Transcriptome Profiling and Weighted Gene Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus Rootstocks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Growth and Experimental Design
2.2. Measurement of MDA and H2O2 Content
2.3. Total RNA Extraction and cDNA Synthesis
2.4. Library Preparation and Sequencing
2.5. De Novo Transcriptome Assembling and Gene Functional Annotation
2.6. Quantification of Gene Expression and Differential Expression Analysis
2.7. Real-Time Validation of Selected DEG Candidates Using qRT-PCR
2.8. Weighted Gene Correlation Network Analysis
2.9. Statistical Analysis
3. Results
3.1. Plant Phenotype and Quantification of MDA and H2O2 Content
3.2. Transcript Assembly and Annotation
3.3. Identification of Differentially Expressed Genes (DEGs)
3.4. Functional Classification of DEGs
3.5. Identification of Functional Genes Related to Drought Stress Tolerance
3.5.1. Drought Sensing and Signalling
3.5.2. ROS Scavenging
3.5.3. Osmolyte Biosynthesis
3.5.4. Cell Wall Metabolism
3.6. Analysis of Transcription Factor Gene Families
3.7. WCGNA Analysis
Transcription Factors Among the Eigengenes in Each Module
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of Plants to Water Stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.; Navarro, J.M.; Pérez-Pérez, J.; García-Sánchez, F.; Gómez-Gómez, A.; Porras, I.; Martinez, V.; Botía, P. Deficit Irrigation and Rootstock: Their Effects on Water Relations, Vegetative Development, Yield, Fruit Quality and Mineral Nutrition of Clemenules Mandarin. Tree Physiol. 2006, 26, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, I.; Nicolosi, E.; Vanella, D.; Lo Piero, A.R.; Stagno, F.; Saitta, D.; Roccuzzo, G.; Consoli, S.; Baglieri, A. Physiological and Biochemical Responses of Orange Trees to Different Deficit Irrigation Regimes. Plants 2019, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, A.; Basu, S.; Lo Piero, A.R. Genomic Design for Abiotic Stress Resistant Citrus. In Genomic Designing for Abiotic Stress Resistant Fruit Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 41–59. ISBN 978-3-031-09875-8. [Google Scholar]
- Salekdeh, G.H.; Reynolds, M.; Bennett, J.; Boyer, J. Conceptual Framework for Drought Phenotyping during Molecular Breeding. Trends Plant Sci. 2009, 14, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M. Effects of Water Deficits on Carbon Assimilation. J. Exp. Bot. 1991, 42, 1–16. [Google Scholar] [CrossRef]
- Kele, Y.; Ünyayar, S. Responses of Antioxidant Defense System of Helianthus Annuus to Abscisic Acid Treatment under Drought and Waterlogging. Acta Physiol. Plant. 2004, 26, 149–156. [Google Scholar] [CrossRef]
- Chaves, M.M.; Oliveira, M.M. Mechanisms Underlying Plant Resilience to Water Deficits: Prospects for Water-Saving Agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Syvertsen, J.P.; Gimeno, V.; Botía, P.; Perez-Perez, J.G. Responses to Flooding and Drought Stress by Two Citrus Rootstock Seedlings with Different Water-Use Efficiency. Physiol. Plant. 2007, 130, 532–542. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; Tovar, J.C.; Botía, P. Response to Drought and Salt Stress of Lemon ‘Fino 49’ under Field Conditions: Water Relations, Osmotic Adjustment and Gas Exchange. Sci. Hortic. 2009, 122, 83–90. [Google Scholar] [CrossRef]
- Rodríguez-Gamir, J.; Primo-Millo, E.; Forner, J.B.; Forner-Giner, M.A. Citrus Rootstock Responses to Water Stress. Sci. Hortic. 2010, 126, 95–102. [Google Scholar] [CrossRef]
- Savé, R.; Biel, C.; Domingo, R.; Ruiz-Sánchez, M.C.; Torrecillas, A. Some Physiological and Morphological Characteristics of Citrus Plants for Drought Resistance. Plant Sci. 1995, 110, 167–172. [Google Scholar] [CrossRef]
- Aparicio-Durán, L.; Gmitter, F.G., Jr.; Arjona-López, J.M.; Calero-Velázquez, R.; Hervalejo, Á.; Arenas-Arenas, F.J. Water-Stress Influences on Three New Promising HLB-Tolerant Citrus Rootstocks. Horticulturae 2021, 7, 336. [Google Scholar] [CrossRef]
- Abu Glion, H.; Alkalai-Tuvia, S.; Zaaroor-Presman, M.; Chalupowicz, D.; Zanbar, M.; Amichai, M.; Cohen, S.; Shemer, T.; Sarig, S.; Fallik, E. Effects of Rootstock/Scion Combination and Two Irrigation Water Qualities on Cherry Tomato Yield and Postharvest Fruit Quality. Horticulturae 2019, 5, 35. [Google Scholar] [CrossRef]
- López-Serrano, L.; Canet-Sanchis, G.; Vuletin Selak, G.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, Á. Pepper Rootstock and Scion Physiological Responses Under Drought Stress. Front. Plant Sci. 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Marguerit, E.; Rossdeutsch, L.; Ollat, N.; Gambetta, G.A. The Influence of Grapevine Rootstocks on Scion Growth and Drought Resistance. Theor. Exp. Plant Physiol. 2016, 28, 143–157. [Google Scholar] [CrossRef]
- Castle, W.S.; Baldwin, J.C.; Muraro, R.P.; Littell, R. Performance of ‘Valencia’ Sweet Orange Trees on 12 Rootstocks at Two Locations and an Economic Interpretation as a Basis for Rootstock Selection. HortScience 2010, 45, 523–533. [Google Scholar] [CrossRef]
- Santana-Vieira, D.D.S.; Freschi, L.; da Hora Almeida, L.A.; de Moraes, D.H.S.; Neves, D.M.; Santos, L.M.D.; Bertolde, F.Z.; Filho, W.D.S.S.; da Silva Gesteira, A. Survival Strategies of Citrus Rootstocks Subjected to Drought. Sci. Rep. 2016, 6, 38775. [Google Scholar] [CrossRef]
- Davino, S.; Davino, M.; Sambade, A.; Guardo, M.; Caruso, A. The First Citrus Tristeza Virus Outbreak Found in a Relevant Citrus Producing Area of Sicily, Italy. Plant Dis. 2003, 87, 314. [Google Scholar] [CrossRef]
- Caruso, M.; Continella, A.; Modica, G.; Pannitteri, C.; Russo, R.; Salonia, F.; Arlotta, C.; Gentile, A.; Russo, G. Rootstocks Influence Yield Precocity, Productivity, and Pre-Harvest Fruit Drop of Mandared Pigmented Mandarin. Agronomy 2020, 10, 1305. [Google Scholar] [CrossRef]
- Modica, G.; Di Guardo, M.; Puglisi, I.; Baglieri, A.; Fortuna, S.; Arcidiacono, F.; Costantino, D.; La Malfa, S.; Gentile, A.; Arbona, V.; et al. Novel and Widely Spread Citrus Rootstocks Behavior in Response to Salt Stress. Environ. Exp. Bot. 2024, 225, 105835. [Google Scholar] [CrossRef]
- Scialò, E.; Sicilia, A.; Continella, A.; Modica, G.; Lo Piero, A.R. On the “Priming” Steps: Initial Results on the Effect of PEG-Induced Drought Stress upon the Oxidative Status and Related Gene Expression in Citrus Rootstocks. Acta Hortic. 2024, 1399, 131–138. [Google Scholar] [CrossRef]
- Zaher-Ara, T.; Boroomand, N.; Sadat-Hosseini, M. Physiological and Morphological Response to Drought Stress in Seedlings of Ten Citrus. Trees 2016, 30, 985–993. [Google Scholar] [CrossRef]
- Dong, B.; Liu, H.; Able, J.A.; Liu, M. Effects of Drought Stress on Pollen Sterility, Grain Yield, Abscisic Acid and Protective Enzymes in Two Winter Wheat Cultivars. Front. Plant Sci. 2017, 8, 1008. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Ni, Z.; Peng, H.; Dong, G.; Sun, Q. Ectopic Overexpression of Wheat TaSrg6 Gene Confers Water Stress Tolerance in Arabidopsis. Plant Sci. 2007, 172, 1079–1086. [Google Scholar] [CrossRef]
- Djibril, S.; Mohamed, O.K.; Diaga, D.; Diégane, D.; Abaye, B.F.; Maurice, S.; Alain, B. Growth and Development of Date Palm (Phoenix dactylifera L.) Seedlings under Drought and Salinity Stresses. Afr. J. Biotechnol. 2005, 4, 9. [Google Scholar]
- Ziogas, V.; Tanou, G.; Belghazi, M.; Filippou, P.; Fotopoulos, V.; Grigorios, D.; Molassiotis, A. Roles of Sodium Hydrosulfide and Sodium Nitroprusside as Priming Molecules during Drought Acclimation in Citrus Plants. Plant Mol. Biol. 2015, 89, 433–450. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, A.; Catara, V.; Dimaria, G.; Scialò, E.; Russo, M.; Gentile, A.; Lo Piero, A.R. Transcriptome Analysis of Lemon Leaves (Citrus limon) Infected by Plenodomus Tracheiphilus Reveals the Effectiveness of Pseudomonas Mediterranea in Priming the Plant Response to Mal Secco Disease. J. Plant Interact. 2023, 18, 2243097. [Google Scholar] [CrossRef]
- Russo, R.; Sicilia, A.; Caruso, M.; Arlotta, C.; Di Silvestro, S.; Gmitter, F.G.; Nicolosi, E.; Lo Piero, A.R. De Novo Transcriptome Sequencing of Rough Lemon Leaves (Citrus jambhiri Lush.) in Response to Plenodomus Tracheiphilus Infection. Int. J. Mol. Sci. 2021, 22, 882. [Google Scholar] [CrossRef]
- Sicilia, A.; Santoro, D.F.; Testa, G.; Cosentino, S.L.; Lo Piero, A.R. Transcriptional Response of Giant Reed (Arundo donax L.) Low Ecotype to Long-Term Salt Stress by Unigene-Based RNAseq. Phytochemistry 2020, 177, 112436. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, A.; Testa, G.; Santoro, D.F.; Cosentino, S.L.; Lo Piero, A.R. RNASeq Analysis of Giant Cane Reveals the Leaf Transcriptome Dynamics under Long-Term Salt Stress. BMC Plant Biol. 2019, 19, 355. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, A.; Russo, R.; Catara, V.; Lo Piero, A.R. Hub Genes and Pathways Related to Lemon (Citrus limon) Leaf Response to Plenodomus Tracheiphilus Infection and Influenced by Pseudomonas Mediterranea Biocontrol Activity. Int. J. Mol. Sci. 2024, 25, 2391. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Pan, Y.-B.; Su, Y.; Zou, W.; Xu, F.; Sun, T.; Grisham, M.P.; Yang, S.; Xu, L.; Que, Y. WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane. Int. J. Mol. Sci. 2022, 23, 10770. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-X.; Zhang, W.-L.; Jue, D.-W.; Liu, X.; Jiang, Y.-S.; Tang, J.-M. Transcriptome Changes Induced by Botrytis Cinerea Stress and Weighted Gene Co-Expression Network Analysis (WGCNA) in Actinidia Chinensis. Plant Mol. Biol. Rep. 2022, 40, 389–401. [Google Scholar] [CrossRef]
- Azam, M.; Zhang, S.; Li, J.; Ahsan, M.; Agyenim-Boateng, K.G.; Qi, J.; Feng, Y.; Liu, Y.; Li, B.; Qiu, L.; et al. Identification of Hub Genes Regulating Isoflavone Accumulation in Soybean Seeds via GWAS and WGCNA Approaches. Front. Plant Sci. 2023, 14, 1120498. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Srivastava, J.P.; Singhal, R.K.; Soufan, W.; Dadarwal, B.K.; Mishra, U.N.; Anuragi, H.; Rahman, M.A.; Sakran, M.I.; Brestic, M.; et al. Alterations of Oxidative Stress Indicators, Antioxidant Enzymes, Soluble Sugars, and Amino Acids in Mustard [Brassica juncea (L.) Czern and Coss.] in Response to Varying Sowing Time, and Field Temperature. Front. Plant Sci. 2022, 13, 875009. [Google Scholar] [CrossRef] [PubMed]
- López-Hidalgo, C.; Meijón, M.; Lamelas, L.; Valledor, L. The Rainbow Protocol: A Sequential Method for Quantifying Pigments, Sugars, Free Amino Acids, Phenolics, Flavonoids and MDA from a Small Amount of Sample. Plant Cell Environ. 2021, 44, 1977–1986. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent Prioritization and Exploratory Visualization of Biological Functions for Gene Enrichment Analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC: Boston, MA, 2020. Available online: http://www.rstudio.com/ (accessed on 5 August 2024).
- Salvi, P.; Manna, M.; Kaur, H.; Thakur, T.; Gandass, N.; Bhatt, D.; Muthamilarasan, M. Phytohormone Signaling and Crosstalk in Regulating Drought Stress Response in Plants. Plant Cell Rep. 2021, 40, 1305–1329. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Kuromori, T.; Urano, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Front. Plant Sci. 2020, 11, 556972. [Google Scholar] [CrossRef] [PubMed]
- McCormack, E.; Tsai, Y.-C.; Braam, J. Handling Calcium Signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 2005, 10, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Samanta, M.K.; Gayen, S.; Maiti, M.K. The Sucrose Non-Fermenting 1-Related Kinase 2 Gene SAPK9 Improves Drought Tolerance and Grain Yield in Rice by Modulating Cellular Osmotic Potential, Stomatal Closure and Stress-Responsive Gene Expression. BMC Plant Biol. 2016, 16, 158. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Anjum, N.A.; Hasanuzzaman, M.; Gill, R.; Trivedi, D.K.; Ahmad, I.; Pereira, E.; Tuteja, N. Glutathione and Glutathione Reductase: A Boon in Disguise for Plant Abiotic Stress Defense Operations. Plant Physiol. Biochem. 2013, 70, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lo Piero, A.R.; Mercurio, V.; Puglisi, I.; Petrone, G. Different Roles of Functional Residues in the Hydrophobic Binding Site of Two Sweet Orange Tau Glutathione S-Transferases. FEBS J. 2010, 277, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Gomez, L.; Vanacker, H.; Foyer, C.H. Interactions between Biosynthesis, Compartmentation and Transport in the Control of Glutathione Homeostasis and Signalling. J. Exp. Bot. 2002, 53, 1283–1304. [Google Scholar] [CrossRef]
- Hussain, S.; Rao, M.J.; Anjum, M.A.; Ejaz, S.; Zakir, I.; Ali, M.A.; Ahmad, N.; Ahmad, S. Oxidative Stress and Antioxidant Defense in Plants Under Drought Conditions. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Hasanuzzaman, M., Hakeem, K.R., Nahar, K., Alharby, H.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 207–219. ISBN 978-3-030-06118-0. [Google Scholar]
- Roosens, N.H.; Bitar, F.A.; Loenders, K.; Angenon, G.; Jacobs, M. Overexpression of Ornithine-δ-Aminotransferase Increases Proline Biosynthesis and Confers Osmotolerance in Transgenic Plants. Mol. Breed. 2002, 9, 73–80. [Google Scholar] [CrossRef]
- Wu, L.; Fan, Z.; Guo, L.; Li, Y.; Zhang, W.; Qu, L.-J.; Chen, Z. Over-Expression of an Arabidopsis δ-OAT Gene Enhances Salt and Drought Tolerance in Transgenic Rice. Chin. Sci. Bull. 2003, 48, 2594–2600. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and Abiotic Stress Tolerance in Plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Nishizawa, A.; Yabuta, Y.; Shigeoka, S. Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage. Plant Physiol. 2008, 147, 1251–1263. [Google Scholar] [CrossRef]
- Valluru, R.; Van den Ende, W. Myo-Inositol and beyond—Emerging Networks under Stress. Plant Sci. 2011, 181, 387–400. [Google Scholar] [CrossRef]
- Thalmann, M.; Pazmino, D.; Seung, D.; Horrer, D.; Nigro, A.; Meier, T.; Kölling, K.; Pfeifhofer, H.W.; Zeeman, S.C.; Santelia, D. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants. Plant Cell 2016, 28, 1860–1878. [Google Scholar] [CrossRef]
- Gonçalves, L.P.; Boscariol Camargo, R.L.; Takita, M.A.; Machado, M.A.; dos Soares Filho, W.S.; Costa, M.G.C. Rootstock-Induced Molecular Responses Associated with Drought Tolerance in Sweet Orange as Revealed by RNA-Seq. BMC Genom. 2019, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Wan, S.; Ma, Q.; Yang, L.; Hu, W.; Kuang, L.; Xie, J.; Liu, D.; Liu, Y. Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity. Int. J. Mol. Sci. 2022, 23, 5660. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.P.; Alves, T.F.O.; Martins, C.P.S.; de Sousa, A.O.; dos Santos, I.C.; Pirovani, C.P.; Almeida, A.-A.F.; Filho, M.A.C.; Gesteira, A.S.; dos S Soares Filho, W.; et al. Rootstock-Induced Physiological and Biochemical Mechanisms of Drought Tolerance in Sweet Orange. Acta Physiol. Plant. 2016, 38, 174. [Google Scholar] [CrossRef]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef]
- Zhu, J.; Lee, B.-H.; Dellinger, M.; Cui, X.; Zhang, C.; Wu, S.; Nothnagel, E.A.; Zhu, J.-K. A Cellulose Synthase-like Protein Is Required for Osmotic Stress Tolerance in Arabidopsis. Plant J. Cell Mol. Biol. 2010, 63, 128–140. [Google Scholar] [CrossRef]
- Kuromori, T.; Seo, M.; Shinozaki, K. ABA Transport and Plant Water Stress Responses. Trends Plant Sci. 2018, 23, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.W.A.; Hills, A.; Köhler, B.; Blatt, M.R. Ca2+ Channels at the Plasma Membrane of Stomatal Guard Cells Are Activated by Hyperpolarization and Abscisic Acid. Proc. Natl. Acad. Sci. USA 2000, 97, 4967–4972. [Google Scholar] [CrossRef] [PubMed]
- Perochon, A.; Aldon, D.; Galaud, J.-P.; Ranty, B. Calmodulin and Calmodulin-like Proteins in Plant Calcium Signaling. Biochimie 2011, 93, 2048–2053. [Google Scholar] [CrossRef]
- Yin, P.; Fan, H.; Hao, Q.; Yuan, X.; Wu, D.; Pang, Y.; Yan, C.; Li, W.; Wang, J.; Yan, N. Structural Insights into the Mechanism of Abscisic Acid Signaling by PYL Proteins. Nat. Struct. Mol. Biol. 2009, 16, 1230–1236. [Google Scholar] [CrossRef]
- Schweighofer, A.; Hirt, H.; Meskiene, I. Plant PP2C Phosphatases: Emerging Functions in Stress Signaling. Trends Plant Sci. 2004, 9, 236–243. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, R.L.; Zhong, R.; Ye, Z.-H. MYB83 Is a Direct Target of SND1 and Acts Redundantly with MYB46 in the Regulation of Secondary Cell Wall Biosynthesis in Arabidopsis. Plant Cell Physiol. 2009, 50, 1950–1964. [Google Scholar] [CrossRef]
- Zhong, R.; Ye, Z.-H. MYB46 and MYB83 Bind to the SMRE Sites and Directly Activate a Suite of Transcription Factors and Secondary Wall Biosynthetic Genes. Plant Cell Physiol. 2012, 53, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Avci, U.; Grant, E.H.; Haigler, C.H.; Beers, E.P. XND1, a Member of the NAC Domain Family in Arabidopsis Thaliana, Negatively Regulates Lignocellulose Synthesis and Programmed Cell Death in Xylem. Plant J. 2008, 53, 425–436. [Google Scholar] [CrossRef]
- Hackbusch, J.; Richter, K.; Müller, J.; Salamini, F.; Uhrig, J.F. A Central Role of Arabidopsis Thaliana Ovate Family Proteins in Networking and Subcellular Localization of 3-Aa Loop Extension Homeodomain Proteins. Proc. Natl. Acad. Sci. USA 2005, 102, 4908–4912. [Google Scholar] [CrossRef]
- Wang, S.; Chang, Y.; Guo, J.; Zeng, Q.; Ellis, B.E.; Chen, J.-G. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development. PLoS ONE 2011, 6, e23896. [Google Scholar] [CrossRef]
- Li, E.; Wang, S.; Liu, Y.; Chen, J.-G.; Douglas, C.J. OVATE FAMILY PROTEIN4 (OFP4) Interaction with KNAT7 Regulates Secondary Cell Wall Formation in Arabidopsis Thaliana. Plant J. 2011, 67, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, D.; Kende, H. The AtGRF Family of Putative Transcription Factors Is Involved in Leaf and Cotyledon Growth in Arabidopsis. Plant J. 2003, 36, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.; Engström, P.; Söderman, E. The Homeobox Genes ATHB12 and ATHB7encode Potential Regulators of Growth in Response to Water Deficit in Arabidopsis. Plant Mol. Biol. 2004, 55, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Ohto, M.; Hayashi, S.; Sawa, S.; Hashimoto-Ohta, A.; Nakamura, K. Involvement of HLS1 in Sugar and Auxin Signaling in Arabidopsis Leaves. Plant Cell Physiol. 2006, 47, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-J.; Liu, J.-Y. The Arabidopsis EAR-Motif-Containing Protein RAP2.1 Functions as an Active Transcriptional Repressor to Keep Stress Responses under Tight Control. BMC Plant Biol. 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Ahlfors, R.; Lång, S.; Overmyer, K.; Jaspers, P.; Broscheé, M.; Tauriainen, A.; Kollist, H.; Tuominen, H.; Belles-Boix, E.; Piippo, M.; et al. Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses. Plant Cell 2004, 16, 1925–1937. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, Y.; Liu, Q.; Dubouzet, J.G.; Abe, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochem. Biophys. Res. Commun. 2002, 290, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell 2006, 18, 1292–1309. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Pan, Y.; Lei, J.; Zhu, Y.-X. Molecular Cloning, Phylogenetic Analysis, Expressional Profiling and In Vitro Studies of TINY2 from Arabidopsis Thaliana. BMB Rep. 2005, 38, 440–446. [Google Scholar] [CrossRef]
- Liu, T.; Longhurst, A.D.; Talavera-Rauh, F.; Hokin, S.A.; Barton, M.K. The Arabidopsis Transcription Factor ABIG1 Relays ABA Signaled Growth Inhibition and Drought Induced Senescence. eLife 2016, 5, e13768. [Google Scholar] [CrossRef]
- Yang, A.; Dai, X.; Zhang, W.-H. A R2R3-Type MYB Gene, OsMYB2, Is Involved in Salt, Cold, and Dehydration Tolerance in Rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef] [PubMed]
Clean reads | 387 million |
N° of transcripts | 190,539 |
N° of unigenes | 55,679 |
Average of read mapping rate | 77.22% |
Transcripts N50 (bp) | 2544 |
Unigenes N50 (bp) | 2384 |
Q30 (%) | 91.1 |
GC content (%) | 44.0 |
Database | Number of Unigenes | Percentage % |
---|---|---|
Annotated in Nr | 34,859 | 62.60 |
Annotated in Nt | 36,131 | 64.89 |
Annotated in KO | 13,180 | 23.67 |
Annotated in Swiss-Prot | 26,600 | 47.77 |
Annotated in Pfam | 24,824 | 44.58 |
Annotated in GO | 24,822 | 44.58 |
Annotated in KOG | 8939 | 16.05 |
Annotated in at least one database | 43,905 | 78.85 |
Cluster ID | Database Description | e-Value | log2 Fold Change |
---|---|---|---|
Plant growth | |||
625.32674 | Citrus clementina protein PELPK1 (LOC18034992) (Nt ID: XM_006423706) | 0 | −6.009 |
625.11069 | Citrus clementina probable carboxylesterase 15 (LOC18038652) (Nt ID: XM_006429930) | 0 | −2.649 |
Regulation of the cell cycle | |||
625.33484 | Cyclin-dependent kinase B2-2 OS = Arabidopsis thaliana (Swiss-Prot ID: Q8LG64) | 4.50 × −105 | −2.765 |
14231.0 | Citrus sinensis protein ENDOSPERM DEFECTIVE 1 (LOC102631413) (Nt ID: XM_006467192) | 0 | −2.174 |
625.2046 | Citrus clementina microtubule-associated protein RP/EB family member 1C (LOC18035782) (Nt ID: XM_006425920) | 0 | −1.241 |
625.1752 | Citrus clementina cell division cycle 20.2, cofactor of APC complex (LOC18038983) (Nt ID: XM_006429932) | 0 | −2.615 |
625.9002 | Citrus sinensis G2/mitotic-specific cyclin S13-7 (LOC102607074) (Nt ID: XM_006481988) | 0 | −2.593 |
14148.0 | Citrus sinensis cell division control protein 6 homologue B (LOC102615076) (Nt ID: XM_006488435) | 0 | −2.592 |
625.1221 | Protein POLLENLESS 3-LIKE 2 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9SD20) | 8 × 10−144 | −3.245 |
Cluster ID | Database Description | e-Value | log2 Fold Change |
---|---|---|---|
Drought sensory and signalling mechanisms | |||
625.10101 | Citrus sinensis calmodulin-like protein 3 (LOC102621120) (Nt ID: XM_006478639) | 1.6 × 10−51 | −2.926 |
625.8083 | Calmodulin-like protein 30 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9ZQE6) | 9.4 × 10−39 | −1.752 |
625.1956 | Citrus sinensis calmodulin-like protein 8 (LOC102612336) (Nt ID: XM_006471604) | 9.10 × 10−36 | −4.987 |
625.14344 | Calcium-binding protein CML42 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9SVG9) | 1.30 × 10−10 | 1.112 |
625.8942 | Citrus sinensis probable calcium-binding protein CML41 (LOC102625955) (Nt ID: XM_006466645) | 2.50 × 10−37 | −2.324 |
625.12224 | Calcium-binding protein CML37 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9FIH9) | 4.70 × 10−29 | 2.322 |
625.9804 | Citrus clementina probable calcium-binding protein CML44 (LOC18041223) (Nt ID: XM_006434238) | 8.70 × 10−30 | 1.744 |
625.19719 | Probable calcium-binding protein CML50 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9FYE4) | 2.90 × 10−41 | 1.143 |
625.10631 | Citrus sinensis probable calcium-binding protein CML16 (LOC102613292) (Nt ID: XM_006484317) | 5.70 × 10−51 | 1.555 |
625.13944 | Citrus sinensis probable calcium-binding protein CML11 (LOC102613046) (Nt ID: XM_006471463) | 3.20 × 10−57 | 2.492 |
Hormone regulation of drought stress response | |||
625.13199 | Citrus clementina 9-cis-epoxycarotenoid dioxygenase NCED3, chloroplastic (LOC18046011) (Nt ID: XM_006442173) | 0 | 1.815 |
625.14504 | Molybdenum cofactor sulfurase ABA3 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9C5X8) | 1.90 × 10−145 | 1.182 |
625.11871 | Abscisic acid receptor PYL7 OS = Arabidopsis thaliana (Swiss-Prot ID: Q1ECF1) | 7.80 × 10−7 | −1.602 |
625.18189 | LRR receptor-like serine/threonine-protein kinase GHR1 OS = Arabidopsis thaliana (Swiss-Prot ID: C0LGQ9) | 1.10 × 10−160 | −1.562 |
625.17411 | LanC-like protein GCR2 OS = Arabidopsis thaliana (Swiss-Prot ID: F4IEM5) | 2.70 × 10−45 | 1.376 |
625.23350 | Probable protein phosphatase 2C 78 OS = Arabidopsis thaliana (Swiss-Prot ID: Q9FIF5) | 2.30 × 10−51 | 2.009 |
625.22859 | Protein phosphatase 2C 56 OS = Arabidopsis thaliana (Swiss-Prot ID: P49597) | 4.30 × 10−70 | 1.778 |
625.32346 | Serine/threonine-protein kinase SAPK9 OS = Oryza sativa subsp. japonica (Swiss-Prot ID: Q75V57) | 7.70 × 10−25 | 1.285 |
625.19272 | Low-temperature-induced 65 (RD29B) kDa protein OS = Arabidopsis thaliana (Swiss-Prot ID: Q04980) | 3.30 × 10−41 | 2.362 |
ROS scavenging regulatory mechanisms | |||
625.36805 | Peroxidase 5 OS = Vitis vinifera (Swiss-Prot ID: A7QEU4) | 9.10 × 10−87 | 8.742 |
625.9703 | Peroxidase 53 OS = Arabidopsis thaliana (Swiss-Prot ID: Q42578) | 4.40 × 10−129 | −5.654 |
625.20989 | Citrus sinensis glutathione reductase (GR), cytosolic (LOC102614323) (Nt ID: XM_006493645) | 0 | 1.211 |
625.20638 | Phospholipid hydroperoxide glutathione peroxidase 1 (GPX1), chloroplastic OS = Arabidopsis thaliana (Swiss-Prot ID: P52032) | 5.50 × 10−76 | 1.334 |
625.15425 | L-ascorbate peroxidase S (APXS), chloroplastic/mitochondrial OS = Arabidopsis thaliana (Swiss-Prot ID: Q42592) | 2.60 × 10−65 | 1.478 |
Osmolyte biosynthesis | |||
625.10562 | Citrus sinensis delta-1-pyrroline-5-carboxylate synthase (P5CS) (LOC102609124) (Nt ID: XM_006486357) | 0 | 1.371 |
625.33171 | Ornithine aminotransferase (δ-OAT), mitochondrial OS = Arabidopsis thaliana (Swiss-Prot ID: Q9FNK4) | 6.10 × 10−87 | 1.229 |
625.18915 | Choline monooxygenase (CMO), chloroplastic OS = Arabidopsis thaliana (Swiss-Prot ID: Q9SZR0) | 3.00 × 10−79 | 1.533 |
625.16432 | Probable polyamine oxidase 5 (PAO5) OS = Arabidopsis thaliana (Swiss-Prot ID: Q9SU79) | 1.40 × 10−166 | −1.758 |
625.17328 | Citrus clementina galactinol synthase 2 (GOLS2) (LOC18040981) (Nt ID: XM_024185001) | 0 | 2.660 |
625.13485 | Citrus sinensis beta-amylase 1 (BAM1), chloroplastic (LOC102626673) (Nt ID: XM_006493931) | 0 | 1.180 |
625.23269 | Citrus sinensis alpha-amylase 3 (AMY3), chloroplastic (LOC102577968) (Nt ID: XM_006483166) | 0 | 1.401 |
625.9765 | Citrus clementina branched-chain-amino-acid aminotransferase 2 (BCAT2), chloroplastic (LOC18041601) (Nt ID: XM_006433621) | 0 | 3.743 |
Cluster ID | Database Description | e-Value | log2 Fold Change |
---|---|---|---|
Cellulose synthesis | |||
625.8818 | Citrus sinensis cellulose synthase-like protein D5 (LOC102621871) (Nt ID: XM_006479966) | 0 | −6.083 |
625.23407 | Citrus clementina cellulose synthase A catalytic subunit 7 (LOC18053866) (Nt ID: XM_006453518) | 0 | −5.161 |
625.22336 | Citrus sinensis cellulose synthase A catalytic subunit 4 (LOC102619893) (Nt ID: XM_006479401) | 0 | −5.098 |
625.19567 | Citrus clementina cellulose synthase A catalytic subunit 8 (LOC18053215) (Nt ID: XM_006449474) | 0 | −4.836 |
625.31361 | Citrus sinensis cellulose synthase A catalytic subunit 2 (LOC102610101) (Nt ID: XM_006464470) | 0 | −2.581 |
625.20272 | Citrus sinensis cellulose synthase A catalytic subunit 1 (LOC102614848) (Nt ID: XM_006483275) | 0 | −2.527 |
625.13360 | Cellulose synthase-like protein B4 OS = Arabidopsis thaliana (Swiss-Prot ID: O80891) | 2.10 × 10−32 | 2.362 |
625.10234 | Cellulose synthase-like protein H2 OS = Oryza sativa subsp. indica (Swiss-Prot ID: Q7PC71) | 6.40 × 10−9 | 3.279 |
625.20767 | Cellulose synthase A catalytic subunit 4 [UDP-forming] OS = Oryza sativa subsp. japonica (Swiss-Prot ID: Q5JN63) | 6.50 × 10−15 | 3.449 |
625.28615 | Cellulose synthase-like protein G2 OS = Arabidopsis thaliana (Swiss-Prot ID: Q8VYR4) | 5.50 × 10−16 | 3.488 |
Cell wall biogenesis | |||
625.180 | Citrus sinensis xyloglucan endotransglucosylase/hydrolase protein 2-like (LOC102609979) (Nt ID: XM_006479274) | 0 | −5.262 |
625.9604 | Citrus sinensis probable xyloglucan endotransglucosylase/hydrolase protein 33 (LOC102608350) (Nt ID: XM_006483766) | 0 | −4.681 |
625.23478 | Citrus clementina probable xyloglucan endotransglucosylase/hydrolase protein 6 (LOC18037502) (Nt ID: XM_006426099) | 0 | −4.521 |
625.934 | Citrus sinensis probable xyloglucan endotransglucosylase/hydrolase protein B (LOC102617022) (Nt ID: XM_006487594) | 0 | −4.242 |
625.7212 | Citrus sinensis xyloglucan endotransglucosylase/hydrolase 2-like (LOC102621846) (Nt ID: XM_006492934) | 0 | −2.966 |
625.9684 | Citrus sinensis xyloglucan endotransglucosylase/hydrolase protein 9 (LOC102627322) (Nt ID: XM_006469681) | 0 | −2.958 |
625.33845 | Citrus sinensis probable xyloglucan endotransglucosylase/hydrolase protein 5 (LOC102613907) (Nt ID: XM_006468883) | 0 | −2.386 |
Cell wall modification | |||
625.19798 | Citrus sinensis pectate lyase-like (LOC102622327) (Nt ID: XM_006469872) | 0 | −6.881 |
625.13761 | Pectinesterase/pectinesterase inhibitor 40 OS = Arabidopsis thaliana (Swiss-Prot ID: O81301) | 4.80 × 10−150 | −6.504 |
625.7348 | Citrus clementina probable pectinesterase/pectinesterase inhibitor 25 (LOC18040524) (Nt ID: XM_006432471) | 0 | −6.256 |
625.24139 | Pectinesterase 2 OS = Citrus sinensis (Swiss-Prot ID: O04887) | 2.00 × 10−70 | −5.624 |
14278.0 | Probable pectinesterase/pectinesterase inhibitor 41 OS = Arabidopsis thaliana (Swiss-Prot ID: Q8RXK7) | 6.70 × 10−147 | −5.425 |
625.31477 | Citrus sinensis pectinesterase 2-like (LOC102625023) (Nt ID: XM_006490034) | 0 | −5.013 |
625.30831 | Citrus sinensis probable pectinesterase/pectinesterase inhibitor 12 (LOC102609650) (Nt ID: XM_006474494) | 5.18 × 10−156 | −4.460 |
625.38076 | Citrus sinensis polygalacturonase-like (LOC102628485) (Nt ID: XM_006489884) | 0 | −3.731 |
625.24242 | Citrus clementina probable pectinesterase/pectinesterase inhibitor 61 (LOC18047568) (Nt ID: XM_006441017) | 0 | −4.546 |
625.23761 | Probable pectinesterase/pectinesterase inhibitor 6 OS = Arabidopsis thaliana (Swiss-Prot ID: O49298) | 5.90 × 10−92 | −3.668 |
625.15524 | Citrus sinensis probable pectinesterase 53 (LOC102614801) (Nt ID: XM_025093060) | 0 | −3.342 |
625.7470 | Citrus sinensis probable pectinesterase 8 (LOC102626812) (Nt ID: XM_006481381) | 0 | −3.232 |
625.19411 | Citrus clementina pectinesterase 1 (LOC18036209) (Nt ID: XM_006426737) | 0 | −3.219 |
625.31930 | Citrus sinensis probable pectinesterase/pectinesterase inhibitor 51 (LOC102610718) (Nt ID: XM_006464560) | 0 | −3.171 |
625.24083 | Citrus sinensis probable polygalacturonase (LOC102617191) (Nt ID: XM_006476443) | 0 | −2.898 |
625.4677 | Citrus sinensis probable polygalacturonase (LOC102629244) (Nt ID: XM_006490571) | 0 | −2.751 |
Cluster ID | Database Description | e-Value | log2 Fold Change | Module_Traits |
---|---|---|---|---|
Cell wall | ||||
13435.0 | Citrus clementina NAC domain-containing protein 104 (NAC104/XND1) (LOC18042831) (Nt ID: XM_006432394) | 0 | −5.912 | Grey60_MDA + H2O2 |
625.764 | Citrus clementina transcription repressor OFP4 (LOC18041823) (Nt ID: XM_006431937) | 0 | −3.344 | Grey60_MDA + H2O2 |
625.10943 | NAC domain-containing protein 37 (NAC037/VND1) OS = Arabidopsis thaliana (Swiss-Prot ID: Q9SL41) | 3.0 × 10−113 | −2.45 | Grey60_MDA + H2O2 |
625.8474 | Citrus sinensis NAC domain-containing protein 12-like (NAC012/SND1) (LOC102629852) (Nt ID: XM_006476213) | 0 | −6.008 | Grey60_MDA |
625.613 | Citrus sinensis transcription factor MYB83 (LOC102617737) (Nt ID: XM_006470693) | 0 | −2.206 | Grey60_MDA |
Growth | ||||
625.24886 | Citrus clementina growth-regulating factor 7 (GRF7) (LOC18049204) (Nt ID: XM_024188396) | 0 | −2.415 | Grey60_MDA + H2O2 |
625.6370 | Citrus sinensis B-box zinc finger protein 20 (BBX20/BZS1) (LOC102618175) (Nt ID: XM_006487266) | 0 | −2.081 | Grey60_MDA + H2O2 |
625.19060 | Citrus sinensis homeobox-leucine zipper protein ATHB-12-like (LOC102628407) (Nt ID: XM_006493109) | 0 | 2.777 | Turquoise_H2O2 |
625.28164 | Citrus sinensis probable N-acetyltransferase HLS1 (LOC102617166) (Nt ID: XM_006493294) | 0 | 3.431 | Turquoise_H2O2 |
Drought response | ||||
625.8123 | Homeobox-leucine zipper protein HAT22 OS = Arabidopsis thaliana (Swiss-Prot ID: P46604) | 1.4 × 10−17 | −3.490 | Grey60_MDA + H2O2 |
625.9832 | Citrus sinensis ethylene-responsive transcription factor RAP2-1-like (LOC102627433) (Nt ID: XM_006473228) | 0 | 2.231 | Turquoise_H2O2 |
1379.0 | Citrus sinensis cell differentiation protein rcd1-like (RCD1) (LOC102610349) (Nt ID: XM_015527477) | 0 | 7.437 | Turquoise_H2O2 |
625.14211 | Citrus sinensis dehydration-responsive element-binding protein 2A (DREB2A) (LOC102610198) (Nt ID: XM_006486183) | 0 | 1.371 | Turquoise_H2O2 |
625.9371 | Citrus clementina dehydration-responsive element-binding protein 3 (DREB3/TINY2) (LOC18055009) (Nt ID: XM_006450624) | 0 | 2.904 | Turquoise_H2O2 |
625.3658 | Citrus sinensis transcription factor MYB2 (LOC102621399) (Nt ID: XM_006480200) | 0 | 2.659 | Darkturquoise_MDA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scialò, E.; Sicilia, A.; Continella, A.; Gentile, A.; Lo Piero, A.R. Transcriptome Profiling and Weighted Gene Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus Rootstocks. Biology 2024, 13, 595. https://doi.org/10.3390/biology13080595
Scialò E, Sicilia A, Continella A, Gentile A, Lo Piero AR. Transcriptome Profiling and Weighted Gene Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus Rootstocks. Biology. 2024; 13(8):595. https://doi.org/10.3390/biology13080595
Chicago/Turabian StyleScialò, Emanuele, Angelo Sicilia, Alberto Continella, Alessandra Gentile, and Angela Roberta Lo Piero. 2024. "Transcriptome Profiling and Weighted Gene Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus Rootstocks" Biology 13, no. 8: 595. https://doi.org/10.3390/biology13080595
APA StyleScialò, E., Sicilia, A., Continella, A., Gentile, A., & Lo Piero, A. R. (2024). Transcriptome Profiling and Weighted Gene Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus Rootstocks. Biology, 13(8), 595. https://doi.org/10.3390/biology13080595