Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Murciano-Granadina Goat Dataset
2.2. Association Analysis
2.2.1. Association Analysis Using Random Forest
2.2.2. Epistasis Analysis Using MIDESP Algorithm
2.3. Identification of Transcription Factor Cooperation
3. Results
Identification of Cooperative Transcription Factors Regulating Seven Milk-Related Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MUG | Murciano-Granadina goat |
CAPRIGRAN | National Association of Murciano-Granadina Goat Breeders |
SNPs | single-nucleotide polymorphisms |
TFs | transcription factors |
TFBSs | transcription factor binding sites |
MIDESP | mutual information-based detection of epistatic SNP pairs |
RF | random forest |
PC-TraFF | potentially collaborating transcription factor finder |
DM | dry matter percentage |
DPM | milk production days |
FP | fat percentage |
PP | protein percentage |
LP | lactose percentage |
MY | milk yield at 210 days |
SCC | somatic cell count |
IFS | incremental feature selection |
MI | mutual information |
PMI | pointwise mutual information |
PWM | position weight matrices |
DBP | D-site binding protein |
HOX | homeobox |
PPARs | peroxisome proliferator activated receptors |
THAP | Thanatos-associated proteins |
DLX | distal-less homeobox |
FOX | forkhead box |
SMAD | suppressor of mothers against decapentaplegic |
References
- Delgado, J.V.; Landi, V.; Barba, C.J.; Fernández, J.; Gómez, M.M.; Camacho, M.E.; Martínez, M.A.; Navas, F.J.; León, J.M. Murciano-Granadina goat: A Spanish local breed ready for the challenges of the twenty-first century. In Sustainable Goat Production in Adverse Environments: Volume II: Local Goat Breeds; Springer: Cham, Switzerland, 2017; pp. 205–219. [Google Scholar]
- Pizarro Inostroza, M.G.; Navas González, F.J.; Landi, V.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez Martínez, M.D.A. Software-automatized individual lactation model fitting, peak and persistence and Bayesian criteria comparison for milk yield genetic studies in Murciano-Granadina goats. Mathematics 2020, 8, 1505. [Google Scholar] [CrossRef]
- Pizarro Inostroza, M.G.; Navas González, F.J.; Landi, V.; León Jurado, J.V.; Delgado Bermejo, J.; Fernández Álvarez, J.; Martínez Martínez, M.d.A. Goat milk nutritional quality software-automatized individual curve model fitting, shape parameters calculation and Bayesian flexibility criteria comparison. Animals 2020, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Magro, S.; Costa, A.; De Marchi, M.; Manuelian, C.L. Milk-related performances of Murciano-Granadina goats reared in Italy compared to cosmopolitan breeds. Ital. J. Anim. Sci. 2022, 21, 1170–1180. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Guan, D.; Martínez, A.; Luigi-Sierra, M.G.; Delgado, J.V.; Landi, V.; Castelló, A.; Fernández Álvarez, J.; Such, X.; Jordana, J.; Amills, M. Detecting the footprint of selection on the genomes of Murciano-Granadina goats. Anim. Genet. 2021, 52, 683–693. [Google Scholar] [CrossRef]
- Martin, P.; Palhière, I.; Maroteau, C.; Bardou, P.; Canale-Tabet, K.; Sarry, J.; Woloszyn, F.; Bertrand-Michel, J.; Racke, I.; Besir, H.; et al. A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Sci. Rep. 2017, 7, 1872. [Google Scholar] [CrossRef]
- Mucha, S.; Mrode, R.; Coffey, M.; Kizilaslan, M.; Desire, S.; Conington, J. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. J. Dairy Sci. 2018, 101, 2213–2225. [Google Scholar] [CrossRef]
- Scholtens, M.; Jiang, A.; Smith, A.; Littlejohn, M.; Lehnert, K.; Snell, R.; Lopez-Villalobos, N.; Garrick, D.; Blair, H. Genome-wide association studies of lactation yields of milk, fat, protein and somatic cell score in New Zealand dairy goats. J. Anim. Sci. Biotechnol. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Massender, E.; Oliveira, H.R.; Brito, L.F.; Maignel, L.; Jafarikia, M.; Baes, C.F.; Sullivan, B.; Schenkel, F.S. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. J. Dairy Sci. 2023, 106, 1168–1189. [Google Scholar] [CrossRef]
- Roldán, D.; Rabasa, A.E.; Saldaño, S.; Holgado, F.; Poli, M.; Cantet, R.J.C. Qtl detection for milk production traits in goats using a longitudinal model. J. Anim. Breed. Genet. 2008, 125, 187–193. [Google Scholar] [CrossRef]
- Maroteau, C.; Palhière, I.P.; Larroque, H.H.; Clément, V.; Tosser-Klopp, G.; Rupp, R. QTL detection for traits of interest for the dairy goat industry. In Proceedings of the 64th Annual Meeting of the European Federation of Animal Science (EAAP), Nantes, France, 26–30 August 2013; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; Volume 19, p. 665. [Google Scholar]
- Jiang, A.; Ankersmit-Udy, A.; Turner, S.A.; Scholtens, M.; Littlejohn, M.D.; Lopez-Villalobos, N.; Proser, C.G.; Snell, R.G.; Lehnert, K. A capra hircus chromosome 19 locus linked to milk production influences mammary conformation. J. Anim. Sci. Biotechnol. 2022, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, B.; Serradilla, J.; Tomas, A.; Urrutia, B.; Ares, J.; Carrizosa, J.; Sanchez, A.; Jordana, J.; Amills, M. Goat acetyl-coenzyme A carboxylase α: Molecular characterization, polymorphism, and association with milk traits. J. Dairy Sci. 2007, 90, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, B.; Serradilla, J.; Tomas, A.; Urrutia, B.; Ares, J.; Carrizosa, J.; Sànchez, A.; Jordana, J.; Amills, M. Identification of two polymorphisms in the goat lipoprotein lipase gene and their association with milk production traits. J. Dairy Sci. 2007, 90, 3012–3017. [Google Scholar] [CrossRef] [PubMed]
- Zidi, A.; Amills, M.; Tomás, A.; Vidal, O.; Ramírez, O.; Carrizosa, J.; Urrutia, B.; Serradilla, J.M.; Clop, A. Genetic variability in the predicted microRNA target sites of caprine casein genes. J. Dairy Sci. 2010, 93, 1749–1753. [Google Scholar] [CrossRef]
- Inostroza, M.G.P.; González, F.J.N.; Landi, V.; Jurado, J.M.L.; Bermejo, J.V.D.; Fernández Álvarez, J.; Martínez Martínez, M.D.A. Bayesian analysis of the association between casein complex haplotype variants and milk yield, composition, and curve shape parameters in Murciano-Granadina goats. Animals 2020, 10, 1845. [Google Scholar] [CrossRef]
- Pizarro Inostroza, M.G.; Landi, V.; Navas González, F.J.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez Martínez, M.D.A. Integrating casein complex SNPs additive, dominance and epistatic effects on genetic parameters and breeding values estimation for murciano-granadina goat milk yield and components. Genes 2020, 11, 309. [Google Scholar] [CrossRef]
- Luigi-Sierra, M.G.; Landi, V.; Guan, D.; Delgado, J.V.; Castelló, A.; Cabrera, B.; Mármol-Sánchez, E.; Alvarez, J.F.; Gómez-Carpio, M.; Martínez, A.; et al. A genome-wide association analysis for body, udder, and leg conformation traits recorded in Murciano-Granadina goats. J. Dairy Sci. 2020, 103, 11605–11617. [Google Scholar] [CrossRef]
- Luigi-Sierra, M.G.; Fernández, A.; Martínez, A.; Guan, D.; Delgado, J.V.; Álvarez, J.F.; Landi, V.; Such, F.X.; Jordana, J.; Saura, M.; et al. Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. J. Anim. Sci. Biotechnol. 2022, 13, 35. [Google Scholar] [CrossRef]
- Luigi-Sierra, M.G.; Landi, V.; Guan, D.; Delgado, J.V.; Castelló, A.; Cabrera, B.; Mármol-Sánchez, E.; Fernández-Álvarez, J.; Martínez, A.; Such, X.; et al. Identification of genomic regions associated with morphological traits in Murciano-Granadina goats. In Proceedings of the 37th International Conference on Animal Genetics (ISAG), Lleida, Spain, 7–12 July 2019. [Google Scholar]
- Zidi, A.; Serradilla, J.M.; Jordana, J.; Carrizosa, J.; Urrutia, B.; Polvillo, O.; González-Redondo, P.; Gallardo, D.; Amills, M.; Fernández-Cabanás, V.M. Polymorphism of the caprine malic enzyme 1 (ME1) gene and its association with milk quality traits in Murciano-Granadina goats. Animal 2010, 4, 1953–1957. [Google Scholar] [CrossRef]
- Zidi, A.; Fernández-Cabanás, V.M.; Urrutia, B.; Carrizosa, J.; Polvillo, O.; González-Redondo, P.; Jordana, J.; Gallardo, D.; Amills, M.; Serradilla, J.M. Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. J. Dairy Sci. 2010, 93, 4332–4339. [Google Scholar] [CrossRef]
- Guan, D.; Landi, V.; Luigi-Sierra, M.G.; Delgado, J.V.; Such, X.; Castelló, A.; Cabrera, B.; Mármol-Sánchez, E.; Fernández-Alvarez, J.; de la Torre Casañas, J.L.R.; et al. Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. J. Anim. Sci. Biotechnol. 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Manunza, A.; Zidi, A.; Fernández-Cabanás, V.M.; Jordana, J.; Carrizosa, J.; Belaifa, E.; Urrutia, B.; Polvillo, O.; González-Redondo, P.; Amills, M.; et al. An association analysis between one missense polymorphism at the SREBF1 gene and milk yield and composition traits in goats. Can. J. Anim. Sci. 2012, 92, 167–173. [Google Scholar] [CrossRef]
- Mackay, T.F. Epistasis and quantitative traits: Using model organisms to study gene-gene interactions. Nat. Rev. Genet. 2014, 15, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, F.; Ramzan, F.; Rajavel, A.; Schmitt, A.O.; Gültas, M. MIDESP: Mutual Information-Based Detection of Epistatic SNP Pairs for Qualitative and Quantitative Phenotypes. Biology 2021, 10, 921. [Google Scholar] [CrossRef]
- Wang, H.; Bennett, D.A.; De Jager, P.L.; Zhang, Q.Y.; Zhang, H.Y. Genome-wide epistasis analysis for Alzheimer’s disease and implications for genetic risk prediction. Alzheimer’s Res. Ther. 2021, 13, 55. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, S.; Zou, F.; Wang, W. TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics 2010, 26, i217–i227. [Google Scholar] [CrossRef]
- Li, X. A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-objective optimization. Bioinformatics 2017, 33, 2829–2836. [Google Scholar] [CrossRef]
- D’Silva, S.; Chakraborty, S.; Kahali, B. Concurrent outcomes from multiple approaches of epistasis analysis for human body mass index associated loci provide insights into obesity biology. Sci. Rep. 2022, 12, 7306. [Google Scholar] [CrossRef]
- Liang, Z.; Prakapenka, D.; Parker Gaddis, K.L.; VandeHaar, M.J.; Weigel, K.A.; Tempelman, R.J.; Koltes, J.E.; Santos, J.E.P.; White, H.M.; Peñagaricano, F.; et al. Impact of epistasis effects on the accuracy of predicting phenotypic values of residual feed intake in U.S Holstein cows. Front. Genet. 2022, 13, 1017490. [Google Scholar] [CrossRef]
- Prakapenka, D.; Liang, Z.; Jiang, J.; Ma, L.; Da, Y. A Large-Scale Genome-Wide Association Study of Epistasis Effects of Production Traits and Daughter Pregnancy Rate in U.S. Holstein Cattle. Genes 2021, 12, 1089. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; VanRaden, P.M.; Cole, J.B.; Da, Y. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle. Front. Genet. 2019, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.H.; Xu, W.; Smith, C.W.; Murray, S.C.; Zhang, H.B. Analysis of the genes controlling three quantitative traits in three diverse plant species reveals the molecular basis of quantitative traits. Sci. Rep. 2020, 10, 10074. [Google Scholar] [CrossRef]
- Linder, R.A.; Seidl, F.; Ha, K.; Ehrenreich, I.M. The complex genetic and molecular basis of a model quantitative trait. Mol. Biol. Cell 2016, 27, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Yahyaoui, M.H. Genetic Polymorphism in Goat: Study of the Kappa Casein, Beta Lactoglobulin, and Stearoyl Coenzyme A Desaturase Genes. Ph.D. Dissertation, Facultad de Veterinaria, Universidad Autónoma de Barcelona, Barcelona, Spain, 2003. [Google Scholar]
- Ramzan, F.; Klees, S.; Schmitt, A.O.; Cavero, D.; Gültas, M. Identification of age-specific and common key regulatory mechanisms governing eggshell strength in chicken using random forests. Genes 2020, 11, 464. [Google Scholar] [CrossRef]
- Ramzan, F.; Gültas, M.; Bertram, H.; Cavero, D.; Schmitt, A.O. Combining random forests and a signal detection method leads to the robust detection of genotype-phenotype associations. Genes 2020, 11, 892. [Google Scholar] [CrossRef]
- Klees, S.; Lange, T.M.; Bertram, H.; Rajavel, A.; Schlüter, J.S.; Lu, K.; Schmitt, A.O.; Gültas, M. In Silico Identification of the Complex Interplay between Regulatory SNPs, Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data. Int. J. Mol. Sci. 2021, 22, 789. [Google Scholar] [CrossRef]
- Haleem, A.; Klees, S.; Schmitt, A.O.; Gültas, M. Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms. Int. J. Mol. Sci. 2022, 23, 5121. [Google Scholar] [CrossRef]
- Meckbach, C.; Tacke, R.; Hua, X.; Waack, S.; Wingender, E.; Gültas, M. PC-TraFF: Identification of potentially collaborating transcription factors using pointwise mutual information. BMC Bioinform. 2015, 16, 400. [Google Scholar] [CrossRef]
- Meckbach, C.; Wingender, E.; Gültas, M. Removing background co-occurrences of transcription factor binding sites greatly improves the prediction of specific transcription factor cooperations. Front. Genet. 2018, 9, 189. [Google Scholar] [CrossRef]
- Tosser-Klopp, G.; Bardou, P.; Bouchez, O.; Cabau, C.; Crooijmans, R.; Dong, Y.; Donnadieu-Tonon, C.; Eggen, A.; Heuven, H.C.; Jamli, S.; et al. Design and characterization of a 52K SNP chip for goats. PLoS ONE 2014, 9, e86227. [Google Scholar] [CrossRef]
- Mekonnen, Y.A.; Gültas, M.; Effa, K.; Hanotte, O.; Schmitt, A.O. Identification of candidate signature genes and key regulators associated with Trypanotolerance in the Sheko Breed. Front. Genet. 2019, 10, 1095. [Google Scholar] [CrossRef] [PubMed]
- Bahbahani, H.; Salim, B.; Almathen, F.; Al Enezi, F.; Mwacharo, J.M.; Hanotte, O. Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS ONE 2018, 13, e0190446. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Heinrich, F.; Lange, T.M.; Kircher, M.; Ramzan, F.; Schmitt, A.O.; Gültas, M. Exploring the potential of incremental feature selection to improve genomic prediction accuracy. Genet. Sel. Evol. 2023, 55, 78. [Google Scholar] [CrossRef]
- Li, B.Q.; Hu, L.L.; Chen, L.; Feng, K.Y.; Cai, Y.D.; Chou, K.C. Prediction of protein domain with mRMR feature selection and analysis. PLoS ONE 2012, 7, e39308. [Google Scholar] [CrossRef]
- Li, B.Q.; Feng, K.Y.; Chen, L.; Huang, T.; Cai, Y.D. Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS. PLoS ONE 2012, 7, e43927. [Google Scholar] [CrossRef]
- Wei, W.H.; Hemani, G.; Haley, C.S. Detecting epistasis in human complex traits. Nat. Rev. Genet. 2014, 15, 722–733. [Google Scholar] [CrossRef]
- Phillips, P.C. Epistasis—The essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 2008, 9, 855–867. [Google Scholar] [CrossRef]
- Huang, W.; Richards, S.; Carbone, M.A.; Zhu, D.; Anholt, R.R.; Ayroles, J.F.; Duncan, L.; Jordan, K.W.; Lawrence, F.; Magwire, M.M.; et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc. Natl. Acad. Sci. USA 2012, 109, 15553–15559. [Google Scholar] [CrossRef]
- Bickhart, D.M.; Rosen, B.D.; Koren, S.; Sayre, B.L.; Hastie, A.R.; Chan, S.; Lee, J.; Lam, E.T.; Liachko, I.; Sullivan, S.T.; et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat. Genet. 2017, 49, 643–650. [Google Scholar] [CrossRef]
- Wingender, E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Briefings Bioinform. 2008, 9, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Kel, A.E.; Gossling, E.; Reuter, I.; Cheremushkin, E.; Kel-Margoulis, O.V.; Wingender, E. MATCHTM: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 2003, 31, 3576–3579. [Google Scholar] [CrossRef] [PubMed]
- Taye, M.; Lee, W.; Jeon, S.; Yoon, J.; Dessie, T.; Hanotte, O.; Mwai, O.A.; Kemp, S.; Cho, S.; Oh, S.J.; et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm. Genome 2017, 28, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Rajavel, A.; Klees, S.; Schlüter, J.S.; Bertram, H.; Lu, K.; Schmitt, A.O.; Gültas, M. Unravelling the Complex Interplay of Transcription Factors Orchestrating Seed Oil Content in Brassica napus L. Int. J. Mol. Sci. 2021, 22, 1033. [Google Scholar] [CrossRef]
- Rajavel, A.; Heinrich, F.; Schmitt, A.O.; Gültas, M. Identifying cattle breed-specific partner choice of transcription factors during the African trypanosomiasis disease progression using bioinformatics analysis. Vaccines 2020, 8, 246. [Google Scholar] [CrossRef]
- Steuernagel, L.; Meckbach, C.; Heinrich, F.; Zeidler, S.; Schmitt, A.O.; Gültas, M. Computational identification of tissue-specific transcription factor cooperation in ten cattle tissues. PLoS ONE 2019, 14, e0216475. [Google Scholar] [CrossRef]
- Zeidler, S.; Meckbach, C.; Tacke, R.; Raad, F.S.; Roa, A.; Uchida, S.; Zimmermann, W.H.; Wingender, E.; Gültas, M. Computational detection of stage-specific transcription factor clusters during heart development. Front. Genet. 2016, 7, 33. [Google Scholar] [CrossRef]
- Takahashi, S.; Inoue, I.; Nakajima, Y.; Seo, M.; Nakano, T.; Yang, F.; Kumagai, M.; Komoda, T.; Awata, T.; Ikeda, M.; et al. A promoter in the novel exon of hPPARγ. directs the circadian expression of PPARγ. J. Atheroscler. Thromb. 2010, 17, 73–83. [Google Scholar] [CrossRef]
- Haas, N.B.; Cantwell, C.A.; Johnson, P.F.; Burch, J. DNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region. Mol. Cell. Biol. 1995, 15, 1923–1932. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Mitsui, S.; Yan, L.; Yagita, K.; Miyake, S.; Okamura, H. Role of DBP in the circadian oscillatory mechanism. Mol. Cell. Biol. 2000, 20, 4773–4781. [Google Scholar] [CrossRef] [PubMed]
- Gachon, F.; Olela, F.F.; Schaad, O.; Descombes, P.; Schibler, U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Plaut, K.; Casey, T. Does the circadian system regulate lactation? Animal 2012, 6, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Lemay, D.G.; Neville, M.C.; Rudolph, M.C.; Pollard, K.S.; German, J.B. Gene regulatory networks in lactation: Identification of global principles using bioinformatics. BMC Syst. Biol. 2007, 1, 56. [Google Scholar] [CrossRef]
- Scott, I.C.; Anson-Cartwright, L.; Riley, P.; Reda, D.; Cross, J.C. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol. Cell. Biol. 2000, 20, 530–541. [Google Scholar] [CrossRef]
- Zhao, Y.; Johansson, C.; Tran, T.; Bettencourt, R.; Itahana, Y.; Desprez, P.Y.; Konieczny, S.F. Identification of a basic helix-loop-helix transcription factor expressed in mammary gland alveolar cells and required for maintenance of the differentiated state. Mol. Endocrinol. 2006, 20, 2187–2198. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, I.; Raja, K.; Kumar, V.; Saravanan, R.; Periasamy, K. Sequence characterization of S100A8 gene and its 5’flanking region in Indian Zebu (Bos indicus) and crossbred (Bos indicus X Bos Taurus) cattle. J. Entomol. Zool. Stud. 2020, 8, 1112–1117. [Google Scholar]
- Purba, F.; Nii, T.; Yoshimura, Y.; Isobe, N. Production of antimicrobial peptide S100A8 in the goat mammary gland and effect of intramammary infusion of lipopolysaccharide on S100A8 concentration in milk. J. Dairy Sci. 2019, 102, 4674–4681. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, Z.; Lian, X.; Cheng, X.; Liu, B.; Zhang, B.; Wang, H.; Wang, J.; Li, A.; Ren, Z.; et al. High expression of HOXA4 in patients with glioma indicates unfavorable clinical outcomes. Cell Cycle 2022, 21, 2387–2402. [Google Scholar] [CrossRef]
- Rezsohazy, R.; Saurin, A.J.; Maurel-Zaffran, C.; Graba, Y. Cellular and molecular insights into Hox protein action. Development 2015, 142, 1212–1227. [Google Scholar] [CrossRef]
- Ota, T.; Klausen, C.; Salamanca, M.C.; Woo, H.L.; Leung, P.C.; Auersperg, N. Expression and function of HOXA genes in normal and neoplastic ovarian epithelial cells. Differentiation 2009, 77, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Omatu, T. Overexpression of human homeobox gene in lung cancer A549 cells results in enhanced motile and invasive properties. [Hokkaido Igaku Zasshi] Hokkaido J. Med. Sci. 1999, 74, 367–376. [Google Scholar] [PubMed]
- Kim, H.J.; Roh, M.S.; Son, C.H.; Kim, A.J.; Jee, H.J.; Song, N.; Kim, M.; Seo, S.Y.; Yoo, Y.H.; Yun, J. Loss of Med1/TRAP220 promotes the invasion and metastasis of human non-small-cell lung cancer cells by modulating the expression of metastasis-related genes. Cancer Lett. 2012, 321, 195–202. [Google Scholar] [CrossRef]
- Cheng, S.; Qian, F.; Huang, Q.; Wei, L.; Fu, Y.; Du, Y. HOXA4, down-regulated in lung cancer, inhibits the growth, motility and invasion of lung cancer cells. Cell Death Dis. 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, Q.; Wei, G.H. The role of HOX transcription factors in cancer predisposition and progression. Cancers 2019, 11, 528. [Google Scholar] [CrossRef]
- Pellacani, D.; Bilenky, M.; Kannan, N.; Heravi-Moussavi, A.; Knapp, D.J.; Gakkhar, S.; Moksa, M.; Carles, A.; Moore, R.; Mungall, A.J.; et al. Analysis of normal human mammary epigenomes reveals cell-specific active enhancer states and associated transcription factor networks. Cell Rep. 2016, 17, 2060–2074. [Google Scholar] [CrossRef]
- Capuco, A.V.; Bickhart, D.; Li, C.; Evock-Clover, C.M.; Choudhary, R.K.; Grossi, P.; Bertoni, G.; Trevisi, E.; Aiken, G.E.; McLeod, K.R.; et al. Effect of consuming endophyte-infected fescue seed on transcript abundance in the mammary gland of lactating and dry cows, as assessed by RNA sequencing. J. Dairy Sci. 2018, 101, 10478–10494. [Google Scholar] [CrossRef]
- Qian, Z.; Chen, L.; Liu, J.; Jiang, Y.; Zhang, Y. The emerging role of PPAR-alpha in breast cancer. Biomed. Pharmacother. 2023, 161, 114420. [Google Scholar] [CrossRef]
- Gimble, J.M.; Pighetti, G.M.; Lerner, M.R.; Wu, X.; Lightfoot, S.A.; Brackett, D.J.; Darcy, K.; Hollingsworth, A.B. Expression of peroxisome proliferator activated receptor mRNA in normal and tumorigenic rodent mammary glands. Biochem. Biophys. Res. Commun. 1998, 253, 813–817. [Google Scholar] [CrossRef]
- Richter, A.; Hollstein, R.; Hebert, E.; Vulinovic, F.; Eckhold, J.; Osmanovic, A.; Depping, R.; Kaiser, F.J.; Lohmann, K. In-depth characterization of the homodimerization domain of the transcription factor THAP1 and dystonia-causing mutations therein. J. Mol. Neurosci. 2017, 62, 11–16. [Google Scholar] [CrossRef]
- Fuchs, T.; Gavarini, S.; Saunders-Pullman, R.; Raymond, D.; Ehrlich, M.E.; Bressman, S.B.; Ozelius, L.J. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat. Genet. 2009, 41, 286–288. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, M.S. Dystonia: Phenotypes and Genetics. In Movement Disorders; Academic Press: Cambridge, MA, USA, 2015; pp. 415–438. [Google Scholar]
- Zhao, Y.; Xiao, J.; Gong, S.; Clara, J.A.; LeDoux, M.S. Neural expression of the transcription factor THAP1 during development in rat. Neuroscience 2013, 231, 282–295. [Google Scholar] [CrossRef]
- Bozek, K.; Relógio, A.; Kielbasa, S.M.; Heine, M.; Dame, C.; Kramer, A.; Herzel, H. Regulation of clock-controlled genes in mammals. PLoS ONE 2009, 4, e4882. [Google Scholar] [CrossRef]
- Casey, T.; Crodian, J.; Suárez-Trujillo, A.; Erickson, E.; Weldon, B.; Crow, K.; Cummings, S.; Chen, Y.; Shamay, A.; Mabjeesh, S.J.; et al. CLOCK regulates mammary epithelial cell growth and differentiation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 311, R1125–R1134. [Google Scholar] [CrossRef]
- Morasso, M.I.; Radoja, N. Dlx genes, p63, and ectodermal dysplasias. Birth Defects Res. Part C Embryo Today Rev. 2005, 75, 163–171. [Google Scholar] [CrossRef]
- Lindtner, S.; Catta-Preta, R.; Tian, H.; Su-Feher, L.; Price, J.D.; Dickel, D.E.; Greiner, V.; Silberberg, S.N.; McKinsey, G.L.; McManus, M.T.; et al. Genomic resolution of DLX-orchestrated transcriptional circuits driving development of forebrain GABAergic neurons. Cell Rep. 2019, 28, 2048–2063. [Google Scholar] [CrossRef]
- Kouros-Mehr, H.; Werb, Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev. Dyn. 2006, 235, 3404–3412. [Google Scholar] [CrossRef]
- Durán Aguilar, M.; Román Ponce, S.; Ruiz López, F.; González Padilla, E.; Vásquez Peláez, C.; Bagnato, A.; Strillacci, M.G. Genome-wide association study for milk somatic cell score in holstein cattle using copy number variation as markers. J. Anim. Breed. Genet. 2017, 134, 49–59. [Google Scholar] [CrossRef]
- Amores, A.; Force, A.; Yan, Y.L.; Joly, L.; Amemiya, C.; Fritz, A.; Ho, R.K.; Langeland, J.; Prince, V.; Wang, Y.L.; et al. Zebrafish HOX clusters and vertebrate genome evolution. Science 1998, 282, 1711–1714. [Google Scholar] [CrossRef]
- Stock, D.W.; Ellies, D.L.; Zhao, Z.; Ekker, M.; Ruddle, F.H.; Weiss, K.M. The evolution of the vertebrate DLX gene family. Proc. Natl. Acad. Sci. USA 1996, 93, 10858–10863. [Google Scholar] [CrossRef]
- Ghanem, N.; Jarinova, O.; Amores, A.; Long, Q.; Hatch, G.; Park, B.K.; Rubenstein, J.L.; Ekker, M. Regulatory roles of conserved intergenic domains in vertebrate DLX bigene clusters. Genome Res. 2003, 13, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Chen, H.; Cai, Z.; Yang, Y.; Feng, Z.; Zeng, M.; Chen, L.; Qin, Y.; Cai, B.; Zhu, P.; et al. Forkhead box family transcription factors as versatile regulators for cellular reprogramming to pluripotency. Cell Regen. 2021, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, M.; Sun, T.; Zhang, Z.; Liu, C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023, 13, 857. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, G.M.; Keri, R.A. FOXA1: A transcription factor with parallel functions in development and cancer. Biosci. Rep. 2012, 32, 113–130. [Google Scholar] [CrossRef]
- Sreekumar, A.; Toneff, M.J.; Toh, E.; Roarty, K.; Creighton, C.J.; Belka, G.K.; Lee, D.K.; Xu, J.; Chodosh, L.A.; Richards, J.S.; et al. WNT-mediated regulation of FOXO1 constitutes a critical axis maintaining pubertal mammary stem cell homeostasis. Dev. Cell 2017, 43, 436–448. [Google Scholar] [CrossRef]
- Carr, J.R.; Kiefer, M.M.; Park, H.J.; Li, J.; Wang, Z.; Fontanarosa, J.; DeWaal, D.; Kopanja, D.; Benevolenskaya, E.V.; Guzman, G.; et al. FoxM1 regulates mammary luminal cell fate. Cell Rep. 2012, 1, 715–729. [Google Scholar] [CrossRef]
- Castaneda, M.; Hollander, P.; Mani, S.A. Forkhead box transcription factors: Double-edged swords in cancer. Cancer Res. 2022, 82, 2057–2065. [Google Scholar] [CrossRef]
- Lewis, M.T. Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res. 2000, 2, 158–169. [Google Scholar] [CrossRef]
- Cantile, M.; Pettinato, G.; Procino, A.; Feliciello, I.; Cindolo, L.; Cillo, C. In vivo expression of the whole HOX gene network in human breast cancer. Eur. J. Cancer 2003, 39, 257–264. [Google Scholar] [CrossRef]
- Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011, 2, 236. [Google Scholar] [CrossRef]
- Mu, T.; Hu, H.; Ma, Y.; Feng, X.; Zhang, J.; Gu, Y. Regulation of key genes for milk fat synthesis in ruminants. Front. Nutr. 2021, 8, 765147. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lin, Y.; Liu, L.; Wang, L.; Bian, Y.; Gao, X.; Li, Q. Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells. Vitr. Cell. Dev. Biol.-Anim. 2016, 52, 1044–1059. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhao, W.; Luo, J.; Yao, D.; Sun, Y.; Li, J.; Shi, H.P.; Loor, J.J. Peroxisome proliferator-activated receptor γ.1 and γ.2 isoforms alter lipogenic gene networks in goat mammary epithelial cells to different extents. J. Dairy Sci. 2014, 97, 5437–5447. [Google Scholar] [CrossRef] [PubMed]
- Seoane, J.; Le, H.V.; Shen, L.; Anderson, S.A.; Massagué, J. Integration of SMAD and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, A.; Ten Dijke, P.; van Dam, H. Key signaling nodes in mammary gland development and cancer: SMAD signal integration in epithelial cell plasticity. Breast Cancer Res. 2012, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X.; Ren, X.; Tian, Y.; Chen, Z.; Xu, X.; Du, Y.; Jiang, C.; Fang, Y.; Liu, Z.; et al. SMAD2 and SMAD3 have differential sensitivity in relaying TGFβ. signaling and inversely regulate early lineage specification. Sci. Rep. 2016, 6, 21602. [Google Scholar] [CrossRef]
- Weaver, S.; Hernandez, L. Autocrine-paracrine regulation of the mammary gland. J. Dairy Sci. 2016, 99, 842–853. [Google Scholar] [CrossRef]
- Osorio, J.S.; Lohakare, J.; Bionaz, M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscriptional regulation. Physiol. Genom. 2016, 48, 231–256. [Google Scholar] [CrossRef]
- Pulina, G.; Nudda, A.; Battacone, G.; Fancellu, S.; Francesconi, A. Nutrition and quality of goat’s milk. In Dairy Goats Feeding and Nutrition; CAB International: Wallingford, UK, 2008; pp. 1–30. [Google Scholar]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef]
- He, T.; Hill, C.B.; Angessa, T.T.; Zhang, X.Q.; Chen, K.; Moody, D.; Telfer, P.; Westcott, S.; Li, C. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. J. Exp. Bot. 2019, 70, 5603–5616. [Google Scholar] [CrossRef]
- Yang, S.; Gao, Y.; Zhang, S.; Zhang, Q.; Sun, D. Identification of Genetic Associations and Functional Polymorphisms of SAA1 Gene Affecting Milk Production Traits in Dairy Cattle. PLoS ONE 2016, 11, e0162195. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The human transcription factors. Cell 2018, 172, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Springer, N.; de León, N.; Grotewold, E. Challenges of translating gene regulatory information into agronomic improvements. Trends Plant Sci. 2019, 24, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, K.; Pajoro, A.; Angenent, G.C. Regulation of transcription in plants: Mechanisms controlling developmental switches. Nat. Rev. Genet. 2010, 11, 830–842. [Google Scholar] [CrossRef]
- Oget, C.; Tosser-Klopp, G.; Rupp, R. Genetic and genomic studies in ovine mastitis. Small Rumin. Res. 2019, 176, 55–64. [Google Scholar] [CrossRef]
- Olsen, H.G.; Knutsen, T.M.; Lewandowska-Sabat, A.M.; Grove, H.; Nome, T.; Svendsen, M.; Arnyasi, M.; Sodeland, M.; Sundsaasen, K.K.; Dahl, S.R.; et al. Fine mapping of a QTL on bovine chromosome 6 using imputed full sequence data suggests a key role for the group-specific component (GC) gene in clinical mastitis and milk production. Genet. Sel. Evol. 2016, 48, 79. [Google Scholar] [CrossRef]
- Casey, T.; Patel, O.; Dykema, K.; Dover, H.; Furge, K.; Plaut, K. Molecular signatures reveal circadian clocks may orchestrate the homeorhetic response to lactation. PLoS ONE 2009, 4, e7395. [Google Scholar] [CrossRef]
- Cocolakis, E.; Dai, M.; Drevet, L.; Ho, J.; Haines, E.; Ali, S.; Lebrun, J.J. SMAD signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J. Biol. Chem. 2008, 283, 1293–1307. [Google Scholar] [CrossRef]
- Zhang, S. Investigation of TGF-β. Associated Master-like Transcription Factors in Breast Cancer. Ph.D. Thesis, National University of Singapore, Singapore, 2016. [Google Scholar]
- Qi, J.C.; Yang, Z.; Zhang, Y.P.; Lu, B.S.; Yin, Y.W.; Liu, K.L.; Xue, W.Y.; Qu, C.B.; Li, W. miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to participate in epithelial to mesenchymal transition in prostate cancer. Front. Oncol. 2020, 9, 1535. [Google Scholar] [CrossRef]
- Shijun, L.; Khan, R.; Raza, S.H.A.; Jieyun, H.; Chugang, M.; Kaster, N.; Gong, C.; Chunping, Z.; Schreurs, N.M.; Linsen, Z. Function and characterization of the promoter region of perilipin 1 (PLIN1): Roles of E2F1, PLAG1, C/EBPβ, and SMAD3 in bovine adipocytes. Genomics 2020, 112, 2400–2409. [Google Scholar] [CrossRef]
- Ji, L.S.; Sun, X.H.; Zhang, X.; Zhou, Z.H.; Yu, Z.; Zhu, X.J.; Huang, L.Y.; Fang, M.; Gao, Y.T.; Li, M.; et al. Mechanism of follicular helper T cell differentiation regulated by transcription factors. J. Immunol. Res. 2020, 2020, 1826587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liao, Q.; Pan, T.; Yu, L.; Luo, Z.; Su, S.; Liu, S.; Hou, M.; Li, Y.; Damba, T.; et al. BATF relieves hepatic steatosis by inhibiting PD1 and promoting energy metabolism. eLife 2023, 12, RP88521. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.; Hay, J.; Moles, M.W.; Michie, A.M. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front. Immunol. 2023, 14, 2557. [Google Scholar] [CrossRef]
- Pham, D.; Moseley, C.E.; Gao, M.; Savic, D.; Winstead, C.J.; Sun, M.; Kee, B.L.; Myers, R.M.; Weaver, C.T.; Hatton, R.D. Batf pioneers the reorganization of chromatin in developing effector T cells via Ets1-dependent recruitment of Ctcf. Cell Rep. 2019, 29, 1203–1220. [Google Scholar] [CrossRef]
- Tian, H.; Luo, J.; Shi, H.; Chen, X.; Wu, J.; Liang, Y.; Li, C.; Loor, J.J. Role of peroxisome proliferator-activated receptor-α on the synthesis of monounsaturated fatty acids in goat mammary epithelial cells. J. Anim. Sci. 2020, 98, skaa062. [Google Scholar] [CrossRef]
Authors | Synopsis of Study | Type of Data |
---|---|---|
Badaoui et al. [14] | Assess the association of Acetyl-coenzyme A carboxylases genotypes with milk traits by determining the polymorphisms. | Genotype–phenotype |
Badaoui et al. [15] | Study of the genetic variants affecting milk quality and cheese manufacturing components. | Genotype–phenotype |
Zidi et al. [16] | Identification of SNPs that create or modify microRNA target sites in caprine casein genes. | Genotype–phenotype |
Zidi et al. [22] | Examine the association between the coding region of the caprine malic enzyme 1 (ME1) gene and the composition of milk fatty acids. | Genotype–phenotype |
Zidi et al. [23] | Analysis of the association between the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk quality traits. | Genotype–phenotype |
Manunza et al. [25] | Exploration of the genetic variability in the caprine SREBF1 coding region and its association with milk composition and fat contents in dairy goats. | Genotype–phenotype |
Guan et al. [6] | Exploration of the genetic signatures generated by artificial selection for dairy and pigmentation traits in MUGs. | Genotype–phenotype |
Guan et al. [24] | Analysis of the molecular basis of lactation as well as pinpointing the genetic variables that influence the quantity and quality of milk. | RNA-seq and genotype–phenotype |
Inostroza et al. [17] | Identification of casein complex haplotype variants in MUGs and their effects on milk traits. | Genotype–phenotype |
Inostroza et al. [18] | Assessment of the dominant and additive effects of casein complex SNPs, as well as their epistatic interactions, on genetic parameters, breeding values, and milk traits in MUGs. | Genotype–phenotype |
Luigi-Sierra et al. [19] | Genomic mapping of body, udder, and leg conformation traits in MUGs. | Genotype–phenotype |
Luigi-Sierra et al. [20] | Determination of inbreeding levels in a MUG resource population using different genomic coefficients to quantify the influence of inbreeding depression on dairy phenotypes. | Genotype–phenotype |
Luigi-Sierra et al. [21] | Identification of the genetic regions associated with many morphological traits using a GWAS in MUGs. | Genotype–phenotype |
Traits | RF-Based Feature Selection | Epistatis Analysis by MIDESP | Common Genes | ||
---|---|---|---|---|---|
SNPs | Genes | SNP Pairs | Genes | ||
DM | 580 | 120 | 122 | 38 | 8 |
DPM | 550 | 124 | 674 | 164 | 29 |
FP | 604 | 105 | 217 | 72 | 13 |
LP | 369 | 91 | 789 | 187 | 17 |
MY | 105 | 22 | 191 | 78 | 06 |
PP | 243 | 56 | 991 | 291 | 19 |
SCC | 363 | 74 | 377 | 96 | 18 |
Number of | |||
---|---|---|---|
Trait | TFs | TF Pairs | Top-Three TF Pairs |
DM | 18 | 22 | [PPARA–THAP1]; [HAND1E47–DBP]; [E2F1–TFAP2A] |
DPM | 16 | 15 | [DBP–THAP1]; [HAND1E47–DBP]; [PPARA–E2F1] |
FP | 16 | 13 | [HAND1E47–DBP]; [DBP–SMAD4]; [HOXA6–BATF] |
LP | 15 | 15 | [THAP1–THAP1]; [DBP–THAP1]; [DBP–SMAD4] |
MY | 18 | 19 | [HAND1E47–DBP]; [HOXA4–HMBOX1]; [FOXM1–BATF] |
PP | 16 | 17 | [THAP1–THAP1]; [DBP–FOXM1]; [PPARA–THAP1] |
SSC | 19 | 16 | [HAND1E47–DBP]; [THAP1–THAP1]; [PPARA–E2F1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.; Bertram, H.; Schmitt, A.O.; Ramzan, F.; Gültas, M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. Biology 2024, 13, 929. https://doi.org/10.3390/biology13110929
Khan MI, Bertram H, Schmitt AO, Ramzan F, Gültas M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. Biology. 2024; 13(11):929. https://doi.org/10.3390/biology13110929
Chicago/Turabian StyleKhan, Muhammad Imran, Hendrik Bertram, Armin Otto Schmitt, Faisal Ramzan, and Mehmet Gültas. 2024. "Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats" Biology 13, no. 11: 929. https://doi.org/10.3390/biology13110929
APA StyleKhan, M. I., Bertram, H., Schmitt, A. O., Ramzan, F., & Gültas, M. (2024). Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. Biology, 13(11), 929. https://doi.org/10.3390/biology13110929