Contrasted Ethnobotanical and Literature Knowledge of Anti-Mosquito Plants from Guadeloupe
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Know-How Plants Selection via Inclusion/Exclusion Method
2.3. Ethnobotanical Data Collection and Statistical Analysis
2.4. Quantitative Etnobotanics
2.4.1. Fidelity Level (FL)
2.4.2. Frequency of Citation Index (FC)
2.4.3. Relative Frequency of Citation Index (RFC)
2.5. Previous Knowledge of Plants’ Anti-Mosquito Properties
3. Results
3.1. Preselection of 38 Candidate Plants by a Multidisciplinary Group
Scientifics Names Plants (Family) | Reported Tradional Uses | Phytochemical Composition (Main Compound) | References |
---|---|---|---|
Aloe barbadensis Mill. (Asphodelaceae) | Constipation, liver and skin disorders, conjunctivitis, headache, diabetes treatment | Anthraquinones, flavonoids, tannins, sterols, alkaloids, and VOCs. | [23,33] |
Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. (Zingiberaceae) | Flu-like symptoms, digestion, gastric ulcer, high blood pressure | Terpenes, essential oils, flavonoids, polyphenolics, and sterols | [23,34] |
Anethum graveolens L. (Apiaceae) | Digestion, infant and adult colic, helps breastfeeding | Flavonoids, proteins, lipids, glucides, fibers | [23,35] |
Annona muricata L. (Annonaceae) | Anti-tumor, anti-helminth, anti-fungal, anti-bacterial, hypotensive, anti-viral, and anti-inflammatory effects | Phenolic compounds, acetogenins, and alkaloids | [34,36,37,38,39,40] |
Annona squamosa L. (Annonaceae) | Skin rash, cardiotonic, digestion, flu, insecticidal | Flavonoids, phenolic compounds, quinones, coumarins, amino acids, anthocyanidins, and sugars | [23,36] |
Artocarpus altilis (Parkinson) Fosberg (Moraceae) | Liver disorder, adjuvant to hypertensive treatments | Phenolic compounds | [23] |
Azadirachta indica A. Juss. (Meliaceae) | Pyrexia, headache, ulcer, respiratory disorders, cancer, diabetes, leprosy, malaria, dengue, chicken pox, and dermal complications | Phenols, tannins, leucoanthocyanidins, catechins, favonols, and xanthones | [23,41] |
Bixa orellana L. (Bixaceae) | Fatigue, sunburn, diarrhea | Phenols, alkaloids, and flavonoids | [23,42] |
Carica papaya L. (Caricaceae) | Liver disorder, worms, abscess, boil, digestion, ulcerative wounds, urethritis | Lipids, sulfur compounds, benzenoids, phenolic compounds, proteins, vitamins, alkaloids, carotenoids, and tannins, | [23,36] |
Chrysopogon zizanioides (L.) Roberty (Poaceae) | Insect repellent, deodorant, gastrointestinal colic, nervousness | Terpenes | [23,43] |
Citrus × aurantiifolia (Christm.) Swingle (Rutaceae) | Flu condition, colds, cough, sore throat, gingivitis, digestion, arteriosclerosis, venotomy, liver disorder, rheumatism, insect repellent, wounds, cosmetics, conjuctivitis | Flavonoids, terpenes, phenolic compounds, limonoids, alkaloids, and essential oils | [23,44] |
Coleus amboinicus Lour. (Lamiaceae) | Difficult digestion, wounds and insect bites, painful periods, nervousness | Terpenes, phenolic compounds, flavonoids, esters, alcohols, and aldehydes. | [23,45] |
Cucumis anguria L. (Cucurbitaceae) | Treat stomach pain and to reduce oedema, treat jaundice, urolithiasis (formation of kidney stones) | Alkaloids, flavonoids, tannins, carotenoids, steroids, and anthocyanins, | [23,46] |
Curcuma longa L. (Zingiberaceae) | Anticancer, antidiabetic, anti-osteoarthritis, antidiarrheal, cardioprotective, anti-oxidant, neuroprotective, hepatoprotective, anti-microbial, renoprotective and anti-inflammatory activities | Phenolic compounds, terpenes, phytosterols, and essential oils | [23,47] |
Cymbopogon citratus (DC.) Stapf (Poaceae) | Digestion, insect repellent | Terpenes, phenylpropanoids, phenolic acids, esters, flavonoids, flavone, fatty alcohol and phytosterols | [23,48] |
Dianthera pectoralis (Jacq.) J.F.Gmel. (Acanthaceae) | Cough, gastrointestinal colic, superficial wounds, nervousness, boils, insomnia | Alkaloids, flavonoids, steroids, terpenes, saponosides, and phenolic compounds | [23,36] |
Elymus repens (L.) Gould (Poaceae) | Urolithiasis and urinary tract infections, improve the microcirculation, improve body’s defense, mechanisms, activate contractions of uterus, heal atherosclerosis, treat wounds and promote the differentiation and trigger the division of keratinocytes in humans | Flavonoid glycosides and sterols | [23,49] |
Eryngium foetidum L. (Apiaceae) | Antibacterial, antiviral, and antipyretic applications | Aromatic and aliphatic aldehydes, carotenoids, flavonoids, phenolic compounds | [23,35] |
Euphorbia hirta L. (Euphorbiaceae) | Measles, inguinal lymph node disease, diarrhea | Triterpenes, flavonoids, xanthones, and polyphenols | [23,36] |
Hibiscus × rosa-sinensis L. (Malvaceae) | High blood pressure, prevention of urinary disorders, cough, conjunctivitis, headaches | Flavonoids, lipids, alcanes, terpenes, carboxylic acid, proteins, glucids, and minerals | [23,36] |
Laportea aestuans (L.) Chew (Urticaceae) | Heartburn, nausea, dyspepsia, vomiting, flatulence, reflux, ulcer, restlessness, decreased appetite | Steroids, tannins, phenols, flavonoids, and alkaloids | [50,51] |
Lippia alba (Mill.) N.E.Br. ex Britton & P.Wilson (Verbenaceae) | Flu condition, difficult digestion, gastrointestinal ulcer | cyclic ether, alcohols, monoterpenes, sesquiterpenes, and ketones | [23,52] |
Malpighia emarginata DC. (Malpighiaceae) | Treatment of symptoms related to respiratory, cardiovascular and cholesterol-related diseases | Saccharides, amino acids and vitamins | [23,53] |
Mangifera indica L. (Anacardiaceae) | Diarrhea, water retention, respiratory tract conditions, rheumatism, herpes | polyphenolic acids, benzophenones, flavonoids, ascorbic acid, carotenoids, and tocopherols | [23,46,54] |
Mimosa pudica L. (Fabaceae) | Menstrual cramps | Sesquiterpenes, tannins, and proteins, | [23,36] |
Mirabilis jalapa L. (Nyctaginaceae) | Boils, sprain, contusion | Glucids, steroids, alcanes, alcohols, cetones, triterpenes, flavonoids, saponins, and iridoids | [23,36] |
Momordica charantia L. (Cucurbitaceae) | Rash, Flu condition, insecticidal, plant protection, superficial skin disorder, pediculosis | Alkaloids, phenolic compounds, flavonoids, saponosids, steroids, terpenoids, tannins, triterpenes, amino acids, glucids, saponins, carotenoids | [23,36] |
Moringa oleifera Lam. (Moringaceae) | Burns, anti-inflammatory, antinociceptive, antiatherosclerotic, oxidative DNA damage protective, antiperoxidative, cardioprotective | Phenolic acids, flavonoids, alkaloids, phytosterols, natural sugars, vitamins, minerals, and organic acids | [23,55] |
Neurolaena lobata (L.) R. Br. ex Cass. (Asteraceae) | Malaria, flu, fever, blood detoxification, diabetes and heal wounds and infections | Saponins, tannins, alkaloids, and flavonoids | [23,56] |
Ocimum basilicum L. (Lamiaceae) | Difficult digestion, headache, vertigo, joint pain, common cold, sinusitis, skin rash, insect bites | Terpenes, alkaloids, flavonoids, tannins, saponins, glycosides, ascorbic acid | [23,52,53] |
Phyllanthus amarus Schumach. & Thonn. (Phyllanthaceae) | Digestive disease, jaundice, renal calculus | Carbohydrates, triterpenoids, alkaloids, glycosides, tannins, flavonoids, polyphenols, triterpenes, and sterols | [23,57] |
Pimenta racemosa (Mill.) J. W. Moore (Myrtaceae) | Rheumatism, bruises, Flu condition, tooth pain, headaches | Phenylpropanoids, monoterpenes, phenolic compounds, and terpenes | [23,36] |
Psidium guajava L. (Myrtaceae) | Diarrhea, superficial skin disorder, nervousness, vomiting, hangover | Flavonoids, triterpenes, benzenoids, thiazoles, sulfur compounds, thiophenes, steroids, lipids, coumarins, alKanes, alKenes, and oxygenated compounds | [23,36] |
Senna alata (L.) Roxb. (Fabaceae) | Antiallergic, anti-inflammatory, antioxidant, anticancer, antidiabetic, and antifungal | flavones, flavonols, flavonoids, glycosides, anthraquinones and sterols | [23,36] |
Sphagneticola trilobata (L.) Pruski (Asteraceae) | Painful periods, bronchitis, vomiting | Sesquiterpenes, diterpenes, and triterpenes | [23,36] |
Tetradenia riparia (Hochst.) Codd (Lamiaceae) | Treat respiratory problems, cough, headache, stomach pain, diarrhea, fever, Malaria and Dengue | Pyrone, diterpenes, terpenes, and essential oils | [58] |
Zanthoxylum caribaeum Gaertn. (Rutaceae) | Acaricidal, antimicrobial, antioxidant, and insecticidal properties | Steroids, flavonols, flavones, flavononols, tannins, triterpenoids, and xanthones | [36,59,60] |
Zingiber officinale Roscoe (Zingiberaceae) | Digestive conditions, motion sickness dizziness, oropharyngeal conditions, dental pain, tonic, wounds, Flu condition, cough, cholesterol, prevention of atherosclerosis, rheumatism | Phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers | [61] |
3.2. Sociodemographic Characteristics of Responders
3.3. Pre-Selection of Participants Based on Plant Knowledge and Usage
3.4. General Respondents’ Skills to Identify and Use Caribbean Plants
3.5. Recognizable and Mainly Used Plants
3.6. Anti-Mosquito Plants Identified by the Ethnobotanical Survey
3.7. Previous Knowledge on Our Selected Anti-Mosquito Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DENV | Dengue virus |
FC | Frequency of Citation |
FL | Fidelity Level |
VCP | Vector control plants |
VOCs | Volatile organic compound |
TRAMIL | Program of Applied Research on Popular Medicine in the Caribbean |
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Girard, M.; Nelson, C.B.; Picot, V.; Gubler, D.J. Arboviruses: A Global Public Health Threat. Vaccine 2020, 38, 3989–3994. [Google Scholar] [CrossRef]
- Marselle, M.R.; Stadler, J.; Korn, H.; Irvine, K.N.; Bonn, A. (Eds.) Biodiversity and Health in the Face of Climate Change; Springer International Publisher: Cham, Switzerland, 2019; ISBN 978-3-030-02317-1. [Google Scholar]
- CDC Dengue Areas of Risk Around the World|CDC. Available online: https://www.cdc.gov/dengue/areas-with-risk/?CDC_AAref_Val=https://www.cdc.gov/dengue/areaswithrisk/around-the-world.html (accessed on 6 January 2024).
- Khan, M.B.; Yang, Z.-S.; Lin, C.-Y.; Hsu, M.-C.; Urbina, A.N.; Assavalapsakul, W.; Wang, W.-H.; Chen, Y.-H.; Wang, S.-F. Dengue Overview: An Updated Systemic Review. J. Infect. Public. Health 2023, 16, 1625–1642. [Google Scholar] [CrossRef]
- WHO Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 12 February 2025).
- L’Azou, M.; Taurel, A.-F.; Flamand, C.; Quénel, P. Recent Epidemiological Trends of Dengue in the French Territories of the Americas (2000–2012): A Systematic Literature Review. PLoS Negl. Trop. Dis. 2014, 8, e3235. [Google Scholar] [CrossRef]
- Gharbi, M.; Quenel, P.; Gustave, J.; Cassadou, S.; Ruche, G.L.; Girdary, L.; Marrama, L. Time Series Analysis of Dengue Incidence in Guadeloupe, French West Indies: Forecasting Models Using Climate Variables as Predictors. BMC Infect. Dis. 2011, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.M.; Weaver, S.C. Effects of Climate Change and Human Activities on Vector-Borne Diseases. Nat. Rev. Microbiol. 2024, 22, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization (Ed.) Integrated Management Strategy for Arboviral Disease Prevention and Control in the Americas; Pan American Health Organization, Pan American Sanitary Bureau, Regional Office of the World Health Organization: Washington, DC, USA, 2020; ISBN 978-92-75-12049-1. [Google Scholar]
- Biswal, S.; Reynales, H.; Saez-Llorens, X.; Lopez, P.; Borja-Tabora, C.; Kosalaraksa, P.; Sirivichayakul, C.; Watanaveeradej, V.; Rivera, L.; Espinoza, F.; et al. Efficacy of a Tetravalent Dengue Vaccine in Healthy Children and Adolescents. N. Engl. J. Med. 2019, 381, 2009–2019. [Google Scholar] [CrossRef]
- Hadinegoro, S.R.; Arredondo-García, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Muhammad Ismail, H.I.H.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N. Engl. J. Med. 2015, 373, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Luedtke, A.; Langevin, E.; Zhu, M.; Bonaparte, M.; Machabert, T.; Savarino, S.; Zambrano, B.; Moureau, A.; Khromava, A.; et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N. Engl. J. Med. 2018, 379, 327–340. [Google Scholar] [CrossRef]
- Villar, L.; Dayan, G.H.; Arredondo-García, J.L.; Rivera, D.M.; Cunha, R.; Deseda, C.; Reynales, H.; Costa, M.S.; Morales-Ramírez, J.O.; Carrasquilla, G.; et al. Efficacy of a Tetravalent Dengue Vaccine in Children in Latin America. N. Engl. J. Med. 2015, 372, 113–123. [Google Scholar] [CrossRef]
- Fonseca-González, I.; Quiñones, M.L.; Lenhart, A.; Brogdon, W.G. Insecticide Resistance Status of Aedes aegypti (L.) from Colombia. Pest. Manag. Sci. 2011, 67, 430–437. [Google Scholar] [CrossRef]
- Gubler, D.J. Epidemic Dengue/Dengue Hemorrhagic Fever as a Public Health, Social and Economic Problem in the 21st Century. Trends Microbiol. 2002, 10, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.P.; Paiva, M.H.S.; de Araújo, A.P.; da Silva, É.V.G.; da Silva, U.M.; de Oliveira, L.N.; Santana, A.E.G.; Barbosa, C.N.; de Paiva Neto, C.C.; Goulart, M.O.; et al. Insecticide Resistance in Aedes aegypti Populations from Ceará, Brazil. Parasites Vectors 2011, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Vontas, J.; Kioulos, E.; Pavlidi, N.; Morou, E.; della Torre, A.; Ranson, H. Insecticide Resistance in the Major Dengue Vectors Aedes albopictus and Aedes aegypti. Pestic. Biochem. Physiol. 2012, 104, 126–131. [Google Scholar] [CrossRef]
- Wendimu, A.; Tekalign, W. Field Efficacy of Ethnomedicinal Plant Smoke Repellency against Anopheles arabiensis and Aedes aegypti. Heliyon 2021, 7, e07373. [Google Scholar] [CrossRef]
- Youmsi, R.D.F.; Fokou, P.V.T.; Menkem, E.Z.; Bakarnga-Via, I.; Keumoe, R.; Nana, V.; Boyom, F.F. Ethnobotanical Survey of Medicinal Plants Used as Insects Repellents in Six Malaria Endemic Localities of Cameroon. J. Ethnobiol. Ethnomed. 2017, 13, 33. [Google Scholar] [CrossRef]
- Gou, Y.; Li, Z.; Fan, R.; Qiu, Z.; Wang, L.; Wang, C.; Wang, Y. Ethnobotanical Survey of Plants Traditionally Used against Hematophagous Invertebrates by Ethnic Groups in the Mountainous Area of Xishuangbanna, Southwest China. Plant Divers. 2020, 42, 415–426. [Google Scholar] [CrossRef]
- Boulogne, I.; Germosén-Robineau, L.; Ozier-Lafontaine, H.; Fleury, M.; Loranger-Merciris, G. TRAMIL Ethnopharmalogical Survey in Les Saintes (Guadeloupe, French West Indies): A Comparative Study. J. Ethnopharmacol. 2011, 133, 1039–1050. [Google Scholar] [CrossRef]
- TRAMIL. Pharmacopée Végétale Caribéenne (Deuxième Édition); TRAMIL: Santo Domingo, Dominican Republic, 2007. [Google Scholar]
- Friedman, J.; Yaniv, Z.; Dafni, A.; Palewitch, D. A Preliminary Classification of the Healing Potential of Medicinal Plants, Based on a Rational Analysis of an Ethnopharmacological Field Survey among Bedouins in the Negev Desert, Israel. J. Ethnopharmacol. 1986, 16, 275–287. [Google Scholar] [CrossRef]
- Roch Christian, J.; Houéto, E.; Gratien, B.; Kpètèhoto, W.; Dougnon, V.; Pognon, E.; ASSOGBA, M.F.; Loko, F.; Boko, M.; Gbénou, J. Étude Ethnobotanique et Phytochimique de Momordica charantia Linn (Cucurbitaceae) à Cotonou Au Bénin Étude Ethnobotanique et Phytochimique de Momordica charantia Linn (Cucurbitaceae) à Cotonou Au Bénin. J. Appl. Biosci. 2016, 106, 10249–10257. [Google Scholar] [CrossRef]
- Tugume, P.; Kakudidi, E.K.; Buyinza, M.; Namaalwa, J.; Kamatenesi, M.; Mucunguzi, P.; Kalema, J. Ethnobotanical Survey of Medicinal Plant Species Used by Communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed. 2016, 12, 5. [Google Scholar] [CrossRef]
- DEAL de Guadeloupe. La Biodiversité en Guadeloupe, Qu’est-ce Que C’est? Available online: https://www.guadeloupe.developpement-durable.gouv.fr/la-biodiversite-en-guadeloupe-qu-est-ce-que-c-est-a953.html (accessed on 10 July 2025).
- Courric, E.; Brinvilier, D.; Couderc, P.; Ponce-Mora, A.; Méril-Mamert, V.; Sylvestre, M.; Pelage, J.H.; Vaillant, J.; Rousteau, A.; Bejarano, E.; et al. Medicinal Plants and Plant-Based Remedies in Grande-Terre: An Ethnopharmacological Approach. Plants 2023, 12, 654. [Google Scholar] [CrossRef]
- Encyclopædia Universalis France Guadeloupe-Atlas & Cartes. Available online: https://www.universalis.fr/atlas/europe/france/guadeloupe/ (accessed on 12 February 2025).
- Prime Minister Work and COVID-19: What Are the Rules? Available online: https://www.service-public.fr/particuliers/vosdroits/F35217?lang=en (accessed on 7 January 2024).
- Fanou, B.A.; Klotoe, J.R.; Fah, L.; Dougnon, V.; Koudokpon, C.H.; Toko, G.; Loko, F. Ethnobotanical Survey on Plants Used in the Treatment of Candidiasis in Traditional Markets of Southern Benin. BMC Complement. Med. Ther. 2020, 20, 288. [Google Scholar] [CrossRef]
- Tardío, J.; Pardo-de-Santayana, M. Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain). Econ. Bot. 2008, 62, 24–39. [Google Scholar] [CrossRef]
- Nalimu, F.; Oloro, J.; Kahwa, I.; Ogwang, P.E. Review on the Phytochemistry and Toxicological Profiles of Aloe vera and Aloe ferox. Futur J. Pharm. Sci. 2021, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Agu, K.C.; Okolie, P.N. Proximate Composition, Phytochemical Analysis, and in Vitro Antioxidant Potentials of Extracts of Annona muricata (Soursop). Food Sci. Nutr. 2017, 5, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Spinozzi, E.; Maggi, F.; Bonacucina, G.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Romano, D.; Desneux, N.; Wilke, A.B.B.; et al. Apiaceae Essential Oils and Their Constituents as Insecticides against Mosquitoes—A Review. Ind. Crops Prod. 2021, 171, 113892. [Google Scholar] [CrossRef]
- Germosén-Robineau Lionel. Pharmacopée Végétale Caribéenne 2014. Bibliothèque Numérique Manioc, Consulté le 15 Juillet 2024. Lien. Available online: http://www.manioc.org/recherch/T20008 (accessed on 10 July 2025).
- Adefegha, S.A.; Oyeleye, S.I.; Oboh, G. Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop (Annona muricata L.) Fruit Parts In Vitro. Biochem. Res. Int. 2015, 2015, 347673. [Google Scholar] [CrossRef]
- Balderrama-Carmona, A.P.; Silva-Beltrán, N.P.; Gálvez-Ruiz, J.-C.; Ruíz-Cruz, S.; Chaidez-Quiroz, C.; Morán-Palacio, E.F. Antiviral, Antioxidant, and Antihemolytic Effect of Annona muricata L. Leaves Extracts. Plants 2020, 9, 1650. [Google Scholar] [CrossRef]
- Coria-Téllez, A.V.; Montalvo-Gónzalez, E.; Yahia, E.M.; Obledo-Vázquez, E.N. Annona muricata: A Comprehensive Review on Its Traditional Medicinal Uses, Phytochemicals, Pharmacological Activities, Mechanisms of Action and Toxicity. Arab. J. Chem. 2018, 11, 662–691. [Google Scholar] [CrossRef]
- Ngemenya, M.N.; Asongana, R.; Zofou, D.; Ndip, R.A.; Itoe, L.O.; Babiaka, S.B. In Vitro Antibacterial Potential against Multidrug-Resistant Salmonella, Cytotoxicity, and Acute Biochemical Effects in Mice of Annona muricata Leaf Extracts. Evid.-Based Complement. Altern. Med. 2022, 2022, 3144684. [Google Scholar] [CrossRef] [PubMed]
- Nagano, M.S.; Batalini, C.; Nagano, M.S.; Batalini, C. Phytochemical Screening, Antioxidant Activity and Potential Toxicity of Azadirachta indica A. Juss (Neem) Leaves. Rev. Colomb. Cienc. Químico-Farm. 2021, 50, 29–47. [Google Scholar] [CrossRef]
- Muddapur, U.M.; Turakani, B.; Jalal, N.A.; Ashgar, S.S.; Momenah, A.M.; Alshehri, O.M.; Mahnashi, M.H.; Shaikh, I.A.; Khan, A.A.; Dafalla, S.E.; et al. Phytochemical Screening of Bixa Orellana and Preliminary Antidiabetic, Antibacterial, Antifibrinolytic, Anthelmintic, Antioxidant, and Cytotoxic Activity against Lung Cancer (A549) Cell Lines. J. King Saud. Univ.-Sci. 2023, 35, 102683. [Google Scholar] [CrossRef]
- Grover, M.; Behl, T.; Virmani, T. Phytochemical Screening, Antioxidant Assay and Cytotoxic Profile for Different Extracts of Chrysopogon zizanioides Roots. Chem. Biodivers. 2021, 18, e2100012. [Google Scholar] [CrossRef]
- Indriyani, N.N.; Anshori, J.A.; Permadi, N.; Nurjanah, S.; Julaeha, E. Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development. Foods 2023, 12, 2036. [Google Scholar] [CrossRef]
- Arumugam, G.; Swamy, M.K.; Sinniah, U.R. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules 2016, 21, 369. [Google Scholar] [CrossRef]
- Zomba, D. Wild Cucumis Anguria Phytochemical Profile and Antioxidant Activity|Pamhidzai Dzomba—Academia.Edu. Available online: https://www.academia.edu/26648206/Wild_Cucumis_Anguria_Phytochemical_Profile_and_Antioxidant_Activity (accessed on 8 January 2024).
- de Souza, L.M.; Inada, N.M.; Venturini, F.P.; Carmona-Vargas, C.C.; Pratavieira, S.; de Oliveira, K.T.; Kurachi, C.; Bagnato, V.S. Photolarvicidal Effect of Curcuminoids from Curcuma longa Linn. against Aedes aegypti Larvae. J. Asia-Pac. Entomol. 2019, 22, 151–158. [Google Scholar] [CrossRef]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef]
- Stanić, G.; Gavrić, D.; Šimić, I. Phytochemical Study of Elymus repens Gould and Cynodon dactylon (L.) Pers. Farm. Glas. 2000, 56, 1–9. [Google Scholar]
- Christensen, C.B.; Soelberg, J.; Jäger, A.K. Antacid Activity of Laportea aestuans (L.) Chew. J. Ethnopharmacol. 2015, 171, 1–3. [Google Scholar] [CrossRef]
- Omotosho, O.; Olawumi, O.; Salako, A. Phytochemical Screening and Antioxidant Parameters Data in Prostatic Rats Fed with Laportea aestuans Leaves. Data Brief. 2018, 20, 577–581. [Google Scholar] [CrossRef]
- Nogueira Sobrinho, A.C.; de Morais, S.M.; Marinho, M.M.; de Souza, N.V.; Lima, D.M. Antiviral Activity on the Zika Virus and Larvicidal Activity on the Aedes spp. of Lippia alba Essential Oil and β-Caryophyllene. Ind. Crops Prod. 2021, 162, 113281. [Google Scholar] [CrossRef]
- da Silva Barros, B.R.; do Nascimento, D.K.D.; de Araújo, D.R.C.; da Costa Batista, F.R.; de Oliveira Lima, A.M.N.; da Cruz Filho, I.J.; de Oliveira, M.L.; de Melo, C.M.L. Phytochemical Analysis, Nutritional Profile and Immunostimulatory Activity of Aqueous Extract from Malpighia emarginata DC Leaves. Biocatal. Agric. Biotechnol. 2020, 23, 101442. [Google Scholar] [CrossRef]
- Zuharah, W.F.; Yousaf, A.; Ooi, K.L.; Sulaiman, S.F. Larvicidal Activities of Family Anacardiaceae on Aedes Mosquitoes (Diptera: Culicidae) and Identification of Phenolic Compounds. J. King Saud. Univ.-Sci. 2021, 33, 101471. [Google Scholar] [CrossRef]
- Silva, L.L.d.S.; Silva, S.C.C.; de Oliveira, A.P.S.; Nascimento, J.d.S.; Silva, E.d.O.; Coelho, L.C.B.B.; Neto, P.J.R.; Navarro, D.M.d.A.F.; Napoleão, T.H.; Paiva, P.M.G. Effects of a Solid Formulation Containing Lectin-Rich Fraction of Moringa oleifera Seeds on Egg Hatching and Development of Aedes aegypti Larvae. Acta Trop. 2021, 214, 105789. [Google Scholar] [CrossRef]
- Méril-Mamert, V.; Ponce-Mora, A.; Sylvestre, M.; Lawrence, G.; Bejarano, E.; Cebrián-Torrejón, G. Antidiabetic Potential of Plants from the Caribbean Basin. Plants 2022, 11, 1360. [Google Scholar] [CrossRef]
- Bose Mazumdar Ghosh, A.; Banerjee, A.; Chattopadhyay, S. An Insight into the Potent Medicinal Plant Phyllanthus amarus Schum. and Thonn. Nucleus (Calcutta) 2022, 65, 437–472. [Google Scholar] [CrossRef]
- Shimira, F. Tetradenia Riparia, an Ethnobotanical Plant with Diverse Applications, from Antimicrobial to Anti-Proliferative Activity against Cancerous Cell Lines: A Systematic Review. J. Herbal. Med. 2022, 32, 100537. [Google Scholar] [CrossRef]
- Farouil, L.; Dias, R.P.; Popotte-Julisson, G.; Bibian, G.; Adou, A.I.; de la Mata, A.P.; Sylvestre, M.; Harynuk, J.J.; Cebrián-Torrejón, G. The Metabolomic Profile of the Essential Oil from Zanthoxylum caribaeum (Syn. Chiloperone) Growing in Guadeloupe FWI Using GC × GC-TOFMS. Metabolites 2022, 12, 1293. [Google Scholar] [CrossRef]
- de Lara, J.; Pinto, F.; Toledo, A.; Alves, L.; Alves, D. Biological Activities and Phytochemical Screening of Leaf Extracts from Zanthoxylum caribaeum L. (Rutaceae). Biosci. J. 2019, 36, 223–234. [Google Scholar] [CrossRef]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Subramaniam, J.; Kovendan, K.; Mahesh Kumar, P.; Murugan, K.; Walton, W. Mosquito Larvicidal Activity of Aloe vera (Family: Liliaceae) Leaf Extract and Bacillus sphaericus, against Chikungunya Vector, Aedes aegypti. Saudi J. Biol. Sci. 2012, 19, 503–509. [Google Scholar] [CrossRef]
- Kerdudo, A.; Ellong, E.N.; Burger, P.; Gonnot, V.; Boyer, L.; Chandre, F.; Adenet, S.; Rochefort, K.; Michel, T.; Fernandez, X. Chemical Composition, Antimicrobial and Insecticidal Activities of Flowers Essential Oils of Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. from Martinique Island. Chem. Biodivers. 2017, 14, e1600344. [Google Scholar] [CrossRef]
- Felipe Oliveros-Díaz, A.; Pájaro-González, Y.; Cabrera-Barraza, J.; Hill, C.; Quiñones-Fletcher, W.; Olivero-Verbel, J.; Díaz Castillo, F. Larvicidal Activity of Plant Extracts from Colombian North Coast against Aedes aegypti L. Mosquito Larvae. Arab. J. Chem. 2022, 15, 104365. [Google Scholar] [CrossRef]
- Ravaomanarivo, L.H.R.; Razafindraleva, H.A.; Raharimalala, F.N.; Rasoahantaveloniaina, B.; Ravelonandro, P.H.; Mavingui, P. Efficacy of Seed Extracts of Annona Squamosa and Annona muricata (Annonaceae) for the Control of Aedes albopictus and Culex quinquefasciatus (Culicidae). Asian Pac. J. Trop. Biomed. 2014, 4, 798–806. [Google Scholar] [CrossRef]
- Costa, M.S.; Cossolin, J.F.S.; Pereira, M.J.B.; Sant’Ana, A.E.G.; Lima, M.D.; Zanuncio, J.C.; Serrão, J.E. Larvicidal and Cytotoxic Potential of Squamocin on the Midgut of Aedes aegypti (Diptera: Culicidae). Toxins 2014, 6, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Mandal, S.; Goyary, D.; Verma, A. Larvicidal Property and Active Compound Profiling of Annona Squamosa Leaf Extracts against Two Species of Diptera, Aedes aegypti and Anopheles Stephensi. J. Vector Borne Dis. 2023, 60, 401. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, C.; Bagavan, A.; Elango, G.; Zahir, A.A.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Rahuman, A.A. Larvicidal Activity of Medicinal Plant Extracts against Anopheles subpictus & Culex tritaeniorhynchus. Indian J. Med. Res. 2011, 134, 101–106. [Google Scholar]
- Khader, S.Z.A.; Syed Zameer Ahmed, S.; Sathyan, J.; Mahboob, M.R.; Venkatesh, P.K.; Ramesh, K. A Comparative Study on Larvicidal Potential of Selected Medicinal Plants over Green Synthesized Silver Nano Particles. Egypt. J. Basic. Appl. Sci. 2018, 5, 54–62. [Google Scholar] [CrossRef]
- Velayutham, K.; Ramanibai, R. Larvicidal Activity of Synthesized Silver Nanoparticles Using Isoamyl Acetate Identified in Annona squamosa Leaves against Aedes aegypti and Culex quinquefasciatus. J. Basic. Appl. Zool. 2016, 74, 16–22. [Google Scholar] [CrossRef]
- Aguirre, P.A.U.; Martins, K.M.; López, C.D.D.; Sánchez, F.O.; Castaño, A.T.; Velásquez, C.M.R.; Vidal, A.P. Effect of Nanoformulation Azadirachta indica on Some Factors Associated with the Vectorial Capacity and Competence of Anopheles aquasalis Experimentally Infected with Plasmodium Vivax. Acta Trop. 2024, 255, 107223. [Google Scholar] [CrossRef]
- Aidoo, O.; Kuntworbe, N.; Owusu, F.W.A.; Nii Okantey Kuevi, D. Chemical Composition and In Vitro Evaluation of the Mosquito (Anopheles) Repellent Property of Neem (Azadirachta indica) Seed Oil. J. Trop. Med. 2021, 2021, 5567063. [Google Scholar] [CrossRef]
- Ayinde, A.A.; Morakinyo, O.M.; Sridhar, M.K.C. Repellency and Larvicidal Activities of Azadirachta indica Seed Oil on Anopheles gambiae in Nigeria. Heliyon 2020, 6, e03920. [Google Scholar] [CrossRef]
- Chandramohan, B.; Murugan, K.; Madhiyazhagan, P.; Kovendan, K.; Kumar, P.M.; Panneerselvam, C.; Dinesh, D.; Subramaniam, J.; Rajaganesh, R.; Nicoletti, M.; et al. Neem By-Products in the Fight against Mosquito-Borne Diseases: Biotoxicity of Neem Cake Fractions towards the Rural Malaria Vector Anopheles culicifacies (Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 2016, 6, 472–476. [Google Scholar] [CrossRef]
- Dembo, E.G.; Abay, S.M.; Dahiya, N.; Ogboi, J.S.; Christophides, G.K.; Lupidi, G.; Chianese, G.; Lucantoni, L.; Habluetzel, A. Impact of Repeated NeemAzal-Treated Blood Meals on the Fitness of Anopheles stephensi Mosquitoes. Parasit. Vectors 2015, 8, 94. [Google Scholar] [CrossRef]
- Demissew, A.; Balkew, M.; Girma, M. Larvicidal Activities of Chinaberry, Neem and Bacillus thuringiensis israelensis (Bti) to an Insecticide Resistant Population of Anopheles arabiensis from Tolay, Southwest Ethiopia. Asian Pac. J. Trop. Biomed. 2016, 6, 554–561. [Google Scholar] [CrossRef]
- Ejeta, D.; Asme, A.; Asefa, A. Insecticidal Effect of Ethnobotanical Plant Extracts against Anopheles arabiensis under Laboratory Conditions. Malar. J. 2021, 20, 466. [Google Scholar] [CrossRef] [PubMed]
- Kala, S.; Naik, S.N.; Patanjali, P.K.; Sogan, N. Neem Oil Water Dispersible Tablet as Effective Larvicide, Ovicide and Oviposition Deterrent against Anopheles culicifacies. S. Afr. J. Bot. 2019, 123, 387–392. [Google Scholar] [CrossRef]
- Kumar, A.; Murugan, K.; Madhiyazhagan, P.; Prabhu, K. Spinosad and Neem Seed Kernel Extract as Bio–Controlling Agents for Malarial Vector, Anopheles stephensi and Non–Biting Midge, Chironomus circumdatus. Asian Pac. J. Trop. Med. 2011, 4, 614–618. [Google Scholar] [CrossRef]
- Rasool, S.; Raza, M.A.; Manzoor, F.; Kanwal, Z.; Riaz, S.; Iqbal, M.J.; Naseem, S. Biosynthesis, Characterization and Anti-Dengue Vector Activity of Silver Nanoparticles Prepared from Azadirachta indica and Citrullus colocynthis. R. Soc. Open Sci. 2020, 7, 200540. [Google Scholar] [CrossRef]
- Sharma, P.; Mohan, L.; Dua, K.K.; Srivastava, C.N. Status of Carbohydrate, Protein and Lipid Profile in the Mosquito Larvae Treated with Certain Phytoextracts. Asian Pac. J. Trop. Med. 2011, 4, 301–304. [Google Scholar] [CrossRef]
- Siddiqui, B.S.; Afshan, F.; Gulzar, T.; Sultana, R.; Naqvi, S.N.-H.; Tariq, R.M. Tetracyclic Triterpenoids from the Leaves of Azadirachta indica and Their Insecticidal Activities. Chem. Pharm. Bull. (Tokyo) 2003, 51, 415–417. [Google Scholar] [CrossRef]
- Torres, S.M.; Cruz, N.L.N.D.; Rolim, V.P.D.M.; Cavalcanti, M.I.D.A.; Alves, L.C.; da Silva Júnior, V.A. Cumulative Mortality of Aedes aegypti Larvae Treated with Compounds. Rev. Saude Publica 2014, 48, 445–450. [Google Scholar] [CrossRef]
- Rahman, M.M.; Morshed, M.N.; Adnan, S.M.; Howlader, M.T.H. Assessment of Biorational Larvicides and Botanical Oils against Culex quinquefasciatus Say (Diptera: Culicidae) Larvae in Laboratory Conditions. Heliyon 2024, 10, e31453. [Google Scholar] [CrossRef]
- Yerbanga, R.S.; Rayaisse, J.-B.; Vantaux, A.; Salou, E.; Mouline, K.; Hien, F.; Habluetzel, A.; Dabiré, R.K.; Ouédraogo, J.B.; Solano, P.; et al. Neemazal ® as a Possible Alternative Control Tool for Malaria and African Trypanosomiasis? Parasit. Vectors 2016, 9, 263. [Google Scholar] [CrossRef]
- Kudom, A.A.; Mensah, B.A.; Botchey, M.A. Aqueous Neem Extract versus Neem Powder on Culex quinquefasciatus: Implications for Control in Anthropogenic Habitats. J. Insect Sci. 2011, 11, 142. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Seetharaman, P.; Krishnan, M.; Gnanasekar, S.; Sivaperumal, S. Carica Papaya (Papaya) Latex: A New Paradigm to Combat against Dengue and Filariasis Vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech 2018, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Nunes, N.N.D.S.; Santana, L.A.; Sampaio, M.U.; Lemos, F.J.; Oliva, M.L. The Component of Carica Papaya Seed Toxic to a Aegypti and the Identification of Tegupain, the Enzyme That Generates It. Chemosphere 2013, 92, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Nur Athen, M.H.; Nazri, C.D.; Siti Nazrina, C. Bioassay Studies on the Reaction of Aedes aegypti & Aedes albopictus (Diptera: Culicidae) on Different Attractants. Saudi J. Biol. Sci. 2020, 27, 2691–2700. [Google Scholar] [CrossRef]
- Wahyuni, D. New Bioinsecticide Granules Toxin from Ectract of Papaya (Carica papaya) Seed and Leaf Modified Against Aedes aegypti Larvae. Procedia Environ. Sci. 2015, 23, 323–328. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In Vitro Characterization and Mosquito (Aedes aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions. AAPS PharmSciTech 2009, 10, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Sathantriphop, S.; Achee, N.L.; Sanguanpong, U.; Chareonviriyaphap, T. The Effects of Plant Essential Oils on Escape Response and Mortality Rate of Aedes aegypti and Anopheles minimus. J. Vector Ecol. 2015, 40, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Kweka, E.J.; Senthilkumar, A.; Venkatesalu, V. Toxicity of Essential Oil from Indian Borage on the Larvae of the African Malaria Vector Mosquito, Anopheles gambiae. Parasit. Vectors 2012, 5, 277. [Google Scholar] [CrossRef]
- Abutaha, N.; AL-mekhlafi, F.A.; Al-Khalifa, M.S.; Wadaan, M.A. Insecticidal Effects of a Novel Polyherbal Formulation (HF7) against Culex pipiens L. (Diptera: Culicidae). Saudi J. Biol. Sci. 2022, 29, 279–286. [Google Scholar] [CrossRef]
- Baz, M.M.; Selim, A.; Radwan, I.T.; Alkhaibari, A.M.; Khater, H.F. Larvicidal and Adulticidal Effects of Some Egyptian Oils against Culex pipiens. Sci. Rep. 2022, 12, 4406. [Google Scholar] [CrossRef]
- Bhoopong, P.; Chareonviriyaphap, T.; Sukkanon, C. Excito-Repellency of Myristica Fragrans Houtt. and Curcuma longa L. Extracts from Southern Thailand against Aedes aegypti (L.). PeerJ 2022, 10, e13357. [Google Scholar] [CrossRef]
- Das, N.G.; Dhiman, S.; Talukdar, P.K.; Rabha, B.; Goswami, D.; Veer, V. Synergistic Mosquito-Repellent Activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella Essential Oils. J. Infect. Public. Health 2015, 8, 323–328. [Google Scholar] [CrossRef]
- Singha, S.; Chandra, G. Mosquito Larvicidal Activity of Some Common Spices and Vegetable Waste on Culex quinquefasciatus and Anopheles stephensi. Asian Pac. J. Trop. Med. 2011, 4, 288–293. [Google Scholar] [CrossRef]
- Akono Ntonga, P.; Baldovini, N.; Mouray, E.; Mambu, L.; Belong, P.; Grellier, P. Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus Essential Oils against Plasmodium falciparum and Mature-Stage Larvae of Anopheles funestus s.s. Parasite 2014, 21, 33. [Google Scholar] [CrossRef]
- Balboné, M.; Sawadogo, I.; Soma, D.D.; Drabo, S.F.; Namountougou, M.; Bayili, K.; Romba, R.; Meda, G.B.; Nebié, H.C.R.; Dabire, R.K.; et al. Essential Oils of Plants and Their Combinations as an Alternative Adulticides against Anopheles gambiae (Diptera: Culicidae) Populations. Sci. Rep. 2022, 12, 19077. [Google Scholar] [CrossRef]
- Boonyuan, W.; Grieco, J.P.; Bangs, M.J.; Prabaripai, A.; Tantakom, S.; Chareonviriyaphap, T. Excito-Repellency of Essential Oils against an Aedes aegypti (L.) Field Population in Thailand. J. Vector Ecol. 2014, 39, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Bossou, A.D.; Mangelinckx, S.; Yedomonhan, H.; Boko, P.M.; Akogbeto, M.C.; De Kimpe, N.; Avlessi, F.; Sohounhloue, D.C.K. Chemical Composition and Insecticidal Activity of Plant Essential Oils from Benin against Anopheles gambiae (Giles). Parasites Vectors 2013, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.M.; Stashenko, E.; Duque, J.E. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti. J. Am. Mosq. Control Assoc. 2017, 33, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Manh, H.D.; Hue, D.T.; Hieu, N.T.T.; Tuyen, D.T.T.; Tuyet, O.T. The Mosquito Larvicidal Activity of Essential Oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects 2020, 11, 128. [Google Scholar] [CrossRef]
- Moungthipmalai, T.; Puwanard, C.; Aungtikun, J.; Sittichok, S.; Soonwera, M. Ovicidal Toxicity of Plant Essential Oils and Their Major Constituents against Two Mosquito Vectors and Their Non-Target Aquatic Predators. Sci. Rep. 2023, 13, 2119. [Google Scholar] [CrossRef]
- Siriporn, P.; Mayura, S. The Effects of Herbal Essential Oils on the Oviposition-Deterrent and Ovicidal Activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Trop. Biomed. 2012, 29, 138–150. [Google Scholar]
- Wahedi, J.A.; Vincent, V.M.; Pukuma, S.M.; Bawa, I.S.; Agboola, O.O.; Aju-Ahmeh, C.O.; Filgona, J.; Olowoyo, J.O. Phytochemical Screening and Larvicidal Activities of Cymbopogon citratus and Annona senegalensis against Culex quinquefasciatus. Sci. Afr. 2024, 23, e02057. [Google Scholar] [CrossRef]
- Panneerselvam, C.; Murugan, K.; Kovendan, K.; Kumar, P.M.; Subramaniam, J. Mosquito Larvicidal and Pupicidal Activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2013, 6, 102–109. [Google Scholar] [CrossRef]
- Panneerselvam, C.; Murugan, K. Adulticidal, Repellent, and Ovicidal Properties of Indigenous Plant Extracts against the Malarial Vector, Anopheles stephensi (Diptera: Culicidae). Parasitol. Res. 2013, 112, 679–692. [Google Scholar] [CrossRef]
- Zahir, A.A.; Rahuman, A.A.; Ba-gavan, A.; Elango, G.; Kamaraj, C. Ok Adult Emergence Inhibition and Adulticidal Activities of Medicinal Plant Extracts against Anopheles stephensi Liston. Asian Pac. J. Trop. Med. 2010, 3, 878–883. [Google Scholar] [CrossRef]
- Rahuman, A.A.; Bagavan, A.; Kamaraj, C.; Saravanan, E.; Zahir, A.A.; Elango, G. Efficacy of Larvicidal Botanical Extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 2009, 104, 1365–1372. [Google Scholar] [CrossRef]
- Coulibaly, F.H.; Rossignol, M.; Haddad, M.; Carrasco, D.; Azokou, A.; Valente, A.; Ginibre, C.; Koné, M.W.; Chandre, F. Biological Effects of Lippia alba Essential Oil against Anopheles gambiae and Aedes aegypti. Sci. Rep. 2024, 14, 3508. [Google Scholar] [CrossRef]
- Ferreira, R.M.A.; Duarte, J.L.; Cruz, R.A.S.; Oliveira, A.E.M.F.M.; Araújo, R.S.; Carvalho, J.C.T.; Mourão, R.H.V.; Souto, R.N.P.; Fernandes, C.P. A Herbal Oil in Water Nano-Emulsion Prepared through an Ecofriendly Approach Affects Two Tropical Disease Vectors. Rev. Bras. Farmacogn. 2019, 29, 778–784. [Google Scholar] [CrossRef]
- Ríos, N.; Stashenko, E.E.; Duque, J.E. Evaluation of the Insecticidal Activity of Essential Oils and Their Mixtures against Aedes aegypti (Diptera: Culicidae). Rev. Bras. Entomol. 2017, 61, 307–311. [Google Scholar] [CrossRef]
- Raul, P.K.; Santra, P.; Goswami, D.; Tyagi, V.; Yellappa, C.; Mauka, V.; Devi, R.R.; Chattopadhyay, P.; Jayaram, R.V.; Dwivedi, S.K. Green Synthesis of Carbon Dot Silver Nanohybrids from Fruits and Vegetable’s Peel Waste: Applications as Potent Mosquito Larvicide. Curr. Res. Green. Sustain. Chem. 2021, 4, 100158. [Google Scholar] [CrossRef]
- Yousaf, A.; Zuharah, W.F. Lethal Response of the Dengue Vectors to the Plant Extracts from Family Anacardiaceae. Asian Pac. J. Trop. Biomed. 2015, 5, 812–818. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A. Larvicidal and Adulticidal Potential of Medicinal Plant Extracts from South India against Vectors. Asian Pac. J. Trop. Med. 2010, 3, 948–953. [Google Scholar] [CrossRef]
- Govindarajan, M. Larvicidal and Repellent Activities of Sida acuta Burm. F. (Family: Malvaceae) against Three Important Vector Mosquitoes. Asian Pac. J. Trop. Med. 2010, 3, 691–695. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A.; Mahapatra, A.; Bagavan, A.; Elango, G. Insecticidal and Larvicidal Activities of Medicinal Plant Extracts against Mosquitoes. Parasitol. Res. 2010, 107, 1337–1349. [Google Scholar] [CrossRef]
- Mituiassu, L.M.P.; Serdeiro, M.T.; Vieira, R.R.B.T.; Oliveira, L.S.; Maleck, M. Momordica charantia L. Extracts against Aedes aegypti Larvae. Braz. J. Biol. 2021, 82, e236498. [Google Scholar] [CrossRef]
- Rajkumar, S.; Jebanesan, A. Repellent Activity of Selected Plant Essential Oils against the Malarial Fever Mosquito Anopheles Stephensi. Trop. Biomed. 2007, 24, 71–75. [Google Scholar]
- de Oliveira, A.P.S.; de Santana Silva, L.L.; de Albuquerque Lima, T.; Pontual, E.V.; de Lima Santos, N.D.; Breitenbach Barroso Coelho, L.C.; do Amaral Ferraz Navarro, D.M.; Zingali, R.B.; Napoleão, T.H.; Paiva, P.M.G. Biotechnological Value of Moringa oleifera Seed Cake as Source of Insecticidal Lectin against Aedes aegypti. Process Biochem. 2016, 51, 1683–1690. [Google Scholar] [CrossRef]
- Opoku-Bamfoh, O.; Kwarteng, S.A.; Owusu, F.A.N.; Akpanya, R.; Mensah, K.A.; Badu, M.; Gyamfi, F.Y.; Sogbo, V.; Belford, E.J.D.; Boakye, A.; et al. Repellent and Larvicidal Properties of Selected Indigenous Plants in the Control of Anopheles Mosquitoes. J. Vector Borne Dis. 2024, 61, 90–100. [Google Scholar] [CrossRef]
- Prabhu, K.; Murugan, K.; Nareshkumar, A.; Ramasubramanian, N.; Bragadeeswaran, S. Larvicidal and Repellent Potential of Moringa oleifera against Malarial Vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 2011, 1, 124–129. [Google Scholar] [CrossRef]
- Santos, G.K.N.; Dutra, K.A.; Barros, R.A.; da Câmara, C.A.G.; Lira, D.D.; Gusmão, N.B.; Navarro, D.M.A.F. Essential Oils from Alpinia purpurata (Zingiberaceae): Chemical Composition, Oviposition Deterrence, Larvicidal and Antibacterial Activity. Ind. Crops Prod. 2012, 40, 254–260. [Google Scholar] [CrossRef]
- Santos, N.D.L.; Napoleão, T.H.; Benevides, C.A.; Albuquerque, L.P.; Pontual, E.V.; Oliveira, A.P.S.; Coelho, L.C.B.B.; Navarro, D.M.A.F.; Paiva, P.M.G. Effect of Gamma Irradiation of Moringa oleifera Seed Lectin on Its Larvicidal, Ovicidal, and Oviposition-Stimulant Activities against Aedes aegypti. S. Afr. J. Bot. 2020, 129, 3–8. [Google Scholar] [CrossRef]
- Botelho, A.D.S.; Ferreira, O.O.; de Oliveira, M.S.; Cruz, J.N.; Chaves, S.H.D.R.; do Prado, A.F.; Nascimento, L.D.D.; da Silva, G.A.; Amarante, C.B.D.; Andrade, E.H.D.A. Studies on the Phytochemical Profile of Ocimum basilicum Var. Minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae). Int. J. Mol. Sci. 2022, 23, 11172. [Google Scholar] [CrossRef] [PubMed]
- Dris, D.; Tine-Djebbar, F.; Bouabida, H.; Soltani, N. Chemical Composition and Activity of an Ocimum basilicum Essential Oil on Culex pipiens Larvae: Toxicological, Biometrical and Biochemical Aspects. S. Afr. J. Bot. 2017, 113, 362–369. [Google Scholar] [CrossRef]
- Luz, T.R.S.A.; Leite, J.A.C.; de Mesquita, L.S.S.; Bezerra, S.A.; Gomes Ribeiro, E.C.; Silveira, D.P.B.; de Mesquita, J.W.C.; do Amaral, F.M.M.; Coutinho, D.F. Seasonal Variation in the Chemical Composition and Larvicidal Activity against Aedes aegypti L. of Essential Oils from Brazilian Amazon. Exp. Parasitol. 2022, 243, 108405. [Google Scholar] [CrossRef]
- Mahendran, G.; Vimolmangkang, S. Chemical Compositions, Antioxidant, Antimicrobial, and Mosquito Larvicidal Activity of Ocimum americanum L. and Ocimum basilicum L. Leaf Essential Oils. BMC Complement. Med. Ther. 2023, 23, 390. [Google Scholar] [CrossRef]
- Chalannavar, R.K.; Hurinanthan, V.; Singh, A.; Venugopala, K.N.; Gleiser, R.M.; Baijnath, H.; Odhav, B. The Antimosquito Properties of Extracts from Flowering Plants in South Africa. Trop. Biomed. 2013, 30, 559–569. [Google Scholar] [PubMed]
- Fikrig, K.; Johnson, B.J.; Fish, D.; Ritchie, S.A. Assessment of Synthetic Floral-Based Attractants and Sugar Baits to Capture Male and Female Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 2017, 10, 32. [Google Scholar] [CrossRef]
- Jhaiaun, P.; Panthawong, A.; Sukkanon, C.; Chareonviriyaphap, T. Avoidance Behavior to Guava Leaf Volatile Oil by Three Medically Important Mosquito Vectors. J. Econ. Entomol. 2021, 114, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.V.L.; Nguyen, H.H.; Satyal, P.; Vo, V.H.; Ngo, G.H.; Pham, V.T.; Setzer, W.N. Chemical Composition, Larvicidal and Molluscicidal Activity of Essential Oils of Six Guava Cultivars Grown in Vietnam. Plants 2023, 12, 2888. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Beier, J.C.; Traore, S.F.; Toure, M.B.; Traore, M.M.; Bah, S.; Doumbia, S.; Schlein, Y. Field Experiments of Anopheles gambiae Attraction to Local Fruits/Seedpods and Flowering Plants in Mali to Optimize Strategies for Malaria Vector Control in Africa Using Attractive Toxic Sugar Bait Methods. Malar. J. 2010, 9, 262. [Google Scholar] [CrossRef]
- Netshituni, V.T.; Cuthbert, R.N.; Dondofema, F.; Dalu, T. Assessing the Effects of Native and Alien Plant Ash on Mosquito Abundance. Ecol. Evol. 2022, 12, e9371. [Google Scholar] [CrossRef]
- Assemie, A.; Gemeda, T. Larvicidal Activities of Allium sativum L. and Zingiber officinale Rosc. Extracts against Filariasis Vectors in Hadiya Zone, Ethiopia. Biomed. Res. Int. 2023, 2023, 6636837. [Google Scholar] [CrossRef]
- Bilal, H.; Sahar, S.; Din, S. Bio-Pesticides: New Tool for the Control of Aedes (stegomyia) Albopictus (Culicidae: Diptera) in Pakistan. J. Arthropod Borne Dis. 2017, 11, 278–285. [Google Scholar]
- Govindarajan, M. Larvicidal and Repellent Properties of Some Essential Oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 106–111. [Google Scholar] [CrossRef]
- Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Pirali, Y.; Dehghani-Samani, A. Zingiber Officinalis and Eucalyptus Globulus, Potent Lethal/Repellent Agents against Rhipicephalus Bursa, Probable Carrier for Zoonosis. J. Arthropod Borne Dis. 2019, 13, 214–223. [Google Scholar] [CrossRef]
- Restu Wijaya, M.; Halijah, I.; Nurulhusna, A.H.; Khalijah, A. Efficacy of Four Species of Zingiberaceae Extract Against Vectors of Dengue, Chikungunya and Filariasis. Trop. Biomed. 2017, 34, 375–387. [Google Scholar]
- Zent, S. Acculturation and Ethnobotanical Knowledge Loss among the Piaroa of Venezuela, a Demonstration of a Quantitative Method of the Empirical Study of Traditional Environmental Knowledge Change. In Biocultural Diversity, Linkage Language, Knowledge, and the Environment; Smithsonian Institution Press: Washington, DC, USA, 2001; pp. 190–211. [Google Scholar]
- Willcox, M.; Benoit-Vical, F.; Fowler, D.; Bourdy, G.; Burford, G.; Giani, S.; Graziose, R.; Houghton, P.; Randrianarivelojosia, M.; Rasoanaivo, P. Do Ethnobotanical and Laboratory Data Predict Clinical Safety and Efficacy of Anti-Malarial Plants? Malar. J. 2011, 10, S7. [Google Scholar] [CrossRef] [PubMed]
- INSEE. Égalité Femmes-Hommes: Chiffres Clés de La Guadeloupe|INSEE. Available online: https://www.insee.fr/fr/statistiques/7938592?sommaire=7938604 (accessed on 29 September 2024).
- Women and Plants. Gender Relations in Biodiversity Management and Conservation. Available online: https://www.researchgate.net/publication/320347090_Women_and_Plants_Gender_Relations_in_Biodiversity_Management_and_Conservation (accessed on 29 May 2025).
- Voeks, R.A. Are Women Reservoirs of Traditional Plant Knowledge? Gender, Ethnobotany and Globalization in Northeast Brazil. Singap. J. Trop. Geogr. 2007, 28, 7–20. [Google Scholar] [CrossRef]
- Turner, N.J.; Ignace, M.B.; Ignace, R. Traditional Ecological Knowledge and Wisdom of Aboriginal Peoples in British Columbia. Ecol. Appl. 2000, 10, 1275–1287. [Google Scholar] [CrossRef]
- Pavela, R. Essential Oils for the Development of Eco-Friendly Mosquito Larvicides: A Review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Cassino, M.F.; Alves, R.P.; Levis, C.; Watling, J.; Junqueira, A.B.; Shock, M.P.; Ferreira, M.J.; Caetano Andrade, V.L.; Furquim, L.P.; Coelho, S.D.; et al. Ethnobotany and Ethnoecology Applied to Historical Ecology. In Methods and Techniques in Ethnobiology and Ethnoecology; Springer Humana Press: New York, NY, USA, 2019; pp. 187–208. ISBN 978-1-4939-8919-5. [Google Scholar]
- Leyva, M.; Marquetti, M.d.C.; Tacoronte, J.E.; Scull, R.; Tiomno, O.; Mesa, A.; Montada, D. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.) (Diptera: Culicidae). Rev. Biomed. 2009, 20, 5–13. [Google Scholar]
- Angulo, E.; Diagne, C.; Ballesteros-Mejia, L.; Adamjy, T.; Ahmed, D.A.; Akulov, E.; Banerjee, A.K.; Capinha, C.; Dia, C.A.K.M.; Dobigny, G.; et al. Non-English Languages Enrich Scientific Knowledge: The Example of Economic Costs of Biological Invasions. Sci. Total Environ. 2021, 775, 144441. [Google Scholar] [CrossRef]
- Abaul, J.; Bourgeois, P.; Bessiere, J.M. Chemical Composition of the Essential Oils of Chemotypes of Pimenta racemosa Var. Racemosa (P. Miller) J. W. Moore (Bois d’Inde) of Guadeloupe (F.W.I.). Flavour. Fragr. J. 1995, 10, 319–321. [Google Scholar] [CrossRef]
- Kaura, T.; Mewara, A.; Zaman, K.; Sharma, A.; Agrawal, S.K.; Thakur, V.; Garg, A.; Sehgal, R. Utilizing Larvicidal and Pupicidal Efficacy of Eucalyptus and Neem Oil against Aedes Mosquito: An Approach for Mosquito Control. Trop. Parasitol. 2019, 9, 12–17. [Google Scholar] [CrossRef]
- Teshome, Z.; Teka, A.; Animut, A.; Arage, M.; Aklilu, E.; Giday, M. Ethnobotanical Study of Plants Used for Traditional Control of Mosquitoes and Other Arthropod Pests in the Ghibe Valley, Southwest Ethiopia. Trop. Med. Health 2025, 53, 56. [Google Scholar] [CrossRef]
- de Boer, H.J.; Ichim, M.C.; Newmaster, S.G. DNA Barcoding and Pharmacovigilance of Herbal Medicines. Drug Saf. 2015, 38, 611–620. [Google Scholar] [CrossRef]
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; et al. Dengue: A Continuing Global Threat. Nat. Rev. Microbiol. 2010, 8, S7–S16. [Google Scholar] [CrossRef]
- Leyva-Silva, M.I.; French, L.; Pino, O.; Montada, D.; Morejón, G.; Marquetti, M.d.C. Plantas con actividad insecticida: Una alternativa natural contra mosquitos. Rev. Biomed. 2017, 28, 139–181. [Google Scholar] [CrossRef]
Work Sector | 18–35 Years Old | 36–50 Years Old | 51–65 Years Old | 66 Years and More | Total |
---|---|---|---|---|---|
Other sector | 52.8% (56/106) | 41.4% (12/29) | 44.0% (22/50) | 61.3% (19/31) | 50.5% (109/216) |
Farming sector | 0.9% (1/106) | 6.9% (2/29) | 6.0% (3/50) | 6.4% (2/31) | 3.7% (8/216) |
Education sector | 4.7% (5/106) | 6.9% (2/29) | 32.0% (16/50) | 9.7% (3/31) | 12.0% (26/216) |
Research sector | 14.2% (15/106) | 24.1% (7/29) | 8.0% (4/50) | 9.7% (3/31) | 13.4% (29/216) |
Scientifics Names Plants (Family) | Anti-Mosquito Plants Reported in This Study (%) | Plants Parts Reported in the Litterature | Type of Extracts Used | Target Mosquitoes Species | Bioassays Performed | Experimental Condition: Field (F), Laboratory (L), or In Vitro (V) | References |
---|---|---|---|---|---|---|---|
Aloe barbadensis Mill. (Asphodelaceae) | 3.3 | Leaves | Powder | Aedes aegypti | Larvicidal | L | [62] |
Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. (Zingiberaceae) | 1.7 | Flowers | Essential oil | Aedes aegypti | Repellent, Irritant, Toxicity | L | [63] |
Anethum graveolens L. (Apiaceae) | 0 | - | - | - | - | - | - |
Annona muricata L. (Annonaceae) | 1.7 | Seeds, Leaves, Stems | Aqueous, Oils, Ethanolic | Culex quiquefaciatus, Aedes albopictus and Aedes aegypti | Adulticidal, Larvicidal | L | [64,65] |
Annona squamosa L. (Annonaceae) | 0 | Seeds, Leaves, Stems, Bark, Root Bark | Aqueous, Oils, Organics, Methanolic | Culex quiquefaciatus, Aedes albopictus, Aedes aegypti, Anopheles stephensi, Culex tritaeniorrhynchus and Anopheles gambiae | Adulticidal, Larvicidal | L | [64,65,66,67,68,69,70] |
Artocarpus altilis (Parkinson) Fosberg (Moraceae) | 25 | - | - | - | - | - | - |
Azadirachta indica A. Juss. (Meliaceae) | 0 | Seeds, Leaves, Neem cake, Seed, Fruits and Bark | Organics, commercial preparation, Powder, Smoked leaves, Commercial oil, Oil cream, Emulsified neem oil, Aqueous, Crude extract of leaves and powders, Essential oils | Anopheles aquasalis, Anopheles gambiae, Anopheles stephensi, Culex quinquefasciatus, Anopheles arabiensis, Aedes aegypti, Anopheles culicifacies, Anopheles stephensi, Chironomus circumdatus, Anopheles arabiensi, Anopheles gambiae, Aedes aegypti, Aedes family and Anopheles coluzzii | Blood-feeding, Repellent test, Larvicidal test, Survival test (larvae), Ovicidal test, Adulticidal test, Oviposition test, Pupicidal test, Attract and kill test | L, F and V | [19,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86] |
Bixa orellana L. (Bixaceae) | 5 | - | - | - | - | - | - |
Carica papaya L. (Caricaceae) | 0 | Seeds, Leaves, Fruit flesh and peels, Granules, Stems, Latex | Powder, Ethanolic, Organic and Essential oil | Aedes aegypti, Aedes albopictus and Culex quinquefasciatus | Larvicidal test, Mosquito attractive test | L | [64,83,87,88,89,90] |
Chrysopogon zizanioides (L.) Roberty (Poaceae) | 6.7 | ND | Nanoemulsions of essential oil | Aedes aegypti and Anopheles minimus | Repellent test, Mosquito Repellent, Efficiency assay | L | [91,92] |
Citrus × aurantiifolia (Christm.) Swingle (Rutaceae) | 10 | - | - | - | - | - | - |
Coleus amboinicus Lour. (Lamiaceae) | 10 | Leaves | Essential oil | Anopheles gambiae | Latvicidal test, Adulticidal test | L | [93] |
Cucumis anguria L. (Cucurbitaceae) | 0 | - | - | - | - | - | - |
Curcuma longa L. (Zingiberaceae) | 1.7 | Tuber, Rhizomes | Crude and chloroform: methanol (1:1), Essential oil, Organic, Formulation (7 plants) | Culex pipiens, Anopheles stephensi, Culex quinquefasciatus, Aedes albopictus and Aedes aegypti | L and F | [94,95,96,97,98] | |
Cymbopogon citratus (DC.) Stapf (Poaceae) | 93.3 | Leaves, Stems, Roots, Whole plants | Aqueous, Ethanolic, Essential oil | Culex quinquefasciatus, Aedes aegypti, Anopheles gambiae, Anopheles funestus, Aedes aegypti, Aedes albopictus, Ae. aegypti Anopheles dirus, Culex quinquefasciatus and Anopheles darlingi | Larvicidal test, Repellent test, Adulticidal test, Ovicidal test, Pupicidal test, Oviposition-deterent test | F | [99,100,101,102,103,104,105,106,107] |
Dianthera pectoralis (Jacq.) J.F.Gmel. (Acanthaceae) | 0 | - | - | - | - | - | - |
Elymus repens (L.) Gould (Poaceae) | 0 | - | - | - | - | - | - |
Eryngium foetidum L. (Apiaceae) | 1.7 | - | - | - | - | - | - |
Euphorbia hirta L. (Euphorbiaceae) | 0 | Leaves | Organic solvent | Anopheles stephensi | Larvicidal test, Puppicidal test, Adulticidal test, Adult emergence inhibition test, Ovicidal test, Repellent test | L | [108,109,110] |
Hibiscus × rosa-sinensis L. (Malvaceae) | 0 | Flowers | Organic extract | Culex quinquefasciatus | Larvicidal test | L | [111] |
Laportea aestuans (L.) Chew (Urticaceae) | 1.7 | - | - | - | - | - | - |
Lippia alba (Mill.) N.E.Br. ex Britton & P.Wilson (Verbenaceae) | 1.7 | Plant material, Leaves | Essential oil | Aedes aegypti, Aedes aegypti, Culex quinquefasciatus larvae, Anopheles gambiae and Aedes aegypti | Larvicidal test, Adulticidal test, Repellent test, Pupicidal test, Oviposition-deterent | L | [103,112,113,114] |
Malpighia emarginata DC. (Malpighiaceae) | 0 | - | - | - | - | - | - |
Mangifera indica L. (Anacardiaceae) | 1.7 | Stems, Peels, Leaves and Bark | ND | Aedes aegypti, Aedes albopictus, Anopheles stephensi and Culex quinquefasciatus | Larvicidal test | L | [54,115,116] |
Mimosa pudica L. (Fabaceae) | 0 | Leaves | Organic extract | Culex gelidus Theobald and Culex quinquefasciatus | Larvicidal test, Adulticidal test, Repellent test | [117] | |
Mirabilis jalapa L. (Nyctaginaceae) | 0 | Leaves | Organic extract | Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi | Larvicidal test | L | [118] |
Momordica charantia L. (Cucurbitaceae) | 0 | Leaves, Stems, flowers, Fruits, Fresh leaves | Organic, Crude, Essential oil | Aedes aegypti, Culex gelidus, Culex quinquefasciatus, Anopheles stephensi | Larvicidal test | L | [64,119,120,121] |
Moringa oleifera Lam. (Moringaceae) | 1.7 | Seeds, Leaves | Powder, Aquaeous, Methanolic, Essential oil, Water extract of Moringa oleifera seeds (WEMOS) | Aedes aegypti, Anopheles stephensi and Anopheles gambiae | Larvicidal test, Ovicidal test, Oviposition test, Pupicidal test, Egg Hatching test, Repellent test, Forearm attraction test | L | [122,123,124,125,126] |
Neurolaena lobata (L.) R. Br. ex Cass. (Asteraceae) | 3.3 | - | - | - | - | - | - |
Ocimum basilicum L. (Lamiaceae) | 5 | Leaves, Aerial parts | Essential oil | Culex pipiens, Anopheles stephensi, Aedes aegypti and Anopheles gambiae | Larvicidal test, Adulticidal test, Adults emergence inhibition test, Repellent test, Forearm test | L | [110,123,127,128,129,130] |
Phyllanthus amarus Schumach. & Thonn. (Phyllanthaceae) | 0 | Leaves and stem of P. amarus | Organic | Anopheles stephensi, Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus | Larvicidal test, Repellent test | L | [68,69] |
Pimenta racemosa (Mill.) J. W. Moore (Myrtaceae) | 18.3 | - | - | - | - | - | - |
Psidium guajava L. (Myrtaceae) | 0 | Plant materials, Leaves, Fruits, Fresh leaves, Guava, | crude dried residues, ethanolic, ash, essential oil, nectar, fruit solution | Aedes aegypti, Anopheles minimus, Anopheles epiroticus, Culex. Quinquefasciatus, Anopheles arabiensis, Aedes albopictus, Culex fuscocephala, Anopheles stephensi, Anopheles gambiae, Culex spp. and Anopheles spp. | Larvicidal test, Adulticidal test, Repellent test, Free-flight attraction assays, Attract and kill test | L | [121,131,132,133,134,135,136] |
Senna alata (L.) Roxb. (Fabaceae) | 1.7 | - | - | - | - | - | - |
Sphagneticola trilobata (L.) Pruski (Asteraceae) | 0 | - | - | - | - | - | - |
Tetradenia riparia (Hochst.) Codd (Lamiaceae) | 3.3 | - | - | - | - | - | - |
Zanthoxylum caribaeum Gaertn. (Rutaceae) | 0 | - | - | - | - | - | - |
Zingiber officinale Roscoe (Zingiberaceae) | 1.7 | Rhizome, Roots, Fresh samples, Fresh rhizomes | Essential oils, Formulations (7 plants), Organic | Culex tritaeniorhynchus, Anopheles subpictus, Culex pipiens, Aedes aegypti, Anopheles funestus, Anopheles gambiae, Anopheles pharoensis, Culex antennatus, Culex quinquefasciatus, Culex theileri and Aedes albopictus | Larvicidal test, Repellent test, Adultiticidal test, Ovicidal test, Identification of vectors test, Olfactometry-bioassys test | L | [94,101,137,138,139,140,141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchaudé, Y.; Brelle, L.; Sylvestre, M.; Vega-Rúa, A.; Cebrián-Torrejón, G. Contrasted Ethnobotanical and Literature Knowledge of Anti-Mosquito Plants from Guadeloupe. Biology 2025, 14, 888. https://doi.org/10.3390/biology14070888
Duchaudé Y, Brelle L, Sylvestre M, Vega-Rúa A, Cebrián-Torrejón G. Contrasted Ethnobotanical and Literature Knowledge of Anti-Mosquito Plants from Guadeloupe. Biology. 2025; 14(7):888. https://doi.org/10.3390/biology14070888
Chicago/Turabian StyleDuchaudé, Yolène, Laura Brelle, Muriel Sylvestre, Anubis Vega-Rúa, and Gerardo Cebrián-Torrejón. 2025. "Contrasted Ethnobotanical and Literature Knowledge of Anti-Mosquito Plants from Guadeloupe" Biology 14, no. 7: 888. https://doi.org/10.3390/biology14070888
APA StyleDuchaudé, Y., Brelle, L., Sylvestre, M., Vega-Rúa, A., & Cebrián-Torrejón, G. (2025). Contrasted Ethnobotanical and Literature Knowledge of Anti-Mosquito Plants from Guadeloupe. Biology, 14(7), 888. https://doi.org/10.3390/biology14070888