Apicortin, a Putative Apicomplexan-Specific Protein, Is Present in Deep-Branching Opisthokonts
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Search for New Apicortins
3.2. Phylogenetic Analysis
3.3. Domains of Apicortin
4. Discussion
4.1. Phylogenetic Occurrence and Possible Function of Apicortins
4.2. Apicortin-like Contaminations in Animals
4.3. More General Evolutionary Considerations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLAST | Basic Local Alignment Search Tool |
BPP | Bayesian Posterior Probability |
EST | Expressed Sequenced Tag |
DCX | Doublecortin |
HGT | Horizontal Gene Transfer |
ML | Maximum Likelihood |
NCBI | National Center for Biotechnology Information |
PSRF | Potential Scale Reduction Factor |
SRA | Sequence Read Archive |
TSA | Transcriptome Shotgun Assembly |
TPPP | Tubulin Polymerization Promoting Protein |
References
- Orosz, F. Apicortin, a unique protein, with a putative cytoskeletal role, shared only by apicomplexan parasites and the placozoan Trichoplax adhaerens. Infect. Genet. Evol. 2009, 9, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Orosz, F. Apicomplexan apicortins possess a long disordered N-terminal extension. Infect. Genet. Evol. 2011, 11, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Orosz, F.; Ovádi, J. TPPP orthologs are ciliary proteins. FEBS Lett. 2008, 582, 3757–3764. [Google Scholar] [CrossRef]
- Orosz, F. On the TPPP-like proteins of flagellated Fungi. Fungal Biol. 2021, 125, 357–367. [Google Scholar] [CrossRef]
- Tirián, L.; Hlavanda, E.; Oláh, J.; Horváth, I.; Orosz, F.; Szabó, B.; Kovács, J.; Szabad, J.; Ovádi, J. TPPP/p25 promotes tubulin assemblies and blocks mitotic spindle formation. Proc. Natl. Acad. Sci. USA 2003, 100, 13976–13981. [Google Scholar] [CrossRef]
- Sapir, T.; Horesh, D.; Caspi, M.; Atlas, R.; Burgess, H.A.; Wolf, S.G.; Francis, F.; Chelly, J.; Elbaum, M.; Pietrokovski, S.; et al. Doublecortin mutations cluster in evolutionarily conserved functional domains. Hum. Mol. Genet. 2000, 9, 703–712. [Google Scholar] [CrossRef]
- Reiner, O.; Coquelle, F.M.; Peter, B.; Levy, T.; Kaplan, A.; Sapir, T.; Orr, I.; Barkai, N.; Eichele, G.; Bergmann, S. The evolving doublecortin (DCX) superfamily. BMC Genom. 2006, 7, 188. [Google Scholar] [CrossRef]
- Orosz, F. Wider than thought phylogenetic occurrence of apicortin, a characteristic protein of apicomplexan parasites. J. Mol. Evol. 2016, 82, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Orosz, F. p25alpha Domain-Containing Proteins of Apicomplexans and Related Taxa. Microorganisms 2023, 11, 1528. [Google Scholar] [CrossRef]
- Steinegger, M.; Salzberg, S.L. Terminating contamination: Large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol. 2020, 21, 115. [Google Scholar] [CrossRef]
- Orosz, F. Two recently sequenced vertebrate genomes are contaminated with apicomplexan species of the Sarcocystidae family. Int. J. Parasitol. 2015, 45, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Borner, J.; Burmester, T. Parasite infection of public databases: A data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genom. 2017, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Tan, B.; Zhang, Y.A. Large-scale study into protist-animal interactions based on public genomic data using DNA barcodes. Animals 2023, 13, 2243. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Leka, K.P.; Wideman, J.G. An introduction to comparative genomics, EukProt, and the reciprocal best hit (RBH) method for bench biologists: Ancestral phosphorylation of Tom22 in eukaryotes as a case study. Methods Enzymol. 2024, 707, 209–234. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixture models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Whelan, S.; Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Statist. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Tessler, M.; Neumann, J.S.; Kamm, K.; Osigus, H.-J.; Eshel, G.; Narechania, A.; Burns, J.A.; DeSalle, R.; Schierwater, B. Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum. Front. Ecol. Evol. 2022, 10, 1016357. [Google Scholar] [CrossRef]
- Orosz, F. Does apicortin, a characteristic protein of apicomplexan parasites and placozoa, occur in Eumetazoa? Acta Parasitol. 2018, 63, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Cornillot, E.; Hadj-Kaddour, K.; Dassouli, A.; Noel, B.; Ranwez, V.; Vacherie, B.; Augagneur, Y.; Brès, V.; Duclos, A.; Randazzo, S.; et al. Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Res. 2012, 40, 9102–9114. [Google Scholar] [CrossRef]
- Nagayasu, E.; Hwang, Y.C.; Liu, J.; Murray, J.M.; Hu, K. Loss of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion. Mol. Biol. Cell 2017, 28, 411–428. [Google Scholar] [CrossRef]
- Leung, J.M.; Nagayasu, E.; Hwang, Y.C.; Liu, J.; Pierce, P.G.; Phan, I.Q.; Prentice, R.A.; Murray, J.M.; Hu, K. A doublecortin-domain protein of Toxoplasma and its orthologues bind to and modify the structure and organization of tubulin polymers. BMC Mol. Cell Biol. 2020, 21, 8. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Garg, S.; Rajagopal, A.; Pati, S.; Singh, S. Targeted repression of Plasmodium apicortin by host microRNA impairs malaria parasite growth and invasion. Dis. Model. Mech. 2020, 13, dmm042820. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Joshi, N.; Kumari, G.; Singh, P.; Shoaib, R.; Munjal, A.; Kumar, V.; Behl, A.; Abid, M.; Garg, S.; et al. Interaction of Plasmodium falciparum apicortin with α- and β-tubulin is critical for parasite growth and survival. Sci. Rep. 2021, 11, 4688. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Pacheco, N.; Tosetti, N.; Koreny, L.; Waller, R.F.; Soldati-Favre, D. Evolution, composition, assembly, and function of the conoid in Apicomplexa. Trends Parasitol. 2020, 36, 688–704. [Google Scholar] [CrossRef]
- Ringrose, J.H.; van den Toorn, H.W.P.; Eitel, M.; Post, H.; Neerincx, P.; Schierwater, B.; Altelaar, A.F.M.; Heck, A.J.R. Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat. Commun. 2013, 4, 1408. [Google Scholar] [CrossRef]
- Schierwater, B. My favorite animal Trichoplax adhaerens. Bioessays 2005, 27, 1294–1302. [Google Scholar] [CrossRef]
- Srivastava, M.; Begovic, E.; Chapman, J.; Putnam, N.H.; Hellsten, U.; Kawashima, T.; Kuo, A.; Mitros, T.; Salamov, A.; Carpenter, M.L.; et al. The Trichoplax genome and the nature of placozoans. Nature 2008, 454, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Dellaporta, S.L.; Xu, A.; Sagasser, S.; Jakob, W.; Moreno, M.A.; Buss, L.W.; Schierwater, B. Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum. Proc. Nat. Acad. Sci. USA 2006, 103, 8751–8756. [Google Scholar] [CrossRef] [PubMed]
- Najle, S.R.; Grau-Bové, X.; Elek, A.; Navarrete, C.; Cianferoni, D.; Chiva, C.; Cañas-Armenteros, D.; Mallabiabarrena, A.; Kamm, K.; Sabidó, E.; et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023, 186, 4676–4693.e29. [Google Scholar] [CrossRef]
- Whelan, N.V.; Kocot, K.M.; Moroz, T.P.; Mukherjee, K.; Williams, P.; Paulay, G.; Moroz, L.L.; Halanych, K.M. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 2017, 1, 1737–1746. [Google Scholar] [CrossRef]
- Kamm, K.; Osigus, H.-J.; Stadler, P.F.; DeSalle, R.; Schierwater, B. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci. Rep. 2018, 8, 11168. [Google Scholar] [CrossRef]
- Schultz, D.T.; Haddock, S.H.D.; Bredeson, J.V.; Green, R.E.; Simakov, O.; Rokhsar, D.S. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023, 618, 110–117. [Google Scholar] [CrossRef]
- Pandey, A.; Braun, E.L. Phylogenetic Analyses of Sites in Different Protein Structural Environments Result in Distinct Placements of the Metazoan Root. Biology 2020, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Oláh, J.; Szénási, T.; Szabó, A.; Kovács, K.; Lőw, P.; Štifanić, M.; Orosz, F. Tubulin binding and polymerization promoting properties of Tubulin Polymerization Promoting Proteins are evolutionarily conserved. Biochemistry 2017, 56, 1017–1024. [Google Scholar] [CrossRef]
- Diaz, P.J.; Shi, Q.; McNeish, P.Y.; Banerjee, S. Tubulin Polymerization Promoting Proteins: Functional Diversity With Implications in Neurological Disorders. J. Neurosci. Res. 2025, 103, e70044. [Google Scholar] [CrossRef]
- Mansour, T.A.; Rosenthal, J.J.; Brown, C.T.; Roberson, L.M. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages. GigaScience 2016, 5, 33. [Google Scholar] [CrossRef]
- King, N.; Westbrook, M.J.; Young, S.L.; Kuo, A.; Abedin, M.; Chapman, J.; Fairclough, S.; Hellsten, U.; Isogai, Y.; Letunic, I. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 2008, 451, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Torruella, G.; de Mendoza, A.; Grau-Bové, X.; Antó, M.; Chaplin, M.A.; del Campo, J.; Eme, L.; Pérez-Cordón, G.; Whipps, C.M.; Nichols, K.M. Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi. Curr. Biol. 2015, 25, 2404–2410. [Google Scholar] [CrossRef]
- Adl, S.M.; Bass, D.; Lane, C.E.; Lukeš, J.; Schoch, C.L.; Smirnov, A.; Agatha, S.; Berney, C.; Brown, M.W. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J. Eukar. Microbiol. 2018, 66, 4–119. [Google Scholar] [CrossRef]
- Morrissette, N.S.; Abbaali, I.; Ramakrishnan, C.; Hehl, A.B. The tubulin superfamily in apicomplexan parasites. Microorganisms 2023, 11, 706. [Google Scholar] [CrossRef]
- De Leon, J.C.; Scheumann, N.; Beatty, W.; Beck, J.R.; Tran, J.Q.; Yau, C.; Bradley, P.J.; Gull, K.; Wickstead, B.; Morrissette, N.S. A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components. Eukaryot. Cell 2013, 12, 1009–1019. [Google Scholar] [CrossRef]
- Portman, N.; Šlapeta, J. The flagellar contribution to the apical complex: A new tool for the eukaryotic Swiss Army knife? Trends Parasitol. 2014, 30, 58–64. [Google Scholar] [CrossRef]
- Lévêque, M.F.; Berry, L.; Besteiro, S. An evolutionarily conserved SSNA1/DIP13 homologue is a component of both basal and apical complexes of Toxoplasma gondii. Sci. Rep. 2016, 6, 27809. [Google Scholar] [CrossRef] [PubMed]
- James, T.Y.; Letcher, P.M.; Longcore, J.E.; Mozley-Standridge, S.E.; Porter, D.; Powell, M.J.; Griffith, G.W.; Vilgalys, R. A molecular phylogeny of the flagellated fungi Chytridiomycota and description of a new phylum Blastocladiomycota. Mycologia 2006, 98, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Orosz, F. On the TPPP Protein of the Enigmatic Fungus, Olpidium—Correlation between the Incidence of p25alpha Domain and That of the Eukaryotic Flagellum. Int. J. Mol. Sci. 2022, 23, 13927. [Google Scholar] [CrossRef]
- Orosz, F. Tubulin Polymerization Promoting Proteins (TPPPs) of Aphelidiomycota: Correlation between the Incidence of p25alpha Domain and the Eukaryotic Flagellum. J. Fungi 2023, 9, 376. [Google Scholar] [CrossRef]
- Templeton, T.J. Whole-genome natural histories of apicomplexan surface proteins. Trends Parasitol. 2007, 23, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Kishore, S.P.; Stiller, J.W.; Deitsch, K.W. Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans. BMC Evol. Biol. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Filipović, I.; Rašić, G.; Hereward, J.; Gharuka, M.; Devine, G.J.; Furlong, M.J.; Etebari, K. A high-quality de novo genome assembly based on nanopore sequencing of a wild-caught coconut rhinoceros beetle (Oryctes rhinoceros). BMC Genom. 2022, 23, 426. [Google Scholar] [CrossRef]
- Iseto, T. Loxocorone, a New Genus of the Family Loxosomatidae (Entoprocta: Solitaria), with Descriptions of Two New Loxomitra (sensu stricto) and a New Loxocorone from Okinawa, the Ryukyu Archipelago, Japan. Zool. Sci. 2025, 19, 359–367. [Google Scholar] [CrossRef]
- Pearse, V.B.; Voigt, O. Field biology of placozoans (Trichoplax): Distribution, diversity, biotic interactions. Integr. Comp. Biol. 2007, 47, 677–692.2007. [Google Scholar] [CrossRef]
- Williamson, K.; Eme, L.; Baños, H.; McCarthy, C.G.; Susko, E.; Kamikawa, R.; Orr, R.J.S.; Muñoz-Gómez, S.A.; Minh, B.Q.; Simpson, A.G.B.; et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature 2025, 640, 974–981. [Google Scholar] [CrossRef]
- Janouškovec, J.; Tikhonenkov, D.V.; Burki, F.; Howe, A.T.; Kolísko, M.; Mylnikov, A.P.; Keeling, P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA 2015, 112, 10200–102007. [Google Scholar] [CrossRef] [PubMed]
- Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Č.; Lang, B.F.; Eliáš, M. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl. Acad. Sci. USA 2015, 112, E693–E699. [Google Scholar] [CrossRef]
- Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; Döring, M.; Schigel, D.; May, T.; Ryberg, M.; Abarenkov, K. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018, 90, 135–159. [Google Scholar] [CrossRef]
- Lang, B.F.; O’Kelly, C.; Nerad, T.; Gray, M.W.; Burger, G. The Closest Unicellular Relatives of Animals. Curr. Biol. 2002, 12, 1773–1778. [Google Scholar] [CrossRef]
- Laumer, C.E.; Gruber-Vodicka, H.; Hadfield, M.G.; Pearse, V.B.; Riesgo, A.; Marioni, J.C.; Giribet, G. Support for a clade of placozoa and cnidaria in genes with minimal compositional bias. eLife 2018, 7, e36278. [Google Scholar] [CrossRef] [PubMed]
- Heiges, M.; Wang, H.; Robinson, E.; Aurrecoechea, C.; Gao, X.; Kaluskar, N.; Rhodes, P.; Wang, S.; He, C.Z.; Su, Y.; et al. CryptoDB: A Cryptosporidium bioinformatics resource update. Nucleic Acids Res. 2006, 34, D419–D422. [Google Scholar] [CrossRef] [PubMed]
Species | Accession Number 1 | Taxonomy | E-Value 2 T. adhaerens | E-Value 3 T. gondii |
---|---|---|---|---|
Hylaeus volcanicus | XP_053992704 | Insecta/Endopterygota | 6 × 10−33 | 4 × 10−90 |
Schistocerca gregaria | GJPN010108154 | Insecta/Polyneoptera | 4 × 10−33 | 4 × 10−77 |
Phlebotomus sergenti | GKTC01023996 | Insecta/Endopterygota | 6 × 10−26 | 9 × 10−91 |
Galerucella calmariensis | HAMF01019916 | Insecta/Endopterygota | 3 × 10−20 | 2 × 10−62 |
Galerucella pusilla | HAMG01049297 | Insecta/Endopterygota | 3 × 10−20 | 2 × 10−62 |
Diabrotica virgifera | GHNJ01033740 | Insecta/Endopterygota | 4 × 10−16 | 1 × 10−52 |
Oryctes rhinoceros | GHNO01082742 | Insecta/Endopterygota | 2 × 10−14 | 2 × 10−48 |
Ptilocerembia catherinae | GDBY01042306 | Insecta/Polyneoptera | 2 × 10−13 | 6 × 10−74 |
Coleotroctellus burckhardti | GJXT01027847 | Insecta/Paraneoptera | 4 × 10−13 | 6 × 10−46 |
Thanasimus formicarius | GDPC01032790 | Insecta/Endopterygota | 8 × 10−11 | 1 × 10−42 |
Tigriopus californicus | GHUE01002433 | Arthropoda/Crustacea | 3 × 10−7 | 2 × 10−19 |
Diaphanosoma celebensis | GGQP01033578 | Arthropoda/Crustacea | 5 × 10−13 | 4 × 10−7 |
Loxomitra sp. KK-2020 | GIMU01103700 | Spiralia/Entoprocta | 9 × 10−104 | 8 × 10−34 |
Acanthochitona fascicularis | GJAX01016147 | Spiralia/Mollusca | 3 × 10−25 | 2 × 10−23 |
Platynereis dumerilii | HBZZ01068313 | Spiralia/Annelida | 4 × 10−24 | 8 × 10−79 |
Spea multiplicata | GKIA01122747 | Chordata/Amphibia | 3 × 10−28 | 9 × 10−115 |
Trichoplax sp. H2 TR738 | GFSF01001671 | Placozoa | 2 × 10−119 | 2 × 10−31 |
Placozoa | Consensus 4 | Placozoa | 3 × 10−113 | 4 × 10−36 |
Ctenophora environmental sample | HBZJ01045600 | Ctenophora | 2 × 10−5 | - |
Acanthoeca spectabilis | GGPA01011677 | Choanoflagellata | 4 × 10−18 | 2 × 10−17 |
Helgoeca nana | GGOR01004317 | Choanoflagellata | 3 × 10−18 | 2 × 10−17 |
Savillea parva | GGOL01031575 | Choanoflagellata | 5 × 10−13 | 8 × 10−15 |
Species | Accession Number 1 | Most Similar Protein | E-Value 4 | Percent Identity 4 | |
---|---|---|---|---|---|
Species 2 | Accession Number 3 | ||||
Hylaeus volcanicus | XP_053992704 | Neospora caninum | XP_003883150 | 2 × 10−87 | 65.57% |
Schistocerca gregaria | GJPN010108154 | Besnoitia besnoiti | XP_029217437 | 2 × 10−47 | 50.50% |
Phlebotomus sergenti | GKTC01023996 | Neospora caninum | XP_003883150 | 3 × 10−84 | 63.55% |
Galerucella calmariensis | HAMF01019916 | Gregarina niphandrodes | XP_011128898 | 2 × 10−77 | 73.26% |
Galerucella pusilla | HAMG01049297 | Gregarina niphandrodes | XP_011128898 | 3 × 10−77 | 73.26% |
Diabrotica virgifera | GHNJ01033740 | Gregarina niphandrodes | XP_011128898 | 3 × 10−68 | 71.15% |
Oryctes rhinoceros | GHNO01082742 | Gregarina niphandrodes | XP_011128898 | 6 × 10−60 | 59.54% |
Ptilocerembia catherinae | GDBY01042306 | Porospora cf. gigantea B | XP_068375468 | 1 × 10−51 | 61.98% |
Coleotroctellus burckhardti | GJXT01027847 | Gregarina niphandrodes | XP_011128898 | 2 × 10−62 | 67.36% |
Thanasimus formicarius | GDPC01032790 | Gregarina niphandrodes | XP_011128898 | 6 × 10−56 | 70.68% |
Tigriopus californicus | GHUE01002433 | Plasmodium gallinaceum | XP_028530755 | 3 × 10−10 | 35.03% |
Diaphanosoma celebensis | GGQP01033578 | Vitrella brassicaformis | CEL97699 | 1 × 10−11 | 34.59% |
Loxomitra sp. | GIMU01103700 | Trichoplax adhaerens | XP_002111209 | 7 × 10−102 | 84.66% |
Acanthochitona fascicularis | GJAX01016147 | Trichoplax adhaerens | XP_002111209 | 9 × 10−24 | 38.69% |
Platynereis dumerilii | HBZZ01068313 | Sarcocystis calchasi | CAL7857217 | 6 × 10−57 | 70.48% |
Spea multiplicata | GKIA01122747 | Neospora caninum | XP_003883150 | 2 × 10−100 | 71.43% |
Trichoplax sp. H2 | GFSF01001671 | Trichoplax adhaerens | XP_002111209 | 2 × 10−119 | 100% |
Placozoa | consensus | Trichoplax adhaerens | XP_002111209 | 3 × 10−113 | 85.80% |
Ctenophora | HBZJ01045600 | Trichoplax adhaerens | XP_002111209 | 6 × 10−3 | 26.24% |
Acanthoeca spectabilis | GGPA01011677 | Lobulomycetales sp. | KAL3897002 | 5 × 10−24 | 43.31% |
Helgoeca nana | GGOR01004317 | Lobulomycetales sp. | KAL3897002 | 3 × 10−26 | 42.24% |
Savillea parva | GGOL01031575 | Blyttiomyces sp. | KAJ3329948.1 | 4 × 10−21 | 38.24% |
TSA | Galerucella calmariensis HAMF01019916 | Galerucella pusilla HAMG01049297 | Thanasimus fornicarius GDPC01032790 | Diabrotica virgifera GHNJ01033740 | Coleotroctellus burckhardti GJXT01027847 |
---|---|---|---|---|---|
Gregarina niphandrodes proteins and E-values | XP_011128895 1.2 × 10−100 | XP_011128895 2 × 10−100 | |||
XP_011128896 5.7 × 10−7 | XP_011128896 2.8 × 10−7 | ||||
XP_011128897 1.6 × 10−33 | XP_011128897 5.8 × 10−33 | ||||
XP_011128899 1 × 10−49 | XP_011128899 1.5 × 10−49 | ||||
XP_011128898 1.9 × 10−82 | XP_011128898 2.7 × 10−82 | XP_011128898 4.9 × 10−59 | XP_011128898 3 × 10−73 | XP_011128898 2 × 10−67 | |
XP_011128900 7.5 × 10−16 | XP_011128900 1.1 × 10−15 | XP_011128900 3.8 × 10−17 | XP_011128900 8 × 10−15 | XP_011128900 5 × 10−5 | |
XP_011128901 1.6 × 10−68 | XP_011128901 2.4 × 10−68 | XP_011128901 8.6 × 10−74 | XP_011128901 2 × 10−72 | ||
XP_011128902 1.1 × 10−147 | XP_011128902 9.2 × 10−147 | XP_011128902 6.8 × 10−127 | XP_011128902 4 × 10−152 | ||
XP_011128903 0 | XP_011128903 0 | ||||
XP_011128904 1 × 10−64 | XP_011128904 2.4 × 10−137 | ||||
XP_011128905 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orosz, F. Apicortin, a Putative Apicomplexan-Specific Protein, Is Present in Deep-Branching Opisthokonts. Biology 2025, 14, 620. https://doi.org/10.3390/biology14060620
Orosz F. Apicortin, a Putative Apicomplexan-Specific Protein, Is Present in Deep-Branching Opisthokonts. Biology. 2025; 14(6):620. https://doi.org/10.3390/biology14060620
Chicago/Turabian StyleOrosz, Ferenc. 2025. "Apicortin, a Putative Apicomplexan-Specific Protein, Is Present in Deep-Branching Opisthokonts" Biology 14, no. 6: 620. https://doi.org/10.3390/biology14060620
APA StyleOrosz, F. (2025). Apicortin, a Putative Apicomplexan-Specific Protein, Is Present in Deep-Branching Opisthokonts. Biology, 14(6), 620. https://doi.org/10.3390/biology14060620