; Miao, X.Y.; Wu, Q.C. Uptake, translocation and subcellular distribution of chlorantraniliprole and tetrachlorantraniliprole in maize. Sci. Total Environ. 2021, 800, 149429. [Google Scholar] [CrossRef]
- Ballesta-Acosta, M.C.; Pascual-Villalobos, M.J.; Rodríguez, B. Short communication. The antifeedant activity of natural plant products towards the larvae of Spodoptera littoralis. Span. J. Agric. Res. 2008, 6, 85–91. [Google Scholar] [CrossRef]
- Raine, N.E.; Gill, R.J. ECOLOGY Tasteless pesticides affect bees in the field. Nature 2015, 521, 38–40. [Google Scholar] [CrossRef]
- Barbee, G.C.; McClain, W.R.; Lanka, S.K.; Stout, M.J. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems. Pest Manag. Sci. 2010, 66, 996–1001. [Google Scholar] [CrossRef]
- Lavtizar, V.; Berggren, K.; Trebse, P.; Kraak, M.H.S.; Verweij, R.A.; van Gestel, C.A.M. Comparative ecotoxicity of chlorantraniliprole to non-target soil invertebrates. Chemosphere 2016, 159, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zhou, Z.; Zhang, J.; Shi, C.; Zhang, G.; Jin, Z.; Wang, W.; Li, C. Effect of plant secondary metabolites on common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Entomol. Res. 2018, 48, 18–26. [Google Scholar] [CrossRef]
- Rajula, J.; Rahman, A.; Krutmuang, P. Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biol. Control 2020, 151, 104399. [Google Scholar] [CrossRef]
- Ibrahim, S.; Mir, G.M.; Rouf, A.; War, A.R.; Hussain, B. Herbivore and phytohormone induced defensive response in kale against cabbage butterfly, Pieris brassicae Linn. J. Asia-Pac. Entomol. 2018, 21, 367–373. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Nur, F.A.; Ma, J.Y.; Wang, J.G.; Cao, C.W. Effects of poplar secondary metabolites on performance and detoxification enzyme activity of Lymantria dispar. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 225, 108587. [Google Scholar] [CrossRef]
- Tan, M.; Wu, H.; Yan, S.; Jiang, D. Evaluating the toxic effects of tannic acid treatment on Hyphantria cunea Larvae. Insects 2022, 13, 872. [Google Scholar] [CrossRef] [PubMed]
- Michael, T.S.; Yannick, M.; Jens, R. Insect immunity: An evolutionary ecology perspective. ADV Insect Physiol. 2005, 32, 1–48. [Google Scholar] [CrossRef]
- Changkeb, V.; Nobsathian, S.; Le Goff, G.; Coustau, C.; Bullangpoti, V. Insecticidal efficacy and possibility of Combretum trifoliatum Vent. (Myrtales: Combretaceae) extracts in controlling Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Pest Manag. Sci. 2023, 79, 4868–4878. [Google Scholar] [CrossRef]
- Amri, I.; Khammassi, M.; Ben Ayed, R.; Khedhri, S.; Mansour, M.B.; Kochti, O.; Pieracci, Y.; Flamini, G.; Mabrouk, Y.; Gargouri, S.; et al. Essential oils and biological activities of Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. Plants 2023, 12, 816. [Google Scholar] [CrossRef]
- Yuan, L.; Li, T.; Huang, Y.; Zhang, A.; Yan, S.; Jiang, D. Identification and potential application of key insecticidal metabolites in Tilia amurensis, a low-preference host of Hyphantria cunea. Pestic. Biochem. Physiol. 2024, 199, 105796. [Google Scholar] [CrossRef]
- Zhang, A.; Li, T.; Yuan, L.; Tan, M.; Jiang, D.; Yan, S. Digestive characteristics of Hyphantria cunea Larvae on different Host Plants. Insects 2023, 14, 463. [Google Scholar] [CrossRef] [PubMed]
- Kojour, M.A.M.; Han, Y.S.; Jo, Y.H. An overview of insect innate immunity. Entomol. Res. 2020, 50, 282–291. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, M.; Li, T.; Yuan, L.; Zhang, A.; Jiang, D.; Yan, S. Silicon supplementation improves biomass and direct defense of ryegrass: A multi-omics study. Ind. Crops Prod. 2023, 204, 117357. [Google Scholar] [CrossRef]
- Lv, J.-Y.; Deng, Y.-N.; Liu, X.-R.; Niu, D.; Zhang, W.-S. The Effects of three phenolic substances on the growth and digestive physiology of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2025, 16, 669. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-N. The Mechanism of Silicon Effect on the Growth of Ryegrass and its Resistance to Spodoptera frugiperda. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2024. [Google Scholar]
- Halmenschelager, P.T.; da Rocha, J.B.T. Biochemical CuSO4 Toxicity in drosophila melanogaster depends on sex and developmental stage of exposure. Biol. Trace Elem. Res. 2019, 189, 574–585. [Google Scholar] [CrossRef]
- Lazarević, J.; Jevremović, S.; Kostić, I.; Vuleta, A.; Jovanović, S.M.; Kostić, M.; Jovanović, D.Š. Assessment of sex-specific toxicity and physiological responses to thymol in a common bean pest Acanthoscelides obtectus Say. Front. Physiol. 2022, 13, 842314. [Google Scholar] [CrossRef]
- Moreira, M.D.; Picanço, M.C.; Barbosa, L.C.d.A.; Guedes, R.N.C.; da Silva, É.M. Toxicity of leaf extracts of Ageratum conyzoidesto Lepidoptera pests of horticultural crops. Biol. Agric. Hortic. 2004, 22, 251–260. [Google Scholar] [CrossRef]
- Dixit, G.; Praveen, A.; Tripathi, T.; Yadav, V.K.; Verma, P.C. Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J. Asia-Pac. Entomol. 2017, 20, 341–351. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Ma, H.J.; Feng, D.D.; Lai, X.F.; Chen, Z.M.; Xu, M.Y.; Yu, Q.Y.; Zhang, Z. Induction of detoxification enzymes by quercetin in the silkworm. J. Econ. Entomol. 2012, 105, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Ren, L.; Chen, F.; Feng, Y.; Luo, Y.; Zhang, Y. Antifeedant Activity of Ginkgo biloba secondary metabolites against Hyphantria cunea larvae: Mechanisms and applications. PLoS ONE 2016, 11, e0155682. [Google Scholar] [CrossRef]
- Sun, L.L.; Hou, W.H.; Zhang, J.J.; Dang, Y.L.; Yang, Q.Y.; Zhao, X.C.; Ma, Y.; Tang, Q.B. Plant metabolites drive different responses in caterpillars of two closely related Helicoverpa species. Front. Physiol. 2021, 12, 662978. [Google Scholar] [CrossRef]
- Hou, M.; Han, Y. Silicon-mediated rice plant resistance to the Asiatic rice borer (Lepidoptera: Crambidae): Effects of silicon amendment and rice varietal resistance. J. Econ. Entomol. 2010, 103, 1412–1419. [Google Scholar] [CrossRef]
- Kvedaras, O.L.; Keeping, M.G. Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol. Exp. Appl. 2007, 125, 103–110. [Google Scholar] [CrossRef]
- Santos-Cividanes, T.M.; Cividanes, F.J.; Garcia, J.C.; Vilela, M.; Moraes, J.C.; Barbosa, J.C. Silicon induces resistance to Diatraea saccharalis in sugarcane and it is compatible with the biological control agent Cotesia flavipes. J. Pest Sci. 2022, 95, 783–795. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Beglarigale, A.; Seki, Y.; Demir, N.Y.; Yazıcı, H. Sodium silicate/polyurethane microcapsules used for self-healing in cementitious materials: Monomer optimization, characterization, and fracture behavior. Constr. Build. Mater. 2018, 162, 57–64. [Google Scholar] [CrossRef]
Group Code | Plant-Based Additives | Larvae Treated | Sampling Stages | |
---|---|---|---|---|
Enzyme Activity, Food Intake, Food Utilization, Body Weight | Developmental Duration | |||
CK1 | - | - | newly molted 4th, 5th, and 6th instar larvae | 4th, 5th, 6th instar larvae, pupae, and adults |
V2 | Vanillic acid | 2nd to 6th instar | ||
V3 | Vanillic acid | 3rd to 6th instar | ||
CK2 | - | - | ||
S2 | sinapic acid | 2nd to 6th instar | ||
S3 | sinapic acid | 3rd to 6th instar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.-N.; Lv, J.-Y.; Liu, X.-R.; Niu, D.; Xu, L.-X.; Yan, J.-X. Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda. Biology 2025, 14, 979. https://doi.org/10.3390/biology14080979
Deng Y-N, Lv J-Y, Liu X-R, Niu D, Xu L-X, Yan J-X. Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda. Biology. 2025; 14(8):979. https://doi.org/10.3390/biology14080979
Chicago/Turabian StyleDeng, Ya-Nan, Jin-Yan Lv, Xiao-Rong Liu, Dan Niu, Ling-Xin Xu, and Jun-Xin Yan. 2025. "Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda" Biology 14, no. 8: 979. https://doi.org/10.3390/biology14080979
APA StyleDeng, Y.-N., Lv, J.-Y., Liu, X.-R., Niu, D., Xu, L.-X., & Yan, J.-X. (2025). Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda. Biology, 14(8), 979. https://doi.org/10.3390/biology14080979