Microbial Community Imbalance Drives Nitrous Oxide Emissions from Strongly Acidic Soil—Insights from a Laboratory Experiment with Microbial Inhibitors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Experimental Design
2.3. Measurements and Analysis
2.3.1. Gas Sampling and Analysis for Sterilization Experiment
2.3.2. Gas Sampling and Analysis for Biology Inhibitor Experiment
2.3.3. Chemical and Physical Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Biotic and Abiotic Interactions on Soil N2O Emission
3.2. Effects of Microbial Inhibitors on Soil N2O Flux
3.3. Effects of Microbial Inhibitors on Soil CO2 Flux
3.4. Effects of Microbial Inhibitors on Soil Available Nitrogen and Carbon Contents
3.5. Correlation of N2O and Soil Properties with Microbial Inhibitor Dosages
4. Discussion
4.1. Effects of Microbial Inhibitors on N2O Production Pathways
4.2. Effects of Microbial Inhibitors on the Dynamics of Dissolved Nitrogen and Carbon Fractions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rockström, J.; Gupta, J.; Qin, D.; Lade, S.J.; Abrams, J.F.; Andersen, L.S.; Armstrong McKay, D.I.; Bai, X.; Bala, G.; Bunn, S.E.; et al. Safe and just Earth system boundaries. Nature 2023, 619, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.; Biasi, C.; Horn, M.A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 2012, 6, 1058–1077. [Google Scholar] [CrossRef] [PubMed]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Tokuda, S.; Hayatsu, M. Nitrous oxide production from strongly acid tea field soils. Soil Sci. Plant Nutr. 2000, 46, 835–844. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, J.; Zhang, X. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Glob. Change Biol. 2018, 24, 617–626. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.; Christie, P.; Goulding, K.; Vitousek, P.M.; Zhang, F. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Homyak, P.M.; Kamiyama, M.; Sickman, J.O.; Schimel, J.P. Acidity and organic matter promote abiotic nitric oxide production in drying soils. Glob. Change Biol. 2017, 23, 1735–1747. [Google Scholar] [CrossRef]
- Chen, D.; Yuan, X.; Zhao, W.; Luo, X.; Li, F.; Liu, T. Chemodenitrification by Fe(II) and nitrite: pH effect, mineralization and kinetic modeling. Chem. Geol. 2020, 541, 119586. [Google Scholar] [CrossRef]
- Robinson, T.C.; Latta, D.E.; Notini, L.; Schilling, K.E.; Scherer, M.M. Abiotic reduction of nitrite by Fe(ii): A comparison of rates and N2O production. Environ. Sci. Process. Impacts 2021, 23, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Hashidoko, Y.; Takakai, F.; Toma, Y.; Darung, U.; Melling, L.; Tahara, S.; Hatano, R. Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland. Soil Biol. Biochem. 2008, 40, 116–125. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Y.; Fan, H.; Bilyera, N.; Meng, X.; Xue, J.; Lu, Z.; Yang, Z.; Chapman, S.J.; Gao, F.; et al. Microbial communities overwhelm environmental controls in explaining nitrous oxide emission in acidic soils. Soil Biol. Biochem. 2024, 194, 109453. [Google Scholar] [CrossRef]
- Bösch, Y.; Pold, G.; Saghaï, A.; Karlsson, M.; Jones, C.M.; Hallin, S. Distribution and environmental drivers of fungal denitrifiers in global soils. Microbiol. Spectr. 2023, 11, 23–61. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef]
- Chen, S.; Edwards, C.A.; Subler, S. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol. Biochem. 2001, 33, 1971–1980. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Sun, R.; Ye, X.; Ma, C.; Mao, J.; Zhang, C.; Gao, H.; Zhang, W. Soil microbial communities under wheat and maize straw incorporation are closely associated with soil organic carbon fractions and chemical structure. Appl. Soil Ecol. 2023, 182, 104724. [Google Scholar] [CrossRef]
- Yin, J.; Chen, H.; Duan, P.; Zhu, K.; Li, N.; Ma, Y.; Xu, Y.; Guo, J.; Liu, R.; Chen, Q. Soil microbial communities as potential regulators of N2O sources in highly acidic soils. Soil Ecol. Lett. 2023, 5, 230178. [Google Scholar] [CrossRef]
- Yin, J.; Cui, W.; Xu, Y.; Ma, Y.; Chen, H.; Guo, J.; Liu, R.; Chen, Q. Understanding the relative contributions of fungi and bacteria led nitrous oxide emissions in an acidic soil amended with industrial waste. Ecotoxicol. Environ. Saf. 2023, 255, 114727. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Ullah, M.R.; Dijkstra, F.A. Fungicide and bactericide effects on carbon and nitrogen cycling in soils: A meta-analysis. Soil Syst. 2019, 3, 23. [Google Scholar] [CrossRef]
- Wang, Q.; Chai, Q.; Dou, X.; Zhao, C.; Yin, W.; Li, H.; Wei, J. Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways. Agronomy 2024, 14, 669. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, W.; Guo, J.; Zhang, M. Effects of Increasing pH on Nitrous Oxide and Dinitrogen Emissions from Denitrification in Sterilized and Unsterilized Forest Soils. Forests 2022, 13, 1589. [Google Scholar] [CrossRef]
- Molstad, L.; Dörsch, P.; Bakken, L.R. Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. J. Microbiol. Methods 2007, 71, 202–211. [Google Scholar] [CrossRef]
- Yin, J.; Liu, R.; Cao, W.; Zhu, K.; Fenton, O.; Guo, J.; Chen, Q. Nitrogen and carbon addition changed nitrous oxide emissions from soil aggregates in straw-incorporated soil. J. Soil Sediments 2022, 22, 617–629. [Google Scholar] [CrossRef]
- Qian, H.; Yuan, Z.; Chen, N.; Zhu, X.; Huang, S.; Lu, C.; Liu, K.; Zhou, F.; Smith, P.; Tian, H.; et al. Legacy effects cause systematic underestimation of N2O emission factors. Nat. Commun. 2025, 16, 2775. [Google Scholar] [CrossRef] [PubMed]
- Yasemi, M.; Jalali, A.; Asadzadeh, M.; Komijani, M. Organophosphate pesticides and their potential in the change of microbial population and frequency of antibiotic resistance genes in aquatic environments. Chemosphere 2025, 376, 144296. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Le Cocq, K.; Charteris, A.F.; Abadie, M.; Chadwick, D.R.; Clark, I.M.; González-López, J.; Bedmar, E.J.; Cardenas, L.M. Relative contributions of bacteria and fungi to nitrous oxide emissions following nitrate application in soils representing different land uses. Int. Biodeterior. Biodegrad. 2021, 159, 105199. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Wang, F.; Guan, Y.; Meng, D.; Li, X.; Zhou, H.; Li, X.; Chen, Y.; Tan, Z. Response of performance, antibiotic resistance genes and bacterial community exposure to compound antibiotics stress: Full nitrification to shortcut nitrification and denitrification. Chem. Eng. J. 2023, 451, 138750. [Google Scholar] [CrossRef]
- Martikainen, P.J. Heterotrophic nitrification—An eternal mystery in the nitrogen cycle. Soil Biol. Biochem. 2022, 168, 108611. [Google Scholar] [CrossRef]
- Aldossari, N.; Ishii, S. Fungal denitrification revisited—Recent advancements and future opportunities. Soil Biol. Biochem. 2021, 157, 108250. [Google Scholar] [CrossRef]
- Laughlin, R.J.; Rütting, T.; Müller, C.; Watson, C.J.; Stevens, R.J. Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil. Appl. Soil Ecol. 2009, 42, 25–30. [Google Scholar] [CrossRef]
- Rex, D.; Clough, T.J.; Richards, K.G.; de Klein, C.; Morales, S.E.; Samad, M.S.; Grant, J.; Lanigan, G.J. Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutr. Cycl. Agroecosyst. 2018, 110, 135–149. [Google Scholar] [CrossRef]
- Thakur, M.P.; van Groenigen, J.W.; Kuiper, I.; De Deyn, G.B. Interactions between microbial-feeding and predatory soil fauna trigger N2O emissions. Soil Biol. Biochem. 2014, 70, 256–262. [Google Scholar] [CrossRef]
- Rousk, J.; Demoling, L.A.; Bahr, A.; Bååth, E. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol. Ecol. 2008, 63, 350–358. [Google Scholar] [CrossRef]
- McLain, J.E.T.; Martens, D.A. N2O production by heterotrophic N transformations in a semiarid soil. Appl. Soil Ecol. 2006, 32, 253–263. [Google Scholar] [CrossRef]
- Muñoz-Leoz, B.; Garbisu, C.; Charcosset, J.; Sánchez-Pérez, J.M.; Antigüedad, I.; Ruiz-Romera, E. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Sci. Total Environ. 2013, 449, 345–354. [Google Scholar] [CrossRef]
- Liu, S.; Wu, D.; Ju, X.; Shen, J.; Cheng, Y.; Deng, N.; Song, X.; Di, H.; Li, P.; Han, L.; et al. Nitrification inhibitor induced microbial NH4+-N immobilization improves maize nitrogen use efficiency in strong ammonia oxidation soil. Soil Biol. Biochem. 2025, 202, 109687. [Google Scholar] [CrossRef]
- Laughlin, R.J.; Stevens, R.J. Evidence for Fungal Dominance of Denitrification and Codenitrification in a Grassland Soil. Soil Sci. Soc. Am. J. 2002, 66, 1540–1548. [Google Scholar] [CrossRef]
- Huang, L.; Chakrabarti, S.; Cooper, J.; Perez, A.; John, S.M.; Daroub, S.H.; Martens-Habbena, W. Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil. ISME Commun. 2021, 1, 19. [Google Scholar] [CrossRef]
- Taylor, A.E.; Zeglin, L.H.; Wanzek, T.A.; Myrold, D.D.; Bottomley, P.J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 2012, 6, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Li, J.; Liu, J.; Li, C.; He, Z.; Li, X. Quantification of microbially induced soil N2O emissions by an inhibitory cocktail in mountain forest ecosystems. Geoderma 2024, 443, 116835. [Google Scholar] [CrossRef]
- Ullah, M.R.; Carrillo, Y.; Dijkstra, F.A. Biocides provide a source of carbon and nitrogen directly to surviving microbes and indirectly through a pulse in microbial necromass. Appl. Soil Ecol. 2021, 160, 103862. [Google Scholar] [CrossRef]
- Badalucco, L.; Pomare, F.; Grego, S.; Landi, L.; Nannipieri, P. Activity and degradation of streptomycin and cycloheximide in soil. Biol. Fert. Soils 1994, 18, 334–340. [Google Scholar] [CrossRef]
- Trivedi, P.; Anderson, I.C.; Singh, B.K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 2013, 21, 641–651. [Google Scholar] [CrossRef]
- Kiikkilä, O.; Kanerva, S.; Kitunen, V.; Smolander, A. Soil microbial activity in relation to dissolved organic matter properties under different tree species. Plant Soil 2014, 377, 169–177. [Google Scholar] [CrossRef]
- Wipf, H.M.; Xu, L.; Gao, C.; Spinner, H.B.; Taylor, J.; Lemaux, P.; Mitchell, J.; Coleman-Derr, D. Agricultural Soil Management Practices Differentially Shape the Bacterial and Fungal Microbiome of Sorghum bicolor. Appl. Environ. Microbiol. 2021, 87, e02345-20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Gong, H.; Xiang, X.; Chen, R.; Xu, Y.; Shi, W.; Li, B.; Yin, J.; Chen, Q. Microbial Community Imbalance Drives Nitrous Oxide Emissions from Strongly Acidic Soil—Insights from a Laboratory Experiment with Microbial Inhibitors. Biology 2025, 14, 621. https://doi.org/10.3390/biology14060621
Ahmed W, Gong H, Xiang X, Chen R, Xu Y, Shi W, Li B, Yin J, Chen Q. Microbial Community Imbalance Drives Nitrous Oxide Emissions from Strongly Acidic Soil—Insights from a Laboratory Experiment with Microbial Inhibitors. Biology. 2025; 14(6):621. https://doi.org/10.3390/biology14060621
Chicago/Turabian StyleAhmed, Waqar, Hongyang Gong, Xiaoxiao Xiang, Runze Chen, Yumeng Xu, Wenxuan Shi, Binzhe Li, Junhui Yin, and Qing Chen. 2025. "Microbial Community Imbalance Drives Nitrous Oxide Emissions from Strongly Acidic Soil—Insights from a Laboratory Experiment with Microbial Inhibitors" Biology 14, no. 6: 621. https://doi.org/10.3390/biology14060621
APA StyleAhmed, W., Gong, H., Xiang, X., Chen, R., Xu, Y., Shi, W., Li, B., Yin, J., & Chen, Q. (2025). Microbial Community Imbalance Drives Nitrous Oxide Emissions from Strongly Acidic Soil—Insights from a Laboratory Experiment with Microbial Inhibitors. Biology, 14(6), 621. https://doi.org/10.3390/biology14060621