Morphology and Chemical Messenger Regulation of Echinoderm Muscles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Morphology and Function of Musculature in Echinoderms
2.1. Visceral Musculature
2.1.1. Musculature of the Water Vascular System
2.1.2. Musculature of the Internal Organs
2.2. Somatic Musculature
2.2.1. Holothurian Somatic Musculature
- Longitudinal and circular muscles of the body wall
- Pharyngeal retractor muscles
2.2.2. Echinoid Somatic Musculature
- Aristotle’s lantern muscles
- Spine muscles
2.2.3. Asteroid Somatic Musculature
- Longitudinal and circular muscles of the body wall
- Spine muscles
2.2.4. Ophiuroid Somatic Musculature
- Arm muscles
- Spine muscles
2.2.5. Crinoid Somatic Musculature
- Arm muscles
3. Neurotransmitters That Affect Echinoderm Muscles
3.1. Cholinergic Neurotransmitters
3.2. Bioamine Neurotransmitters
3.3. Amino Acid Neurotransmitters
3.4. Gaseous Neurotransmitters
4. Neuropeptides
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bromham, L.D.; Degnan, B.M. Hemichordates and deuterostome evolution: Robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol. Dev. 1999, 1, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Bourlat, S.J.; Juliusdottir, T.; Lowe, C.J.; Freeman, R.; Aronowicz, J.; Kirschner, M.; Lander, E.S.; Thorndyke, M.; Nakano, H.; Kohn, A.B.; et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 2006, 444, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.W.; Hejnol, A.; Matus, D.Q.; Pang, K.; Browne, W.E.; Smith, S.A.; Seaver, E.; Rouse, G.W.; Obst, M.; Edgecombe, G.D.; et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, C.T.; Miyake, T.; Rast, J.P. Echinoderms. Curr. Biol. 2005, 15, R944–R946. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Verlaque, M. Ecology of Paracentrotus lividus. Dev. Aquacult. Fish. Sci. 2001, 32, 177–216. [Google Scholar] [CrossRef]
- Purcell, S.W.; Conand, C.; Uthicke, S.; Byrne, M. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 2017, 54, 367–386. [Google Scholar] [CrossRef]
- Kalinin, V.I. Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives. Mar. drugs 2021, 19, 125. [Google Scholar] [CrossRef]
- Kondo, M.; Akasaka, K. Regeneration in crinoids. Dev. Growth Differ. 2010, 52, 57–68. [Google Scholar] [CrossRef]
- Li, Q.; Ren, Y.; Liang, C.; Qiao, G.; Wang, Y.; Ye, S.; Li, R. Regeneration of coelomocytes after evisceration in the sea cucumber, Apostichopus japonicus. Fish. Shellfish. Immunol. 2018, 76, 266–271. [Google Scholar] [CrossRef]
- Wilkie, I.C.; Candia Carnevali, M.D. Morphological and Physiological Aspects of Mutable Collagenous Tissue at the Autotomy Plane of the Starfish Asterias rubens L. (Echinodermata, Asteroidea): An Echinoderm Paradigm. Mar. drugs 2023, 21, 138. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, H.; Wang, L.; Zhou, Y.; Zhang, T.; Liu, Y. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Acta Ecol. Sinica. 2007, 27, 3155–3161. [Google Scholar] [CrossRef]
- Dolmatov, I.Y.; Ginanova, T.T. Muscle regeneration in holothurians. Microsc. Res. Technol. 2001, 55, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Sea Urchin Genome Sequencing Consortium; Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Angerer, L.M.; Arnone, M.I.; Burgess, D.R.; et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314, 941–952. [Google Scholar] [CrossRef] [PubMed]
- García-Arrarás, J.E.; Dolmatov, I.Y. Echinoderms: Potential model systems for studies on muscle regeneration. Curr. Pharm. Des. 2010, 16, 942–955. [Google Scholar] [CrossRef]
- Elphick, M.R.; Melarange, R. Neural control of muscle relaxation in echinoderms. J. Exp. Biol. 2001, 204, 875–885. [Google Scholar] [CrossRef]
- Wilkie, I.C.; Barbaglio, A.; Maclaren, W.M.; Carnevali, M.D. Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). J. Exp. Biol. 2010, 213, 2104–2115. [Google Scholar] [CrossRef]
- McCurley, R.S.; Kier, W.M. The Functional Morphology of Starfish Tube Feet: The Role of a Crossed-Fiber Helical Array in Movement. Biol. Bull. 1995, 188, 197–209. [Google Scholar] [CrossRef]
- Byrne, M. The morphology of autotomy structures in the sea cucumber Eupentacta quinquesemita before and during evisceration. J. Exp. Biol. 2001, 204, 849–863. [Google Scholar] [CrossRef]
- Ziegler, A.; Schröder, L.; Ogurreck, M.; Faber, C.; Stach, T. Evolution of a novel muscle design in sea urchins (Echinodermata: Echinoidea). PLoS ONE 2012, 7, e37520. [Google Scholar] [CrossRef]
- Mita, M.; Osugi, T.; Takahashi, T.; Watanabe, T.; Satake, H. Mechanism of gamete shedding in starfish: Involvement of acetylcholine in extracellular Ca2+-dependent contraction of gonadal walls. Gen. Comp. Endocrinol. 2020, 290, 113401. [Google Scholar] [CrossRef]
- Inoue, M.; Tamori, M.; Motokawa, T. Innervation of holothurian body wall muscle: Inhibitory effects and localization of 5-HT. Zool. Sci. 2002, 19, 1217–1222. [Google Scholar] [CrossRef]
- Zandawala, M.; Moghul, I.; Yañez Guerra, L.A.; Delroisse, J.; Abylkassimova, N.; Hugall, A.F.; O’Hara, T.D.; Elphick, M.R. Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuroid echinoderms. Open Biol. 2017, 7, 170129. [Google Scholar] [CrossRef]
- Zhang, Y.; Yañez-Guerra, L.A.; Tinoco, A.B.; Escudero Castelán, N.; Egertová, M.; Elphick, M.R. Somatostatin-type and allatostatin-C-type neuropeptides are paralogous and have opposing myoregulatory roles in an echinoderm. Proc. Natl. Acad. Sci. USA 2022, 119, e2113589119. [Google Scholar] [CrossRef]
- Calderón, J.C.; Bolaños, P.; Caputo, C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys. Rev. 2014, 6, 133–160. [Google Scholar] [CrossRef]
- Hill, R.B. Role of Ca2+ in excitation-contraction coupling in echinoderm muscle: Comparison with role in other tissues. J. Exp. Biol. 2001, 204, 897–908. [Google Scholar] [CrossRef]
- Odekunle, E.A.; Semmens, D.C.; Martynyuk, N.; Tinoco, A.B.; Garewal, A.K.; Patel, R.R.; Blowes, L.M.; Zandawala, M.; Delroisse, J.; Slade, S.E.; et al. Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol. 2019, 17, 60. [Google Scholar] [CrossRef]
- Melarange, R.; Elphick, M.R. Comparative analysis of nitric oxide and SALMFamide neuropeptides as general muscle relaxants in starfish. J. Exp. Biol. 2003, 20, 893–899. [Google Scholar] [CrossRef]
- Mashanov, V.S.; Frolova, L.T.; Dolmatov, I.Y. Structure of the digestive tube in the holothurian Eupentacta fraudatrix (holothuroidea: Dendrochirota). Russ. J. Mar. Biol. 2004, 30, 314–322. [Google Scholar] [CrossRef]
- Holland, N.D. The fine structure of the ovary of the feather star Nemaster rubiginosa (Echinodermata: Crinoidea). Tissue Cell 1971, 3, 161–175. [Google Scholar] [CrossRef]
- Spirina, I.S.; Dolmatov, I.Y. Morphology of the respiratory trees in the holothurians Apostichopus japonicus and Cucumaria japonica. Russ. J. Mar. Biol. 2001, 27, 367–375. [Google Scholar] [CrossRef]
- Rieger, R.M.; Lombardi, J. Ultrastructure of celomic lining in echinoderm podia: Significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 1987, 107, 191–208. [Google Scholar] [CrossRef]
- Cavey, M.J. Organization of the celomic lining and a juxtaposed nerve plexus in the suckered tube feet of Parastichopus californicus (Echinodermata: Holothuroida). J. Morphol. 2006, 267, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Balzac, C.A.; Abreu-Arbelo, J.E.; García-Arrarás, J.E. Neuroanatomy of the tube feet and tentacles in Holothuria glaberrima (Holothuroidea, Echinodermata). Zoomorphology 2010, 129, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Florey, E.; Cahill, M.A. Ultrastructure of sea urchin tube feet. Evidence for connective tissue involvement in motor control. Cell Tissue Res. 1977, 177, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, S.L.; Rieger, R.M. Rudimentary cilia in muscle cells of annelids and echinoderms. Cell Tissue Res. 1980, 213, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.L.; Cavey, M.J. Ultrastructure of the celomic lining in the podium of the starfish Stylasterias forreri. Cell Tissue Res. 1981, 218, 449–473. [Google Scholar] [CrossRef] [PubMed]
- Bouland, C.; Massin, C.; Jangoux, M. The fine structure of buccal tentacles of Holothuria forskali (Echinodermta, Holothuroidea). Zoomorphology 1982, 101, 133–149. [Google Scholar] [CrossRef]
- Smith, J.E. The structure and function of the tube feet in certain echinoderms. J. Mar. Biol. Assoc. UK 1937, 22, 345–357. [Google Scholar] [CrossRef]
- Mckenzie, J.D. Ultrastructure of the tentacles of the apodous holothurian Leptosynapta spp. (holothurioidea: Echinodermata) with special reference to the epidermis and surface coats. Cell Tissue Res. 1988, 251, 387–397. [Google Scholar] [CrossRef]
- Martinez, A.; Lopez, J.; Villaro, A.C.; Sesma, P. Choanocyte-like cells in the digestive system of the starfish Marthasterias glacialis (Echinodermata). J. Morphol. 1991, 208, 215–225. [Google Scholar] [CrossRef]
- Deridder, C.; Jangoux, M. The digestive tract of the spatangoid echinoid Echinocardium cordatum (echinodermata): Morphofunctional study. Acta Zool. 1993, 74, 337–351. [Google Scholar] [CrossRef]
- Kamenev, Y.O.; Dolmatov, I.Y.; Frolova, L.T.; Khang, N.A. The morphology of the digestive tract and respiratory organs of the holothurian Cladolabes schmeltzii (Holothuroidea, Dendrochirotida). Tissue Cell 2013, 45, 126–139. [Google Scholar] [CrossRef] [PubMed]
- García-Arrarás, J.E.; Rojas-Soto, M.; Jiménez, L.B.; Díaz-Miranda, L. The enteric nervous system of echinoderms: Unexpected complexity revealed by neurochemical analysis. J. Exp. Biol. 2001, 204, 865–873. [Google Scholar] [CrossRef]
- Féral, J.P.; Massin, C. Digestive systems: Holothurioidea. In Echinoderm Nutrition; Balkema: Rotterdam, The Netherlands, 1982; pp. 191–212. [Google Scholar]
- Smiley, S. A review of echinoderm oogenesis. J. Electron. Microsc. Technol. 1990, 16, 93–114. [Google Scholar] [CrossRef]
- Smiley, S.; Cloney, R.A. Ovulation and the fine structure of the stichopus californicus (Echinodermata: Holothuroidea) fecund ovarian tubules. Biol. Bull. 1985, 169, 342–364. [Google Scholar] [CrossRef] [PubMed]
- Atwood, D.G. Ultrastructure of the gonadal wall of the sea cucumber, Leptosynapta clarki (Echinodermata: Holothuroidea). Z. Zellforsch. Mikrosk. Anat. 1973, 141, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Nerrevang, D.A.; Wingstrand, K.G. On the occurrence and structure of choanocyte-like cells in some echinoderms. Acta Zool. 1970, 51, 249–270. [Google Scholar] [CrossRef]
- Beijnink, F.B.; Walker, C.W.; Voogt, P.A. An ultrastructural study of relationships between the ovarian haemal system, follicle cells, and primary oocytes in the sea star, Asterias rubens. Implications for oocyte nutrition. Cell Tissue Res. 1984, 238, 339–347. [Google Scholar] [CrossRef]
- Byrne, M. Ultrastructure of the ovary and oogenesis in the ovoviviparous ophiuroid Ophiolepis paucispina (echinodermata). Biol. Bull. 1989, 176, 79–95. [Google Scholar] [CrossRef]
- Davis, H.S. The Gonad Walls of Echinodermata: A Comparative Study Based on Electron Microscopy. Master’s Thesis, California University, San Diego, CA, USA, 1971. [Google Scholar]
- Jensen, H. Ultrastructure of the dorsal hemal vessel in the sea-cucumber Parastichopus tremulus (Echinodermata: Holothuroidea). Cell Tissue Res. 1975, 160, 355–369. [Google Scholar] [CrossRef]
- Prosser, C.L.; Judson, C.L. Pharmacology of haemal vessels of Stichopus californicus. Biol. Bull. 1952, 102, 249–251. [Google Scholar] [CrossRef]
- Suzuki, S. Physiological and cytochemical studies on activator calcium in contraction by smooth muscle of a sea cucumber, Isostichopus badionotus. Cell Tissue Res. 1982, 222, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Blowes, L.M.; Egertová, M.; Liu, Y.; Davis, G.R.; Terrill, N.J.; Gupta, H.S.; Elphick, M.R. Body wall structure in the starfish Asterias rubens. J. Anat. 2017, 231, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Dolmatov, I.Y.; Mashanov, V.S.; Zueva, O.R. Derivation of muscles of the Aristotle’s lantern from celomic epithelia. Cell Tissue Res. 2007, 327, 371–384. [Google Scholar] [CrossRef] [PubMed]
- LeClair, E.E. Arm joint articulations in the ophiuran brittlestars (Echinodermata: Ophiuroidea): A morphometric analysis of ontogenetic, serial, and interspecific variation. J. Zool. 1996, 240, 245–275. [Google Scholar] [CrossRef]
- Wilkie, I.C.; Barbaglio, A.; Carnevali, M.D. The elusive role of L-glutamate as an echinoderm neurotransmitter: Evidence for its involvement in the control of crinoid arm muscles. Zoology 2013, 116, 1–8. [Google Scholar] [CrossRef]
- Motokawa, T. Morphology of spines and spine joint in the crown-of-thorns starfish Acanthaster planci (echinodermata, asteroida). Zoomorphology. 1986, 106, 247–253. [Google Scholar] [CrossRef]
- Motokawa, T.; Fuchigami, Y. Coordination between catch connective tissue and muscles through nerves in the spine joint of the sea urchin Diadema setosum. J. Exp. Biol. 2015, 218, 703–710. [Google Scholar] [CrossRef]
- Wilkie, I.C. Functional Morphology of the Arm Spine Joint and Adjacent Structures of the Brittlestar Ophiocomina nigra (Echinodermata: Ophiuroidea). PLoS ONE 2016, 11, e0167533. [Google Scholar] [CrossRef]
- Hyman, L.H. The Invertebrates: Echinodermata, the Coelomate Bilateria; McGraw-Hill: New York, NY, USA, 1955; Volume 4. [Google Scholar]
- Pople, W.; Ewer, D.W. Studies on the myoneural physiology of echinodermata. i. the pharyngeal retractor muscle of cucumaria. J. Exp. Biol. 1954, 31, 114–126. [Google Scholar] [CrossRef]
- Stauber, M. The lantern of Aristotle: Organization of its coelom and origin of its muscles (Echinodermata, Echinoida). Zoomorphology. 1993, 113, 137–151. [Google Scholar] [CrossRef]
- Hidaka, M.; Takahashi, K. Fine structure and mechanical properties of the catch apparatus of the sea-urchin spine, a collagenous connective tissue with muscle-like holding capacity. J. Exp. Biol. 1983, 103, 1–14. [Google Scholar] [CrossRef]
- Shingyoji, C.; Yamaguchi, M. Effects of acetylcholine, octopamine, atp, dopamine, and electrical stimulation on the spine muscle of the sea urchin, Anthocidaris crassispina. Comp. Biochem. Physiol. Part. C Pharmacol. Toxicol. Endocrinol. 1995, 111, 23–32. [Google Scholar] [CrossRef]
- O’Neill, P. Structure and mechanics of starfish body wall. J. Exp. Biol. 1989, 147, 53–89. [Google Scholar] [CrossRef] [PubMed]
- Saita, A.; Candia Carnevali, M.D.; Canonaco, M. Muscle system organization in the Echinoderms. I. Intervertebral muscles of Ophioderma longicaudum (Ophiuroidea). J. Submicrosc. Cytol. 1982, 14, 291–304. [Google Scholar]
- Stauber, M.; Märkel, K. Comparative morphology of muscle-skeleton attachments in the Echinodermata. Zoomorphology 1988, 108, 137–148. [Google Scholar] [CrossRef]
- Byrne, M. Ophiuroidea. In Microscopic Anatomy of Invertebrates; Frederick, W.H., Fu-Shiang, C., Eds.; Wiley-Liss: Hoboken, NJ, USA, 1996; Volume 14, pp. 247–343. [Google Scholar]
- Carnevali, M.D.C.; Saita, A. Muscle system organization in the echinoderms: II. Microscopic anatomy and functional significance of the muscle-ligament-skeleton system in the arm of the comatulids (Antedon mediterranea). J. Morphol. 1985, 185, 59–74. [Google Scholar] [CrossRef]
- Carnevali, M.D.C.; Saita, A. Muscle system organization in the echinoderms: III. Fine structure of the contractile apparatus of the arm flexor muscles of the comatulids (Antedon mediterranea). J. Morphol. 1985, 185, 75–87. [Google Scholar] [CrossRef]
- Candia Carnevali, M.D.; Saita, A.; Fedrigo, A. An unusual Z-system in the obliquely striated muscles of crinoids: Three-dimensional structure and computer simulations. J. Muscle Res. Cell Motil. 1986, 7, 568–578. [Google Scholar] [CrossRef]
- Devlin, C.L. The pharmacology of gamma-aminobutyric acid and acetylcholine receptors at the echinoderm neuromuscular junction. J. Exp. Biol. 2001, 204, 887–896. [Google Scholar] [CrossRef]
- Suzuki, S.; Sugi, H. Physiological and ultrastructural studies on the longitudinal retractor muscle of a sea cucumber Stichopus japonicus. II. Intracellular localization and translocation of activator calcium during mechanical activity. J. Exp. Biol. 1982, 97, 113–119. [Google Scholar] [CrossRef] [PubMed]
- García-Arrarás, J.E.; Torres-Avillán, I.; Ortíz-Miranda, S. Cells in the intestinal system of holothurians (Echinodermata) express cholecystokinin-like immunoreactivity. Gen. Comp. Endocrinol. 1991, 83, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Kim, E.J.; Go, H.J.; Oh, H.Y.; Lin, M.; Elphick, M.R.; Park, N.G. Identification of a novel starfish neuropeptide that acts as a muscle relaxant. J. Neurochem. 2016, 137, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Elphick, M.R. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J. Comp. Neurol. 2017, 525, 3890–3917. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Kim, C.H.; Go, H.J.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Park, N.G.; Elphick, M.R. Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants. Front. Neurosci. 2018, 12, 382. [Google Scholar] [CrossRef]
- Boltt, R.E.; Ewer, D.W. Studies on the myoneural physiology of Echinodermata. V. The lantern retractor muscle of Parechinus: Responses to drugs. J. Exp. Biol. 1963, 40, 727–733. [Google Scholar] [CrossRef]
- Mendes, E.G.; Abbud, L.; Lopez, A.A. Pharmacological studies on the invertebrate non-striated muscles. I. The response to drugs. Comp. Gen. Pharmacol. 1970, 1, 11–22. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Amemiya, S. Studies on the radial muscle of an echinothuriid sea-urchin, Asthenosoma-I. Mechanical responses to electrical stimulation and drugs. Comp. Biochem. Physiol. C. Comp. Pharmacol. 1977, 57, 69–73. [Google Scholar] [CrossRef]
- Florey, E.; Cahill, M.A. Cholinergic motor control of sea urchin tube feet: Evidence for chemical transmission without synapses. J. Exp. Biol. 1980, 88, 281–292. [Google Scholar] [CrossRef]
- McKew, M.; Wilkie, I.C. Organisation and pharmacology of the compass elevator muscles of the sea-urchin Echinus esculentus L. In Echinoderm Research; Candia Carnevali, M.D., Bonasoro, F., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 103–108. [Google Scholar]
- Hill, R.B. Effects of Some Postulated Neurohumors on Rhythmicity of the Isolated Cloaca of a Holothurian. Physiol. Zool. 1970, 43, 109–123. [Google Scholar] [CrossRef]
- Protas, L.L.; Muske, G.A. The effects of some transmitter substances of the tube foot muscles of the starfish, Asterias amurensis (Lütken). Gen. Pharmacol. 1980, 11, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, T. Pharmacological control of muscular activity in the sea urchin larva--IV. Effects of monoamines and adenosine. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1991, 98, 307–315. [Google Scholar] [CrossRef]
- Florey, E.; Cahill, M.A.; Rathmayer, M. Excitatory actions of GABA and of acetyl-choline in sea urchin tube feet. Comp. Biochem. Physiol. C Comp. Pharmacol. 1975, 51, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Pentreath, V.W.; Cobb, J.L. Neurobiology of echinodermata. Biol. Rev. Cambridge Philos. Soc. 1972, 47, 363–392. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, T.; Lundgren, B.; Treufeldt, R. Serotonin and contractile activity in the echinopluteus. A study of the cellular basis of larval behaviour. Exp. Cell Res. 1972, 72, 115–139. [Google Scholar] [CrossRef]
- Devlin, C.L.; Schlosser, W. Gamma-aminobutyric acid modulation of acetylcholine-induced contractions of a smooth muscle from an echinoderm (Sclerodactyla briareus). Invertebr. Neurosci. 1999, 4, 1–8. [Google Scholar] [CrossRef]
- Florey, E.; McLennan, H. The effects of factor I and of gamma-aminobutyric acid on smooth muscle preparations. J. Physiol. 1959, 145, 66–76. [Google Scholar] [CrossRef]
- Nontunha, N.; Tinikul, R.; Chaichotranunt, S.; Poomtong, T.; Sobhon, P.; Tinikul, Y. The presence and distribution of gamma-aminobutyric acid and dopamine during the developmental stages of the sea cucumber, Holothuria scabra, with emphasis on settlement organs. Cell Tissue Res. 2023, 391, 457–483. [Google Scholar] [CrossRef]
- Yaguchi, J.; Yaguchi, S. Evolution of nitric oxide regulation of gut function. Proc. Natl. Acad. Sci. USA 2019, 116, 5607–5612. [Google Scholar] [CrossRef]
- Hagiwara, S.; Nakajima, S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J. Gen. Physiol. 1966, 49, 793–806. [Google Scholar] [CrossRef]
- Weber, A.; Herz, R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 1968, 52, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Devlin, C.L.; Schlosser, W.; Belz, D.T.; Kodiak, K.; Nash, R.F.; Zitomer, N. Pharmacological identification of acetylcholine receptor subtypes in echinoderm smooth muscle (Sclerodactyla briareus). Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2000, 125, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.A. Acetylcholine. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S120–S126. [Google Scholar] [CrossRef]
- Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 2005, 346, 967–989. [Google Scholar] [CrossRef]
- Aluigi, M.G.; Diaspro, A.; Ramoino, P.; Russo, P.; Falugi, C. The sea urchin, Paracentrotus lividus, as a model to investigate the onset of molecules immunologically related to the α-7 subunit of nicotinic receptors during embryonic and larval development. Curr. Drug Targets 2012, 13, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.C. The structure and evolution of adrenergic and muscarinic cholinergic receptors. J. Cardiovasc. Pharmacol. 1987, 10 (Suppl. S12), S69–S73. [Google Scholar] [CrossRef]
- Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R. Identification of a family of muscarinic acetylcholine receptor genes. Science 1987, 237, 527–532. [Google Scholar] [CrossRef]
- Eglen, R.M.; Hegde, S.S.; Watson, N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol. Rev. 1996, 48, 531–565. [Google Scholar]
- Ehlert, F.J.; Ostrom, R.S.; Sawyer, G.W. Subtypes of the muscarinic receptor in smooth muscle. Life Sci. 1997, 61, 1729–1740. [Google Scholar] [CrossRef]
- Caulfield, M.P.; Birdsall, N.J. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 1998, 50, 279–290. [Google Scholar]
- Devlin, C.L.; Amole, W.; Anderson, S.; Shea, K. Muscarinic acetylcholine receptor compounds alter net Ca2+ flux and contractility in an invertebrate smooth muscle. Invert. Neurosci. 2003, 5, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Erausquin, M.; Marubio, L.M.; Klink, R.; Changeux, J.P. Nicotinic receptor function: New perspectives from knockout mice. Trends Pharmacol. Sci. 2000, 21, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wess, J. Muscarinic acetylcholine receptor knockout mice: Novel phenotypes and clinical implications. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 423–450. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, M.D.C.; Bonasoro, F.; Invernizzi, R.; Lucca, E.; Welsch, U.; Thorndyke, M.C. Tissue distribution of monoamine neurotransmitters in normal and regenerating arms of the feather star Antedon mediterranea. Cell Tissue Res. 1996, 285, 341–352. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Wang, C.; Tian, H.; Wang, W.; Ru, S. Effects of monocrotophos pesticide on cholinergic and dopaminergic neurotransmitter systems during early development in the sea urchin Hemicentrotus pulcherrimus. Toxicol. Appl. Pharmacol. 2017, 328, 46–53. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, J.W.; Han, T.; Huang, D.X.; Zhao, Z.H.; Feng, J.Q.; Zhou, N.M.; Xie, H.Q.; Wang, T.M. Identification and characterization of a novel 5-hydroxytryptamine receptor in the sea cucumber Apostichopus japonicus (Selenka). J. Exp. Zool. Part A 2021, 335, 367–380. [Google Scholar] [CrossRef]
- Chaiyamoon, A.; Tinikul, R.; Chaichotranunt, S.; Poomthong, T.; Suphamungmee, W.; Sobhon, P.; Tinikul, Y. Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation. J. Comp. Physiol. A 2018, 204, 391–407. [Google Scholar] [CrossRef]
- Kalachev, A.V.; Tankovich, A.E. The dopamine effect on sea urchin larvae depends on their age. Dev. Growth Differ. 2023, 65, 120–131. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Z.; Zhou, N.; Sun, L.; Lv, Z.; Wu, C. Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka). Sci. Rep. 2017, 7, 40247. [Google Scholar] [CrossRef]
- McDonald, M.; Griffin, N.P.; Howell, E.; Li, D.; Harnew-Spradley, S.; Rodriguez, P.; Lancaster, A.; Umutoni, F.; Besh, J.; Shelley, C. Effects of neurotransmitter receptor antagonists on sea urchin righting behavior and tube foot motility. J. Exp. Biol. 2022, 225, jeb243076. [Google Scholar] [CrossRef]
- Katow, H.; Suyemitsu, T.; Ooka, S.; Yaguchi, J.; Jin-Nai, T.; Kuwahara, I.; Katow, T.; Yaguchi, S.; Abe, H. Development of a dopaminergic system in sea urchin embryos and larvae. J. Exp. Biol. 2010, 213, 2808–2819. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.K.; Sewell, M.A.; Angerer, R.C.; Angerer, L.M. Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat. Commun. 2011, 2, 592. [Google Scholar] [CrossRef] [PubMed]
- Girault, J.A.; Greengard, P. The neurobiology of dopamine signaling. Arch. Neurol. 2004, 61, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.; Barnes, N.M. Central 5-HT receptors and their function; present and future. Neuropharmacology 2020, 177, 108155. [Google Scholar] [CrossRef] [PubMed]
- Katow, H.; Yoshida, H.; Kiyomoto, M. Initial report of γ-aminobutyric acidergic locomotion regulatory system and its 3-mercaptopropionic acid-sensitivity in metamorphic juvenile of sea urchin, Hemicentrotus pulcherrimus. Sci. Rep. 2020, 10, 778. [Google Scholar] [CrossRef]
- Sun, X.; Li, Q.; Yu, H.; Kong, L. The effect of chemical cues on the settlement of sea cucumber (Apostichopus japonicus) larvae. J. Ocean. Univ. China. 2014, 13, 321–330. [Google Scholar] [CrossRef]
- Nontunha, N.; Chaiyamoon, A.; Chaichotranunt, S.; Tinikul, R.; Tinikul, Y. Neurotransmitters induce larval settlement and juvenile growth of the sea cucumber, Holothuria scabra. Aquaculture 2021, 535, 736427. [Google Scholar] [CrossRef]
- Söderhielm, P.C.; Klein, A.B.; Bomholtz, S.H.; Jensen, A.A. Profiling of GABAA and GABAB receptor expression in the myometrium of the human uterus. Life Sci. 2018, 214, 145–152. [Google Scholar] [CrossRef]
- Jorgensen, E.M. GABA. In Worm book: The online review of C. elegans biology; WormBook: Online, 2005; pp. 1–13. [Google Scholar] [CrossRef]
- Campbell, V.; Berrow, N.; Dolphin, A.C. GABAB receptor modulation of Ca2+ currents in rat sensory neurones by the G protein G(o): Antisense oligonucleotide studies. J. Physiol. 1993, 470, 1–11. [Google Scholar] [CrossRef]
- Jacklet, J.W. Nitric oxide signaling in invertebrates. Invertebr. Neurosci. 1997, 3, 1–14. [Google Scholar] [CrossRef]
- Elphick, M.R.; Melarange, R. Nitric Oxide Function in an Echinoderm. Biol. Bull. 1998, 194, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.D.; Brandhorst, B.P. Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis. Dev. Dyn. 2007, 236, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Mohri, T.; Sokabe, M.; Kyozuka, K. Nitric oxide (NO) increase at fertilization in sea urchin eggs upregulates fertilization envelope hardening. Dev. Biol. 2008, 322, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Romano, G.; Costantini, M.; Buttino, I.; Ianora, A.; Palumbo, A. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS ONE 2011, 6, e25980. [Google Scholar] [CrossRef]
- Billack, B.; Laskin, J.D.; Heck, P.T.; Troll, W.; Gallo, M.A.; Heck, D.E. Alterations in cholinergic signaling modulate contraction of isolated sea urchin tube feet: Potential role of nitric oxide. Biol. Bull. 1998, 195, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Bogdan, C. The multiplex function of nitric oxide in (auto)immunity. J. Exp. Med. 1998, 187, 1361–1365. [Google Scholar] [CrossRef]
- Regulski, M.; Tully, T. Molecular and biochemical characterization of dNOS: A Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1995, 92, 9072–9076. [Google Scholar] [CrossRef]
- Chen, T.; Wong, N.K.; Jiang, X.; Luo, X.; Zhang, L.; Yang, D.; Ren, C.; Hu, C. Nitric oxide as an antimicrobial molecule against Vibrio harveyi infection in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei. Fish. Shellfish. Immunol. 2015, 42, 114–120. [Google Scholar] [CrossRef]
- Bicker, G. Pharmacological approaches to nitric oxide signalling during neural development of locusts and other model insects. Arch. Insect Biochem. Physiol. 2007, 64, 43–58. [Google Scholar] [CrossRef]
- Denninger, J.W.; Marletta, M.A. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim. Biophys. Acta 1999, 1411, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Petkov, G.V.; Boev, K.K. The role of sarcoplasmic reticulum and sarcoplasmic reticulum Ca2+-ATPase in the smooth muscle tone of the cat gastric fundus. Pflugers Arch. 1996, 431, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Douglass, J.; Civelli, O.; Herbert, E. Polyprotein gene expression: Generation of diversity of neuroendocrine peptides. Annu. Rev. Biochem. 1984, 53, 665–715. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.L.; Elphick, M.R. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen. Comp. Endocrinol. 2012, 179, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Semmens, D.C.; Mirabeau, O.; Moghul, I.; Pancholi, M.R.; Wurm, Y.; Elphick, M.R. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol. 2016, 6, 150224. [Google Scholar] [CrossRef]
- Chen, M.; Talarovicova, A.; Zheng, Y.; Storey, K.B.; Elphick, M.R. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: A genomic, transcriptomic and proteomic analysis. Sci. Rep. 2019, 9, 8829. [Google Scholar] [CrossRef]
- Aleotti, A.; Wilkie, I.C.; Yañez-Guerra, L.A.; Gattoni, G.; Rahman, T.A.; Wademan, R.F.; Ahmad, Z.; Ivanova, D.A.; Semmens, D.C.; Delroisse, J.; et al. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front. Neurosci. 2022, 16, 1006594. [Google Scholar] [CrossRef]
- Elphick, M.R.; Price, D.A.; Lee, T.D.; Thorndyke, M.C. The SALMFamides: A new family of neuropeptides isolated from an echinoderm. Proc. Biol. Sci. 1991, 243, 121–127. [Google Scholar] [CrossRef]
- Díaz-Miranda, L.; García-Arrarás, J.E. Pharmacological action of the heptapeptide GFSKLYFamide in the muscle of the sea cucumber Holothuria glaberrima (Echinodermata). Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1995, 110, 171–176. [Google Scholar] [CrossRef]
- Melarange, R.; Potton, D.J.; Thorndyke, M.C.; Elphick, M.R. SALMFamide neuropeptides cause relaxation and eversion of the cardiac stomach in starfish. Proc. R. Soc. London. 1999, 266, 1785–1789. [Google Scholar] [CrossRef]
- Yañez-Guerra, L.A.; Delroisse, J.; Barreiro-Iglesias, A.; Slade, S.E.; Scrivens, J.H.; Elphick, M.R. Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome. Sci. Rep. 2018, 8, 7220. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Y.; Cong, X.; Liu, H.; Storey, K.B.; Chen, M. Molecular and functional characterization of the luqin-type neuropeptide signaling system in the sea cucumber Apostichopus japonicus. Peptides 2022, 155, 170839. [Google Scholar] [CrossRef]
- Elphick, M.R.; Rowe, M.L. NGFFFamide and echinotocin: Structurally unrelated myoactive neuropeptides derived from neurophysin-containing precursors in sea urchins. J. Exp. Biol. 2009, 212, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Zheng, Y.Q.; Liu, H.C.; Chen, M.Y. A Putative Role of Vasopressin/Oxytocin-Type Neuropeptide in Osmoregulation and Feeding Inhibition of Apostichopus japonicus. Int. J. Mol. Sci. 2023; accepted. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, M.; Iwakoshi, E.; Muneoka, Y.; Minakata, H.; Nomoto, K. Isolation and characterization of bioactive peptides from the sea cucumber, Stichopus japonicus. In Peptide Science—Present and Future; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 419–420. [Google Scholar] [CrossRef]
- Inoue, M.; Birenheide, R.; Koizumi, O.; Kobayakawa, Y.; Muneoka, Y.; Motokawa, T. Localization of the neuropeptide NGIWYamide in the holothurian nervous system and its effects on muscular contraction. Proc. R. Soc. B 1999, 266, 993–1000. [Google Scholar] [CrossRef]
- Tinoco, A.B.; Semmens, D.C.; Patching, E.C.; Gunner, E.F.; Egertová, M.; Elphick, M.R. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front. Endocrinol. 2018, 9, 507. [Google Scholar] [CrossRef]
- Semmens, D.C.; Dane, R.E.; Pancholi, M.R.; Slade, S.E.; Scrivens, J.H.; Elphick, M.R. Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. J. Exp. Biol. 2013, 216, 4047–4053. [Google Scholar] [CrossRef]
- Zhang, Y.; Yañez Guerra, L.A.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Elphick, M.R. Molecular and functional characterization of somatostatin-type signalling in a deuterostome invertebrate. Open Biol. 2020, 10, 200172. [Google Scholar] [CrossRef]
- Tinoco, A.B.; Barreiro-Iglesias, A.; Yañez Guerra, L.A.; Delroisse, J.; Zhang, Y.; Gunner, E.F.; Zampronio, C.G.; Jones, A.M.; Egertová, M.; Elphick, M.R. Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. eLife 2021, 10, e65667. [Google Scholar] [CrossRef]
- Tian, S.; Egertová, M.; Elphick, M.R. Functional Characterization of Paralogous Gonadotropin-Releasing Hormone-Type and Corazonin-Type Neuropeptides in an Echinoderm. Front. Endocrinol. 2017, 8, 259. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Liu, H.C.; Cong, X.; Storey, K.B.; Chen, M.Y. A potential feeding regulation strategy during aestivation: Relaxation of intestine mediated by peptide/orcokinin-type neuropeptide in sea cucumber Apostichopus japonicus. Aquaculture 2023, accepted. [Google Scholar] [CrossRef]
- Lin, M.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Elphick, M.R. Functional characterization of a second pedal peptide/orcokinin-type neuropeptide signaling system in the starfish Asterias rubens. J. Comp. Neurol. 2018, 526, 858–876. [Google Scholar] [CrossRef]
- Otara, C.B.; Jones, C.E.; Younan, N.D.; Viles, J.H.; Elphick, M.R. Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association. Biochim. Biophys. Acta 2014, 1844, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef] [PubMed]
- Novozhilova, E.; Kimber, M.J.; Qian, H.; McVeigh, P.; Robertson, A.P.; Zamanian, M.; Maule, A.G.; Day, T.A. FMRFamide-like peptides (FLPs) enhance voltage-gated calcium currents to elicit muscle contraction in the human parasite Schistosoma mansoni. PLoS Neglected Trop. Dis. 2010, 4, e790. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Butler, A.; Stewart, R.; Gonzalez-Cota, A.L.; Lybaert, P.; Amazu, C.; Reinl, E.L.; Wakle-Prabagaran, M.; Salkoff, L.; England, S.K.; et al. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na+ -activated K+ channel, Slo2.1. J. Physiol. 2019, 597, 137–149. [Google Scholar] [CrossRef]
- Alzugaray, M.E.; Gavazzi, M.V.; Ronderos, J.R. G protein-coupled receptor signal transduction and Ca2+ signaling pathways of the allatotropin/orexin system in Hydra. Gen. Comp. Endocrinol. 2021, 300, 113637. [Google Scholar] [CrossRef]
- Alzugaray, M.E.; Ronderos, J.R. Allatoregulatory-like systems and changes in cytosolic Ca2+ modulate feeding behavior in Hydra. Gen. Comp. Endocrinol. 2018, 258, 70–78. [Google Scholar] [CrossRef]
- Schmidt, A.; Bauknecht, P.; Williams, E.A.; Augustinowski, K.; Gründer, S.; Jékely, G. Dual signaling of Wamide myoinhibitory peptides through a peptide-gated channel and a GPCR in Platynereis. FASEB J. 2018, 32, 5338–5349. [Google Scholar] [CrossRef]
- Conzelmann, M.; Williams, E.A.; Tunaru, S.; Randel, N.; Shahidi, R.; Asadulina, A.; Berger, J.; Offermanns, S.; Jékely, G. Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc. Natl. Acad. Sci. USA 2013, 110, 8224–8229. [Google Scholar] [CrossRef]
- Wang, H.; Girskis, K.; Janssen, T.; Chan, J.P.; Dasgupta, K.; Knowles, J.A.; Schoofs, L.; Sieburth, D. Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior. Curr. Biol. 2013, 23, 746–754. [Google Scholar] [CrossRef] [PubMed]
Neurotransmitters | Holothuroidea | Asteroidea | Echinoidea | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LMBW | IM | TF | TM | CA | AM | CS | TF | EM | TF | LRM | |
ACh | ME [54] | ME [76] | - | - | ME [85] | ME [79] | ME [15] | ME [86] | ME [87] | ME [88] | ME [89] |
5-HT | MI [21] | - | - | - | ME [85] | - | - | NE [86] | ME [87] | NE [88] | NE [81] |
Dopamine | NE [21] | - | - | - | MI [85] | - | - | ME [86] | ME [87] | NE [88] | MI [89] |
Adrenaline | NE [21] | - | - | - | NE [85] | - | - | ME/MI [86] | - | - | MI [80] |
Noradrenaline | NE [21] | - | - | - | NE [85] | - | - | ME/MI [86] | - | NE [83] | MI [89] |
Tryptamine | - | - | - | - | MI [85] | - | - | - | ME [90] | - | NE [81] |
Histamine | - | - | - | - | - | - | - | MI [86] | - | NE [83] | NE [81] |
GABA | MI [91] | - | - | - | MI [85] | - | - | ME [86] | NE [92] | ME [88] | MI [80] |
L-glutamate | - | - | - | ME/MI [85] | - | - | ME [86] | - | NE [83] | NE [81] | |
Glycine | - | - | - | - | NE [85] | - | - | NE [93] | - | NE [87] | - |
Nitric oxide | - | - | - | - | - | MI [27] | MI [27] | MI [27] | MI [94] | - | - |
Neuropeptide | Holothuroidea | Asteroidea | Echinoidea | |||||
---|---|---|---|---|---|---|---|---|
LMBW | IM | TM | AM | CS | TF | EM | TF | |
Vasopressin/oxytocin-type | ME [150] | ME [150] | ME [150] | MI [26] | MI [26] | NE [26] | ME [149] | ME [149] |
Calcitonin-type | - | - | - | MI [79] | NE [79] | MI [79] | - | - |
Luqin-type | MI [148] | NE [148] | - | - | NE [147] | MI [147] | - | - |
L-type SALMFamides | MI [145] | MI [145] | - | MI [27] | MI [146] | MI [27] | - | - |
F-type SALMFamides | NE [151] | MI [151] | - | MI [27] | MI [146] | MI [27] | - | - |
NG-type | ME [152] | MI [152] | ME [152] | MI [153] | ME [154] | ME [153] | ME [149] | ME [149] |
Somatostatin/allatostatinC-type1 | - | - | - | ME [23] | ME [23] | ME [23] | - | - |
Somatostatin/allatostatinC-type2 | - | - | - | NE [155] | MI [155] | MI [155] | - | - |
Sulfakinin/cholecystokinin-type | - | MI [76] | - | ME [156] | ME [156] | ME [156] | - | - |
Gonadotropin-releasing hormone type | - | - | - | ME [157] | ME [157] | ME [157] | - | - |
Corazonin | - | - | - | ME [157] | ME [157] | ME [157] | - | - |
Pedal peptide/orcokinin-type1 | - | - | - | MI [78] | MI [78] | MI [78] | - | - |
Pedal peptide/orcokinin-type2 | NE [158] | MI [158] | - | NE [159] | MI [159] | NE [159] | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chen, M. Morphology and Chemical Messenger Regulation of Echinoderm Muscles. Biology 2023, 12, 1349. https://doi.org/10.3390/biology12101349
Liu H, Chen M. Morphology and Chemical Messenger Regulation of Echinoderm Muscles. Biology. 2023; 12(10):1349. https://doi.org/10.3390/biology12101349
Chicago/Turabian StyleLiu, Huachen, and Muyan Chen. 2023. "Morphology and Chemical Messenger Regulation of Echinoderm Muscles" Biology 12, no. 10: 1349. https://doi.org/10.3390/biology12101349
APA StyleLiu, H., & Chen, M. (2023). Morphology and Chemical Messenger Regulation of Echinoderm Muscles. Biology, 12(10), 1349. https://doi.org/10.3390/biology12101349