Management of Antracnosis with Electrochemically Activated Salt Solutions (EASSs) on Bean Culture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Electrochemically Activated Salt Solutions (EASSs) Production Conditions
2.2. Biological Material
2.3. In Vitro Inhibition Test
2.4. Pathogenicity Test
2.5. Plant Morphological Variables and Severity Level
2.6. Plant Enzymatic and Antioxidant Variables
2.7. Statistical Analysis
3. Results
3.1. In Vitro Inhibition Test
3.2. Plant Morphological Variables
3.3. Plant Severity Levels
3.4. Plant Enzymatic and Antioxidant Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padder, B.A.; Sharma, P.N.; Awale, H.E.; Kelly, J.D. Colletotrichum Lindemuthianum, The Causal Agent of Bean Anthracnose. J. Plant Pathol. 2017, 99, 317–330. [Google Scholar]
- Luna-vital, D.A.; Mojica, L.; Gonz, E. Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. FRIN 2014, 26, 39–50. [Google Scholar] [CrossRef]
- Aquino-Bolaños, E.N.; García-Díaz, Y.D.; Chavez-Servia, J.L.; Carrillo-Rodríguez, J.C.; Vera-Guzmán, A.M.; Heredia-García, E. Anthocyanin, polyphenol, and flavonoid contents and antioxidant activity in Mexican common bean (Phaseolus vulgaris L.) landraces. Emir. J. Food Agric. 2016, 28, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Fitsum, S.; Selvaraj, T.; Mulugeta, N. Field Management of Anthracnose (Colletotrichum lindemuthianum) in Common Bean through Fungicides and Bioagents. Adv. Crop. Sci. Technol. 2014, 2, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Rahmanzadeh, A.; Khahani, B.; Taghavi, S.M.; Khojasteh, M.; Osdaghi, E. Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genom. 2022, 23, 680. [Google Scholar] [CrossRef]
- Nasar, S.; Shaheen, H.; Murtaza, G.; Tinghong, T.; Arfan, M.; Idrees, M. Socioeconomic Evaluation of Common Bean (Phaseolus vulgaris L.) Cultivation in Providing Sustainable Livelihood to the Mountain Populations of Kashmir Himalayas. Plants 2023, 12, 213. [Google Scholar] [CrossRef]
- Gillard, C.L.; Ranatunga, N.K.; Conner, R.L. The control of dry bean anthracnose through seed treatment and the correct application timing of foliar fungicides. Crop Prot. 2012, 37, 81–90. [Google Scholar] [CrossRef]
- Gabrekiristos, E.; Wondimu, M. Emerging and Remerging Diseases of Common Bean (Phaseolus vulgaris L.) in Major Production Areas: In the Case of Ethiopia. J. Agric. Sci. 2022, 14, 19–34. [Google Scholar] [CrossRef]
- Pastor-Corrales, M.A.; Tu, J.C. Anthracnose. In Bean Production Problems in the Tropics, 2nd ed.; Schwartz, H.F., Pastor-Corrales, M.A., Eds.; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1989; pp. 77–104. [Google Scholar]
- Chakraborty, N.; Mukherjee, K.; Sarkar, A.; Acharya, K. Interaction between bean and Colletotrichum gloeosporioides: Understanding through a biochemical approach. Plants 2019, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Bonner, M.R.; Alavanja, M.C.R. Pesticides, human health, and food security. Food Energy Secur. 2017, 6, 89–93. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- García-Mier, L.; Guevara-González, R.G.; Mondragón-Olguín, V.M.; Verduzco-Cuellar, B.d.R.; Torres-Pacheco, I. Agriculture and bioactives: Achieving both crop yield and phytochemicals. Int. J. Mol. Sci. 2013, 14, 4203–4222. [Google Scholar] [CrossRef] [Green Version]
- Jacquet, F.; Hélène, M.; Julia, J.; Edith, J.; Cadre, L.; Litrico, I.; Malausa, T.; Reboud, X.; Huyghe, C. Pesticide-free agriculture as a new paradigm for research. Agron. Sustain. Dev. 2022, 42, 8. [Google Scholar] [CrossRef]
- Rebezov, M.; Saeed, K.; Khaliq, A.; Junaid, S.; Rahman, U.; Sameed, N.; Semenova, A.; Khayrullin, M.; Dydykin, A.; Abramov, Y.; et al. Application of Electrolyzed Water in the Food Industry: A Review. Appl. Sci. 2022, 12, 6639. [Google Scholar] [CrossRef]
- Helme, A.J.; Ismail, M.N.; Scarano, F.J.; Yang, C.-L. Bactericidal efficacy of electrochemically activated solutions and of commercially available hypochlorite. Br. J. Biomed. Sci. 2010, 67, 105–108. [Google Scholar] [CrossRef]
- Thorn, R.M.S.; Lee, S.W.H.; Robinson, G.M.; Greenman, J.; Reynolds, D.M. Electrochemically activated solutions: Evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 31, 641–653. [Google Scholar] [CrossRef]
- Robinson, G.M.; Lee, S.W.; Greenman, J.; Salisbury, V.C.; Reynolds, D.M. Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Lett. Appl. Microbiol. 2010, 50, 289–294. [Google Scholar] [CrossRef]
- Zarattini, M.; Bastiani, M.D.; Bernacchia, G.; Ferro, S.; Battisti, A. De The use of ECAS in plant protection: A green and efficient antimicrobial approach that primes selected defense genes. Ecotoxicology 2015, 24, 1996–2008. [Google Scholar] [CrossRef]
- Mejía-Teniente, L.; Dúran-Flores, B.A.; Torres-Pacheco, I.; González-Chavira, M.M.; Rivera-Bustamante, R.J.; Feregrino-Perez, A.A.; Pérez-Ramírez, I.; Rocha-Gúzman, N.E.; Reynoso-Camacho, R.; Guevara-González, R.G. Hydrogen peroxide portects pepper (Capsicum annuum L.) against pepper Golden mosaic geminivirus (PepGMV) infections. Physiol. Mol. Plant Pathol. 2019, 106, 23–29. [Google Scholar] [CrossRef]
- Dickerson, D.P.; Pascholati, S.F.; Hagerman, A.E.; Butler, L.G.; Nicholson, R.L. Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol. Plant Pathol. 1984, 25, 111–123. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Conner, R.L.; Chen, Y.; Hou, A.; Balsubramanian, P.M.; McLaren, D.L.; McRae, K.B. Seedborne infection affects anthracnose development in two dry bean cultivars. Can. J. Plant Pathol. 2009, 31, 449–455. [Google Scholar] [CrossRef]
- Ampofo, J.; Ngadi, M.; Ramaswamy, H.S. Elicitation kinetics of phenolics in common bean (Phaseolus vulgaris) sprouts by thermal treatments. Legume Sci. 2020, 2, e56. [Google Scholar] [CrossRef]
- Ampofo, J.O.; Ngadi, M. Ultrasonic assisted phenolic elicitation and antioxidant potential of common bean (Phaseolus vulgaris) sprouts. Ultrason. Sonochemistry 2020, 64, 104974. [Google Scholar] [CrossRef]
- Ampofo, J.O.; Ngadi, M. Stimulation of the phenylpropanoid pathway and antioxidant capacities by biotic and abiotic elicitation strategies in common bean (Phaseolus vulgaris) sprouts. Process. Biochem. 2021, 100, 98–106. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Riaz, M.; Arif, M.S.; Rasheed, R.; Iqbal, M.; Hussain, I.; Mubarik, M.S. The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants. In Plant Tolerance to Environmental Stress, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–16. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
Operation Variables | Quantities |
---|---|
Sodium chloride concentration | 8 g/L |
Water volume | 250 L |
Initial free chloride concentration | 0 mg/L |
Final free chloride concentration | 3592 mg/L |
Electrolysis time | 24 h |
Amperage | 40 A |
Voltage | 4.88 V |
Initial temperature | 20 °C |
Final temperature | 22 °C |
Oxide-reduction potential (ORP) | 871 mV |
Treatment | Description |
---|---|
Negative control | CERCOBIN® 50SC de CERTIS 0.15 g/L |
Positive control | Distilled water |
EASSs 25 | EASSs 25 ppm |
EASSs 50 | EASSs 50 ppm |
EASSs 75 | EASSs 75 ppm |
EASSs 150 | EASSs 150 ppm |
EASSs 250 | EASSs 250 ppm |
EASSs 500 | EASSs 500 ppm |
EASSs 1000 | EASSs 1000 ppm |
Treatment | Description |
---|---|
Negative control | CERCOBIN® 50SC de CERTIS 0.15 g/L |
Positive control | Distilled water |
EASSs 12.5 | EASSs 12.5 ppm |
EASSs 25 | EASSs 25 ppm |
EASSs 50 | EASSs 50 ppm |
EASSs 100 | EASSs 100 ppm |
Treatments | Pathogens | ||||
---|---|---|---|---|---|
M. phasedine | Phytium sp. | S. rolfsii | R. solani | F. oxysporum | |
EASSs 1000 | 0.568 cd | 0.825 b | 0 d | 1.280 c | 4.900 c |
EASSs 500 | 1.590 c | 0.705 b | 3.400 c | 7.173 b | 4.893 c |
EASSs 250 | 3.448 b | 7.243 a | 6.455 ab | 8 a | 5.678 bc |
EASSs 150 | 7.750 a | 5.970 a | 7.290 ab | 8 a | 6.215 b |
EASSs 75 | 6.798 a | 7.605 a | 6.853 ab | 8 a | 6.225 b |
EASSs 50 | 7.167 a | 7.945 a | 5.995 b | 8 a | 6.273 b |
EASSs 25 | 7.165 a | 8 a | 7.463 ab | 8 a | 5.825 bc |
+Control | 7.807 a | 7.730 a | 8 a | 8 a | 7.880 a |
−Control | 0 d | 2 c | 0 d | 0 d | 0 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquez-Blanco, M.G.; Meas-Vong, Y.; Guerrero-Aguilar, B.Z.; Rivero-Montejo, S.d.J.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Guevara-González, R.G.; González-Chavira, M.M.; Ortega-Torres, A.E. Management of Antracnosis with Electrochemically Activated Salt Solutions (EASSs) on Bean Culture. Biology 2023, 12, 964. https://doi.org/10.3390/biology12070964
Marquez-Blanco MG, Meas-Vong Y, Guerrero-Aguilar BZ, Rivero-Montejo SdJ, Contreras-Medina LM, Torres-Pacheco I, Guevara-González RG, González-Chavira MM, Ortega-Torres AE. Management of Antracnosis with Electrochemically Activated Salt Solutions (EASSs) on Bean Culture. Biology. 2023; 12(7):964. https://doi.org/10.3390/biology12070964
Chicago/Turabian StyleMarquez-Blanco, María Guadalupe, Yunny Meas-Vong, Brenda Z. Guerrero-Aguilar, Samantha de J. Rivero-Montejo, Luis Miguel Contreras-Medina, Irineo Torres-Pacheco, Ramón Gerardo Guevara-González, Mario Martin González-Chavira, and Adrian Esteban Ortega-Torres. 2023. "Management of Antracnosis with Electrochemically Activated Salt Solutions (EASSs) on Bean Culture" Biology 12, no. 7: 964. https://doi.org/10.3390/biology12070964
APA StyleMarquez-Blanco, M. G., Meas-Vong, Y., Guerrero-Aguilar, B. Z., Rivero-Montejo, S. d. J., Contreras-Medina, L. M., Torres-Pacheco, I., Guevara-González, R. G., González-Chavira, M. M., & Ortega-Torres, A. E. (2023). Management of Antracnosis with Electrochemically Activated Salt Solutions (EASSs) on Bean Culture. Biology, 12(7), 964. https://doi.org/10.3390/biology12070964