Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Ringer’s Solution and Its Selected Derivatives
3. Mouse Embryo Culture Media
4. Rat Embryo Culture Media
5. Porcine Embryo Culture Media
6. Bovine Embryo Culture Media
7. Challenges and Future Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Summers, M.C. A brief history of the development of the KSOM family of media. J. Assist. Reprod. Genet. 2013, 30, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Summers, M.C.; Biggers, J.D. Chemically defined media and the culture of mammalian preimplantation embryos: Historical perspective and current issues. Hum. Reprod. Update 2003, 9, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.I.; Ali, J. Embryo Culture Media, Culture Techniques and Embryo Selection: A Tribute to Wesley Kingston Whitten. J. Reprod. Stem Cell Biotechnol. 2010, 1, 1–29. [Google Scholar] [CrossRef]
- Kazuchika, M. Development of a Culture Medium for Rat 1-Cell Embryos. J. Mamm. Ova Res. 2016, 33, 11–16. [Google Scholar] [CrossRef]
- Chen, P.R.; Redel, B.K.; Kerns, K.C.; Spate, L.D.; Prather, R.S. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021, 10, 2770. [Google Scholar] [CrossRef]
- Feugang, J.M.; Camargo-Rodríguez, O.; Memili, E. Culture systems for bovine embryos. Livest. Sci. 2009, 121, 141–149. [Google Scholar] [CrossRef]
- Ferré, L.B.; Kjelland, M.E.; Strøbech, L.B.; Hyttel, P.; Mermillod, P.; Ross, P.J. Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef]
- Ringer, S. A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart. J. Physiol. 1883, 4, 29–42.3. [Google Scholar] [CrossRef]
- Tervit, H.R.; Whittingham, D.G.; Rowson, L.E. Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 1972, 30, 493–497. [Google Scholar] [CrossRef]
- Yoshioka, K.; Suzuki, C.; Tanaka, A.; Anas, I.M.-K.; Iwamura, S. Birth of Piglets Derived from Porcine Zygotes Cultured in a Chemically Defined Medium. Biol. Reprod. 2002, 66, 112–119. [Google Scholar] [CrossRef]
- Quinn, P.; Kerin, J.F.; Warnes, G.M. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil. Steril. 1985, 44, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A. Sydney Ringer (1834–1910) and Alexis Hartmann (1898–1964). Anaesthesia 1981, 36, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J. Sydney Ringer; physiological saline, calcium and the contraction of the heart. J. Physiol. 2004, 555, 585–587. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; McNerney, P. Sydney Ringer, the Pipe Water of New River Water Company and the Discovery of the Elixir of Life? American College of Surgeons: Chicago, IL, USA, 2016. [Google Scholar]
- Cammack, R.; Atwood, T.; Campbell, P.; Parish, H.; Smith, A.; Vella, F.; Stirling, J. Oxford Dictionary of Biochemistry and Molecular Biology, 2nd ed.; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Lawitts, J.A.; Biggers, J.D. Optimization of mouse embryo culture media using simplex methods. J. Reprod. Fertil. 1991, 91, 543–556. [Google Scholar] [CrossRef]
- Lawitts, J.A.; Biggers, J.D. Culture of preimplantation embryos. Methods Enzymol. 1993, 225, 153–164. [Google Scholar] [CrossRef]
- Cole, R.J.; Paul, J. Properties of cultured preimplantation mouse and rabbit embryos, and cell strains derived from them. In Preimplantation Stages of Pregnancy; O’Connor, G.E.W.W.M., Ed.; Churchill: London, UK, 1965; pp. 82–122. [Google Scholar]
- Whittingham, D.G. Culture of mouse ova. J. Reprod. Fertil. Suppl. 1971, 14, 7–21. [Google Scholar]
- Chatot, C.L.; Ziomek, C.A.; Bavister, B.D.; Lewis, J.L.; Torres, I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 1989, 86, 679–688. [Google Scholar] [CrossRef]
- Baltz, J.M. Connections between preimplantation embryo physiology and culture. J. Assist. Reprod. Genet. 2013, 30, 1001–1007. [Google Scholar] [CrossRef]
- Lawitts, J.A.; Biggers, J.D. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol. Reprod. Dev. 1992, 31, 189–194. [Google Scholar] [CrossRef]
- Ho, Y.; Wigglesworth, K.; Eppig, J.J.; Schultz, R.M. Preimplantation development of mouse embryos in KSOM: Augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 1995, 41, 232–238. [Google Scholar] [CrossRef]
- Rezk, Y.; Huff, C.; Rizk, B. Effect of glutamine on preimplantation mouse embryo development in vitro. Am. J. Obstet. Gynecol. 2004, 190, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Gardner, D.K. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 1994, 102, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Hooper, K.; Gardner, D.K. Animal Experimentation: Effect of Essential Amino Acids on Mouse Embryo Viability and Ammonium Production. J. Assist. Reprod. Genet. 2001, 18, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Biggers, J.D.; McGinnis, L.K.; Lawitts, J. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod. Biomed. Online 2004, 9, 59–69. [Google Scholar] [CrossRef]
- Ebert, K.M.; Brinster, R.L. Rabbit alpha-globin messenger RNA translation by the mouse ovum. J. Embryol. Exp. Morphol. 1983, 74, 159–168. [Google Scholar]
- Brinster, R.L. UPTAKE AND INCORPORATION OF AMINO ACIDS BY THE PREIMPLANTATION MOUSE EMBRYO. Reproduction 1971, 27, 329–338. [Google Scholar] [CrossRef]
- Brinster, R.L. A metod for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp. Cell Res. 1963, 32, 205–208. [Google Scholar] [CrossRef]
- Miyoshi, K.; Kono, T.; Niwa, K. Stage-Dependent Development of Rat 1-Cell Embryos in a Chemically Defined Medium after Fertilization in Vivo and in Vitro. Biol. Reprod. 1997, 56, 180–185. [Google Scholar] [CrossRef]
- Nakamura, K.; Morimoto, K.; Shima, K.; Yoshimura, Y.; Kazuki, Y.; Suzuki, O.; Matsuda, J.; Ohbayashi, T. The effect of supplementation of amino acids and taurine to modified KSOM culture medium on rat embryo development. Theriogenology 2016, 86, 2083–2090. [Google Scholar] [CrossRef]
- Whittingham, D.G. Survival of rat embryos after freezing and thawing. J. Reprod. Fertil. 1975, 43, 575–578. [Google Scholar] [CrossRef]
- Mayer, J.F.; Fritz, H.I. The culture of preimplantation rat embryos and the production of allophenic rats. J. Reprod. Fertil. 1974, 39, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kishi, J.; Noda, Y.; Narimoto, K.; Umaoka, Y.; Mori, T. Block to development in cultured rat 1-cell embryos is overcome using medium HECM-1. Hum. Reprod. 1991, 6, 1445–1448. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Funahashi, H.; Okuda, K.; Niwa, K. Development of rat one-cell embryos in a chemically defined medium: Effects of glucose, phosphate and osmolarity. J. Reprod. Fertil. 1994, 100, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Tanaka, N.; Niwa, K. Penetration In Vitro of Naturally Ovulated Rat Eggs and the Development of Eggs in a Chemically Defined Medium. J. Mamm. Ova Res. 1995, 12, 35–39. [Google Scholar] [CrossRef]
- Miyoshi, K.; Abeydeera, L.R.; Okuda, K.; Niwa, K. Effects of osmolarity and amino acids in a chemically defined medium on development of rat one-cell embryos. J. Reprod. Fertil. 1995, 103, 27–32. [Google Scholar] [CrossRef]
- Oh, S.H.; Miyoshi, K.; Funahashi, H. Rat Oocytes Fertilized in Modified Rat 1-Cell Embryo Culture Medium Containing a High Sodium Chloride Concentration and Bovine Serum Albumin Maintain Developmental Ability to the Blastocyst Stage. Biol. Reprod. 1998, 59, 884–889. [Google Scholar] [CrossRef]
- Han, M.S.; Niwa, K. Effects of BSA and Fetal Bovine Serum in Culture Medium on Development of Rat Embryos. J. Reprod. Dev. 2003, 49, 235–242. [Google Scholar] [CrossRef]
- Bavister, B.D. Substitution of a synthetic polymer for protein in a mammalian gamete culture system. J. Exp. Zool. 1981, 217, 45–51. [Google Scholar] [CrossRef]
- Schini, S.A.; Bavister, B.D. Two-Cell Block to Development of Cultured Hamster Embryos is Caused by Phosphate and Glucose. Biol. Reprod. 1988, 39, 1183–1192. [Google Scholar] [CrossRef]
- Men, H.; Stone, B.J.; Bryda, E.C. Media optimization to promote rat embryonic development to the blastocyst stage in vitro. Theriogenology 2020, 151, 81–85. [Google Scholar] [CrossRef]
- Petters, R.M.; Wells, K.D. Culture of pig embryos. J. Reprod. Fertil. Suppl. 1993, 48, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Petters, R.; Reed, M. Addition of taurine of hypotaurine to culture medium improves development of one- and two-cell pig embryos in vitro. Theriogenology 1991, 35, 253. [Google Scholar] [CrossRef]
- Reed, M.; Illera, M.; Petters, R. In vitro culture of pig embryos. Theriogenology 1992, 37, 95–109. [Google Scholar] [CrossRef]
- Davis, D.L.; Day, B.N. Cleavage and Blastocyst Formation by Pig Eggs In Vitro. J. Anim. Sci. 1978, 46, 1043–1053. [Google Scholar] [CrossRef]
- Iritani, A.; Sato, E.; Nishikawa, Y. Secretion Rates and Chemical Composition of Oviduct and Uterine Fluids in Sows. J. Anim. Sci. 1974, 39, 582–588. [Google Scholar] [CrossRef]
- Nichol, R.; Hunter, R.H.; Gardner, D.K.; Leese, H.J.; Cooke, G.M. Concentrations of energy substrates in oviductal fluid and blood plasma of pigs during the peri-ovulatory period. J. Reprod. Fertil. 1992, 96, 699–707. [Google Scholar] [CrossRef]
- Krisher, R.L.; Lane, M.; Bavister, B.D. Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 1999, 60, 1345–1352. [Google Scholar] [CrossRef]
- Lim, J.; Hansel, W. Roles of growth factors in the development of bovine embryos fertilized in vitro and cultured singly in a defined medium. Reprod. Fertil. Dev. 1996, 8, 1199–1205. [Google Scholar] [CrossRef]
- Rosenkrans, C.; First, N. Culture of bovine zygotes to blastocyst stage: Effects of amino acids and vitamins. Theriogenology 1991, 35, 266. [Google Scholar] [CrossRef]
- Liu, Z.; Foote, R.H. Development of Bovine Embryos in KSOM with Added Superoxide Dismutase And Taurine and with Five and Twenty Percent O2. Biol. Reprod. 1995, 53, 786–790. [Google Scholar] [CrossRef]
- Mello, M.R.B.; Ferguson, C.E.; Lima, A.S.; Wheeler, M.B. 142 IN VITRO DEVELOPMENT OF BOVINE EMBRYOS CULTURED IN KSOM, CR1AA, OR KSOM/CR1aa. Reprod. Fertil. Dev. 2005, 17, 221–222. [Google Scholar] [CrossRef]
- Arias, M.E.; Vargas, T.; Gallardo, V.; Aguila, L.; Felmer, R. Simple and Efficient Chemically Defined In Vitro Maturation and Embryo Culture System for Bovine Embryos. Animals 2022, 12, 3057. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.P.; Lane, M.; Gardner, D.K.; Krisher, R.L. A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum. Reprod. 2000, 15, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Speckhart, S.L.; Wooldridge, L.K.; Ealy, A.D. An updated protocol for in vitro bovine embryo production. STAR Protoc. 2023, 4, 101924. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.; Spitzer, A.; Batt, P.A. Enhanced Rates of Cleavage and Development for Sheep Zygotes Cultured to the Blastocyst Stage in Vitro in the Absence of Serum and Somatic Cells: Amino Acids, Vitamins, and Culturing Embryos in Groups Stimulate Development. Biol. Reprod. 1994, 50, 390–400. [Google Scholar] [CrossRef]
- Keskintepe, L.; Burnley, C.A.; Brackett, B.G. Production of viable bovine blastocysts in defined in vitro conditions. Biol. Reprod. 1995, 52, 1410–1417. [Google Scholar] [CrossRef]
- Fields, S.D.; Hansen, P.J.; Ealy, A.D. Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology 2011, 75, 1466–1475. [Google Scholar] [CrossRef]
- Gualtieri, R.; De Gregorio, V.; Candela, A.; Travaglione, A.; Genovese, V.; Barbato, V.; Talevi, R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024, 13, 996. [Google Scholar] [CrossRef]
- Biggers, J.D. Thoughts on embryo culture conditions. Reprod. Biomed. Online 2002, 4, 30–38. [Google Scholar] [CrossRef]
- Driver, A.M.; Peñagaricano, F.; Huang, W.; Ahmad, K.R.; Hackbart, K.S.; Wiltbank, M.C.; Khatib, H. RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genom. 2012, 13, 118. [Google Scholar] [CrossRef]
- Ming, H.; Zhang, M.; Rajput, S.; Logsdon, D.; Zhu, L.; Schoolcraft, W.B.; Krisher, R.; Jiang, Z.; Yuan, Y. In vitro culture alters cell lineage composition and cellular metabolism of bovine blastocyst. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- van der Weijden, V.A.; Schmidhauser, M.; Kurome, M.; Knubben, J.; Floter, V.L.; Wolf, E.; Ulbrich, S.E. Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos. BMC Genom. 2021, 22, 139. [Google Scholar] [CrossRef] [PubMed]
- Banliat, C.; Mahé, C.; Lavigne, R.; Com, E.; Pineau, C.; Labas, V.; Guyonnet, B.; Mermillod, P.; Saint-Dizier, M. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genom. 2022, 23, 839. [Google Scholar] [CrossRef] [PubMed]
- Katz-Jaffe, M.G.; Linck, D.W.; Schoolcraft, W.B.; Gardner, D.K. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction 2005, 130, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Banliat, C.; Tsikis, G.; Labas, V.; Teixeira-Gomes, A.P.; Com, E.; Lavigne, R.; Pineau, C.; Guyonnet, B.; Mermillod, P.; Saint-Dizier, M. Identification of 56 Proteins Involved in Embryo-Maternal Interactions in the Bovine Oviduct. Int. J. Mol. Sci. 2020, 21, 466. [Google Scholar] [CrossRef]
- Prather, R.S.; Redel, B.K.; Whitworth, K.M.; Zhao, M.T. Genomic profiling to improve embryogenesis in the pig. Anim. Reprod. Sci. 2014, 149, 39–45. [Google Scholar] [CrossRef]
- Santana, P.; da Silva, A.; Ramos, R.T.J.; Gonçalves, A.A.; da Costa, N.N.; Ramos, P.; Silva, T.V.G.; Cordeiro, M.D.S.; Santos, S.; Ohashi, O.M.; et al. Contributions of RNA-seq to improve in vitro embryo production (IVP). Anim. Reprod. 2019, 16, 249–259. [Google Scholar] [CrossRef]
- Green, J.A.; Kim, J.G.; Whitworth, K.M.; Agca, C.; Prather, R.S. The use of microarrays to define functionally-related genes that are differentially expressed in the cycling pig uterus. Soc. Reprod. Fertil. Suppl. 2006, 62, 163–176. [Google Scholar] [CrossRef]
- Hao, Y.; Mathialagan, N.; Walters, E.; Mao, J.; Lai, L.; Becker, D.; Li, W.; Critser, J.; Prather, R.S. Osteopontin Reduces Polyspermy During In Vitro Fertilization of Porcine Oocytes. Biol. Reprod. 2006, 75, 726–733. [Google Scholar] [CrossRef]
Ingredients | Ringer’s Solution | Ringer–Locke’s Solution (Mammalian) | Krebs–Ringer Bicarbonate | Tyrode’s Solution |
---|---|---|---|---|
NaCl | 133.00 | 154.00 | 118.00 | 137.00 |
KCl | 1.34 | 5.60 | 4.70 | 2.70 |
KH2PO4 | -- | -- | 1.20 | -- |
NaH2PO4 | -- | -- | -- | 0.417 |
MgSO4·7H2O | -- | -- | 1.20 | -- |
MgCl2 | -- | -- | -- | 1.05 |
CaCl2 | 1.25 | 2.16 | 2.50 | 1.80 |
NaHCO3 | 2.76 | 3.6 | 24.90 | 12.00 |
Glucose | -- | 5.60 | 10.00 | 5.50 |
Ingredients | BMOC-2 * | M16 | CZB | SOM ** | KSOMaa | KSOMaa-Ala-Gln |
---|---|---|---|---|---|---|
NaCl | 94.88 | 94.66 | 81.62 | 85 | 95.00 | 95 |
KCl | 4.78 | 4.78 | 4.83 | 0.25 | 2.50 | 2.50 |
KH2PO4 | 1.19 | 1.19 | 1.18 | 0.35 | 0.35 | 0.35 |
MgSO4·7H2O | 1.19 | 1.19 | 1.18 | 0.2 | 0.20 | 0.20 |
CaCl2 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 |
NaHCO3 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 4.00 |
Na lactate | 25.00 | 23.28 | 31.30 | 10.00 | 10.00 | 10.00 |
Na pyruvate | 0.25 | 0.33 | 0.27 | 0.2 | 0.20 | 0.20 |
Glucose | 5.56 | 5.56 | 0.00 | 0.2 | 0.20 | 0.20 |
Glutamine | -- | -- | 1.00 | 1.00 | 1.00 | -- |
Ala-Gln | -- | -- | -- | -- | -- | 1.00 |
EDTA | -- | -- | 0.11 | 0.01 | 0.01 | 0.01 |
Penicillin G (K salt) (mg/mL) | 0.06 | 0.05 | 0.06 | 0.06 | ||
Streptomycin sulfate (mg/mL) | 0.05 | 0.07 | 0.05 | 0.05 | ||
BSA (mg/mL) | 1.00 | 4.00 | 5.00 | 1.00 | 1.00 | 1.00 |
MEM NEAA | -- | -- | -- | -- | 0.5× | -- |
MEM EAA | -- | -- | -- | -- | 0.5× | -- |
Mouse embryo culture in vitro | 2-cell stage to blastocyst | 2-cell stage to blastocyst | 1-cell stage to blastocyst (random-bred) | 1-cell stage to blastocyst (outbred and inbred) | 1-cell stage to blastocyst (outbred and inbred) | 1-cell stage to blastocyst (outbred and inbred) |
Ingredients | R1ECM | mR1ECM | mR1ECM-BSA | mR1ECM-FBS | KSOM-R |
---|---|---|---|---|---|
NaCl | 78.8 | 76.7 | 106.70 | 76.7 | 95 |
KCl | 3.20 | 3.20 | 3.20 | 3.20 | 5 |
MgCl2·6H2O | 0.50 | 0.50 | 0.50 | 0.50 | -- |
MgSO4·7H2O | -- | -- | -- | -- | 0.20 |
CaCl2 | 2.00 | 2.00 | 2.00 | 2.00 | 1.71 |
NaHCO3 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
Na Lactate | 10.00 | 10.00 | 10.00 | 10.00 | 10 |
Na Pyruvate | 0.50 | 0.50 | 0.50 | 0.50 | 0.20 |
Glucose | 7.50 | 7.50 | 7.50 | 7.50 | 0.20 |
Glutamine | 0.10 | 0.10 | 0.10 | 0.10 | 1.00 |
EDTA | -- | -- | -- | -- | 0.01 |
PVA * (mg/mL) | 1.00 | 1.00 | -- | -- | -- |
Penicillin G K salt | -- | -- | -- | -- | 0.06 mg/mL |
BSA (mg/mL) | -- | -- | 4.00 | -- | 1.00 |
MEM NEAA 100× | -- | 10.00 mL | 10.00 mL | 10.00 mL | 10.00 mL |
MEM EAA 50× | -- | 20.00 mL | 20.00 mL | 20.00 mL | 20.00 mL |
Taurine | -- | -- | -- | -- | 1 |
Glycine | -- | -- | -- | -- | 1 |
Glutamate | -- | -- | -- | -- | 1 |
Alanine | 1 | ||||
FBS | -- | -- | -- | 10% | -- |
Rat embryo culture in vitro | One-cell to blastocyst (outbred and inbred) | One-cell to blastocyst (outbred and inbred) | Beneficial for sperm penetration and pronuclear formation | Promote embryo development from 16-cell to blastocyst | One-cell to blastocyst (outbred and inbred) |
Ingredients | mKRB | NCSU-23 | PZM-3 | PZM-4 |
---|---|---|---|---|
NaCl | 94.00 | 108.73 | 108.00 | 108.00 |
KCl | 4.78 | 4.78 | 10.00 | 10.00 |
KH2PO4 | 1.20 | 1.19 | 0.35 | 0.35 |
MgSO4·7H2O | 1.20 | 1.19 | 0.40 | 0.40 |
CaCl2 | 2.50 | 1.70 | -- | -- |
NaHCO3 | 25.07 | 25.07 | 25.07 | 25.07 |
Na Lactate | 29.2 | -- | -- | -- |
Ca-(lactate)2·5H2O | -- | -- | 2.00 | 2.00 |
Na Pyruvate | 0.25 | -- | 0.20 | 0.20 |
Glucose | 5.56 | 5.55 | -- | -- |
Glutamine | -- | 1.00 | 1.00 | 1.00 |
Taurine | -- | 7.00 | -- | -- |
Hypotaurine | 4 | 5.00 | 5.00 | 5.00 |
MEM NEAA 50× (mL/L) | -- | -- | 20.00 | 20.00 |
MEM EAA 100× (mL/L) | -- | -- | 10.00 | 10.00 |
BSA (mg/mL) | 4 | -- | 3.00 | -- |
PVA (mg/mL) | -- | -- | -- | 3.00 |
Porcine embryo culture in vitro | 4-cell stage to blastocyst | 1-cell stage to blastocyst | 1-cell stage to blastocyst | 1-cell stage to blastocyst |
Ingredients | SOF | SOFaa | SOFC1 | SOFC2 | SOF-BE1 |
---|---|---|---|---|---|
NaCl | 107.70 | 107.70 | 99.70 | 99.70 | 107.70 |
KCl | 7.16 | 7.16 | 7.16 | 7.16 | 7.16 |
KH2PO4 | 1.19 | 1.19 | 1.19 | 1.19 | 1.19 |
MgCl2·6H2O | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 |
CaCl2·H2O | 1.71 | 1.71 | 1.71 | 1.71 | 1.17 |
NaHCO3 | 25.07 | 25.07 | 25.07 | 25.07 | 25.07 |
Na Lactate | 3.30 | 3.30 | 3.30 | 3.30 | 5.30 |
Na Pyruvate | 0.33 | 0.33 | 0.33 | 0.33 | 0.40 |
Sodium citrate | -- | -- | -- | -- | 0.50 |
Glucose | 1.50 | 1.50 | 1.50 | 3.00 | -- |
Glutamine | -- | 1.00 | 1.00 | 1.00 | -- |
Alanyl-Glutamine | -- | -- | -- | -- | 1.00 |
Myo-inositol | -- | -- | -- | -- | 2.77 |
EDTA | -- | -- | 0.1 | -- | -- |
Taurine | -- | -- | 0.1 | -- | -- |
Penicillin Na salt (unit/mL) | 100 | 100 | -- | -- | -- |
Streptomycin (µg/mL) | 50 | 50 | -- | -- | -- |
Gentamicin sulfate (µg/mL) | -- | -- | -- | -- | 25.00 |
MEM NEAA 50× (mL/L) | 20 | 20 | 20 | 20 | 20 |
MEM EAA 100× (mL/L) | 10 | 10 | 10 | 10 | 10 |
BSA (mg/mL) | 32 | 32 | 8 | 8 | 4 |
Bovine embryo culture in vitro | 8-cell stage to blastocyst | 1-cell stage to blastocyst | 1-cell stage to blastocyst | 1-cell stage to blastocyst | 1-cell stage to blastocyst |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, H. Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro. Biology 2024, 13, 789. https://doi.org/10.3390/biology13100789
Men H. Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro. Biology. 2024; 13(10):789. https://doi.org/10.3390/biology13100789
Chicago/Turabian StyleMen, Hongsheng. 2024. "Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro" Biology 13, no. 10: 789. https://doi.org/10.3390/biology13100789
APA StyleMen, H. (2024). Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro. Biology, 13(10), 789. https://doi.org/10.3390/biology13100789