Effect of Age and Acute-Moderate Intensity Exercise on Biomarkers of Renal Health and Filtration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Recruitment and Demographics
2.2. Exercise Protocol
2.3. Specimen Collection
2.4. Biochemical Analysis
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Din, U.A.A.S.; Salem, M.M.; Abdulazim, D.O. Stop chronic kidney disease progression: Time is approaching. World J. Nephrol. 2016, 5, 258–273. [Google Scholar] [CrossRef] [Green Version]
- Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; et al. Inflammation and Progression of CKD: The CRIC Study. Clin. J. Am. Soc. Nephrol. CJASN 2016, 11, 1546–1556. [Google Scholar] [CrossRef] [Green Version]
- Rule, A.D.; Bailey, K.R.; Lieske, J.C.; Peyser, P.A.; Turner, S.T. Estimating the glomerular filtration rate from serum creatinine is better than from cystatin C for evaluating risk factors associated with chronic kidney disease. Kidney Int. 2013, 83, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Solomon, R.; Segal, A. Defining acute kidney injury: What is the most appropriate metric? Nat. Clin. Pract. Nephrol. 2008, 4, 208–215. [Google Scholar] [CrossRef]
- Poortmans, J.R.; Gulbis, B.; De Bruyn, E.; Baudry, S.; Carpentier, A. Limitations of serum values to estimate glomerular filtration rate during exercise. Br. J. Sports Med. 2013, 47, 1166–1170. [Google Scholar] [CrossRef]
- Delanaye, P.; Cavalier, E.; Moranne, O.; Lutteri, L.; Krzesinski, J.-M.; Bruyère, O. Creatinine-or cystatin C-based equations to estimate glomerular filtration in the general population: Impact on the epidemiology of chronic kidney disease. BMC Nephrol. 2013, 14, 57. [Google Scholar] [CrossRef]
- Forsse, J.S.; Peterson, M.N.; Papadakis, Z.; Schwedock, N.; Hess, B.W.; Griggs, J.O.; Allison, C.D.; Wilson, R.L.; Taylor, K.J.; Dugan, K.; et al. Renal Function Responses To Steady-state Moderate-intensity And High-intensity Interval Exercise In Mid-spectrum Chronic Kidney Disease: 299 Board #137 May 29 11:00 a.m.–12:30 p.m. Med. Sci. Sports Exerc. 2019, 51, 73. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 221–226. [Google Scholar] [CrossRef]
- Woitas, R.P.; Stoffel-Wagner, B.; Flommersfeld, S.; Poege, U.; Schiedermaier, P.; Klehr, H.-U.; Spengler, U.; Bidlingmaier, F.; Sauerbruch, T. Correlation of Serum Concentrations of Cystatin C and Creatinine to Inulin Clearance in Liver Cirrhosis. Clin. Chem. 2000, 46, 712–715. [Google Scholar] [CrossRef] [Green Version]
- Odutayo, A.; Cherney, D. Cystatin C and acute changes in glomerular filtration rate. Clin. Nephrol. 2012, 78, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Ebert, N.; Shlipak, M.G. Cystatin C is ready for clinical use. Curr. Opin. Nephrol. Hypertens. 2020, 29, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Nair, V.; Smith, S.; Zhu, L.; Shedden, K.; Song, P.X.K.; Mariani, L.H.; Eichinger, F.H.; Berthier, C.C.; Randolph, A.; et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 2015, 7, 316ra193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harskamp, L.R.; Gansevoort, R.T.; van Goor, H.; Meijer, E. The epidermal growth factor receptor pathway in chronic kidney diseases. Nat. Rev. Nephrol. 2016, 12, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Melenhorst, W.B.W.H.; Mulder, G.M.; Xi, Q.; Hoenderop, J.G.J.; Kimura, K.; Eguchi, S.; Goor, H. van Epidermal Growth Factor Receptor Signaling in the Kidney Key Roles in Physiology and Disease. Hypertension 2008, 52, 987–993. [Google Scholar] [CrossRef]
- Tang, J.; Liu, N.; Zhuang, S. Role of epidermal growth factor receptor in acute and chronic kidney injury. Kidney Int. 2013, 83, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Nony, P.A.; Schnellmann, R.G. Mechanisms of Renal Cell Repair and Regeneration after Acute Renal Failure. J. Pharmacol. Exp. Ther. 2003, 304, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Humes, H.D.; Cieslinski, D.A.; Coimbra, T.M.; Messana, J.M.; Galvao, C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J. Clin. Investig. 1989, 84, 1757–1761. [Google Scholar] [CrossRef]
- Little, M.H. Regrow or Repair: Potential Regenerative Therapies for the Kidney. J. Am. Soc. Nephrol. 2006, 17, 2390–2401. [Google Scholar] [CrossRef] [Green Version]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. Clin. J. Am. Soc. Nephrol. CJASN 2008, 3, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Donges, C.E.; Duffield, R.; Drinkwater, E.J. Effects of Resistance or Aerobic Exercise Training on Interleukin-6, C-reactive Protein, and Body Composition. Med. Sci. Sports Exerc. 2010, 42, 304–313. [Google Scholar] [CrossRef]
- Guelfi, K.J.; Donges, C.E.; Duffield, R. Beneficial effects of 12 weeks of aerobic compared with resistance exercise training on perceived appetite in previously sedentary overweight and obese men. Metabolism. 2013, 62, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Afshar, R.; Shegarfy, L.; Shavandi, N.; Sanavi, S. Effects of aerobic exercise and resistance training on lipid profiles and inflammation status in patients on maintenance hemodialysis. Indian J. Nephrol. 2010, 20, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Arena, R.; Myers, J.; Forman, D.E.; Lavie, C.J.; Guazzi, M. Should high-intensity-aerobic interval training become the clinical standard in heart failure? Heart Fail. Rev. 2013, 18, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.-F.; Hou, S.-K.; Chiu, Y.-H.; Chou, S.-L.; Kuo, F.-C.; Wang, S.-H.; Chen, J.-J. Effects of 100-km ultramarathon on acute kidney injury. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2015, 25, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bongers, C.C.W.G.; Alsady, M.; Nijenhuis, T.; Tulp, A.D.M.; Eijsvogels, T.M.H.; Deen, P.M.T.; Hopman, M.T.E. Impact of acute versus prolonged exercise and dehydration on kidney function and injury. Physiol. Rep. 2018, 6, e13734. [Google Scholar] [CrossRef]
- Hewing, B.; Schattke, S.; Spethmann, S.; Sanad, W.; Schroeckh, S.; Schimke, I.; Halleck, F.; Peters, H.; Brechtel, L.; Lock, J.; et al. Cardiac and renal function in a large cohort of amateur marathon runners. Cardiovasc. Ultrasound 2015, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, A.S.; Buckley, D.J.; Ismaeel, A.; Adair, K.; Lowry, C.; Torres, R.; Merrell, H.; Papoutsi, E.; Koutakis, P.; Forsse, J.S. In The Absence Of Cardiometabolic Diseases Is Age An Independent Factor In Assessing Renal Health And Function? A Pilot Study: 305. Med. Sci. Sports Exerc. 2021, 53, 95. [Google Scholar] [CrossRef]
- American College of Sports Medicine; Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.W.; Skinner, J.S.; Cantwell, B.W.; Smith, L.K. Progressive vs single-stage treadmill tests for evaluation of claudication. Med. Sci. Sports Exerc. 1991, 23, 402–408. [Google Scholar] [CrossRef]
- National Kidney Foundation K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 39, S1–S266.
- Hiraki, K.; Kamijo-Ikemori, A.; Yasuda, T.; Hotta, C.; Izawa, K.P.; Watanabe, S.; Sugaya, T.; Kimura, K. Moderate-Intensity Single Exercise Session Does Not Induce Renal Damage. J. Clin. Lab. Anal. 2013, 27, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Virvidakis, C.; Loukas, A.; Mayopoulou-Symvoulidou, D.; Mountokalakis, T. Renal Responses to Bicycle Exercise in Trained Athletes: Influence of Exercise Intensity. Int. J. Sports Med. 1986, 7, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Irving, R.A.; Noakes, T.D.; Irving, G.A.; Van Zyl-Smit, R. The immediate and delayed effects of marathon running on renal function. J. Urol. 1986, 136, 1176–1180. [Google Scholar] [CrossRef]
- Neumayr, G.; Pfister, R.; Hoertnagl, H.; Mitterbauer, G.; Getzner, W.; Ulmer, H.; Gaenzer, H.; Joannidis, M. The Effect of Marathon Cycling on Renal Function. Int. J. Sports Med. 2003, 24, 131–137. [Google Scholar] [CrossRef]
- Konradsen, L.; Nexø, E. Epidermal growth factor in plasma, serum and urine before and after prolonged exercise. Regul. Pept. 1988, 21, 197–203. [Google Scholar] [CrossRef]
- Valadez, E.; Buckley, D.; Ismaeel, A.; OLIVER, A.; Adair, K.; Papoutsi, E.; Prezioso, K.; Stamatis, A.; Koutakis, P.; Forsse, J. Is Age an Independent Factor in Assessing Renal Health and Function in Healthy Individuals? A Pilot Study. Int. J. Exerc. Sci. Conf. Proc. 2020, 2, 75. Available online: https://digitalcommons.wku.edu/ijesab/vol2/iss12/75 (accessed on 17 February 2020).
- Leite, J.C.; Forte, R.; de Vito, G.; Boreham, C.A.G.; Gibney, M.J.; Brennan, L.; Gibney, E.R. Comparison of the effect of multicomponent and resistance training programs on metabolic health parameters in the elderly. Arch. Gerontol. Geriatr. 2015, 60, 412–417. [Google Scholar] [CrossRef]
- Ritsche, K.; Patrie, J.; Weltman, A.; Wideman, L. The Relationship between Exercise-Induced and Non-Stimulated 24-Hr Growth Hormone Release. J. Am. Soc. Exerc. Physiol. 2014, 17, 43–57. [Google Scholar]
Variable | Mean | SD |
---|---|---|
Entire Cohort | ||
Age (yrs.) | 33.4 | 12.5 |
Height (cm) | 171.7 | 10.9 |
Weight (kg) | 77.9 | 15.9 |
Body Mass Index (BMI) | 26.5 | 5.5 |
Systolic Blood Pressure (SBP) (mmHg) | 120.1 | 10.4 |
Diastolic Blood Pressure (DBP) (mmHg) | 77.7 | 6.7 |
Heart Rate (HR) (beats per min) | 70.0 | 12.2 |
Exercise HR (beats per min) | 130.9 | 22.1 |
Estimated VO2 50–60% (mL/kg/min−1) | 28.7 | 4.2 |
Glucose (mg/dL) | 95.4 | 7.3 |
Total Cholesterol (Chol) (mg/dL) | 174.0 | 30.0 |
HDL (mg/dL) | 55.0 | 18.0 |
LDL (mg/dL) | 99.0 | 25.0 |
Albumin (g/dL) | 4.0 | 0.3 |
Hematocrit (%) | 45.0 | 4.0 |
20s | ||
Age (yrs.) | 22.0 | 2.8 |
Height (cm) | 172.2 | 9.4 |
Weight (kg) | 76.6 | 15.2 |
Body Mass Index (BMI) | ||
Systolic Blood Pressure (SBP) (mmHg) | 116.8 | 9.9 |
Diastolic Blood Pressure (DBP) (mmHg) | 76.1 | 6.4 |
Heart Rate (HR) (beats per min) | 72.4 | 11.0 |
Exercise HR (beats per min) | 138.0 | 19.0 |
Estimated VO2 50–60% (mL/kg/min−1) | 29.5 | 4.1 |
Glucose (mg/dL) | 94.3 | 4.9 |
Total Cholesterol (Chol) (mg/dL) | 168.0 | 30.5 |
HDL (mg/dL) | 56.9 | 18.1 |
LDL (mg/dL) | 91.6 | 25.2 |
Albumin (g/dL) | 4.0 | 0.3 |
Hematocrit (%) | 43.5 | 3.9 |
30s | ||
Age (yrs.) | 33.0 | 1.6 |
Height (cm) | 177.3 | 5.3 |
Weight (kg) | 84.2 | 18.3 |
Body Mass Index (BMI) | ||
Systolic Blood Pressure (SBP) (mmHg) | 124.5 | 3.8 |
Diastolic Blood Pressure (DBP) (mmHg) | 80.5 | 6.5 |
Heart Rate (HR) (beats per min) | 69.8 | 11.8 |
Exercise HR (beats per min) | 124.8 | 18.9 |
Estimated VO2 50–60% (mL/kg/min−1) | 27.7 | 3.9 |
Glucose (mg/dL) | 98.5 | 5.7 |
Total Cholesterol (Chol) (mg/dL) | 192.5 | 9.7 |
HDL (mg/dL) | 50.8 | 19.4 |
LDL (mg/dL) | 107.3 | 17.0 |
Albumin (g/dL) | 4.1 | 0.4 |
Hematocrit (%) | 48.8 | 0.8 |
40s | ||
Age (yrs.) | 44.5 | 3.8 |
Height (cm) | 167.1 | 16.0 |
Weight (kg) | 78.9 | 13.2 |
Body Mass Index (BMI) | ||
Systolic Blood Pressure (SBP) (mmHg) | 124.7 | 13.2 |
Diastolic Blood Pressure (DBP) (mmHg) | 80.7 | 6.2 |
Heart Rate (HR) (beats per min) | 69.5 | 16.9 |
Exercise HR (beats per min) | 121.8 | 21.7 |
Estimated VO2 50–60% (mL/kg/min−1) | 27.5 | 3.4 |
Glucose (mg/dL) | 97.3 | 9.4 |
Total Cholesterol (Chol) (mg/dL) | 178.7 | 32.4 |
HDL (mg/dL) | 53.5 | 23.3 |
LDL (mg/dL) | 104.0 | 26.6 |
Albumin (g/dL) | 4.0 | 0.2 |
Hematocrit (%) | 45.3 | 3.4 |
50s | ||
Age (yrs.) | 53.3 | 2.2 |
Height (cm) | 167.1 | 6.1 |
Weight (kg) | 84.0 | 18.6 |
Body Mass Index (BMI) | ||
Systolic Blood Pressure (SBP) (mmHg) | 123.0 | 10.8 |
Diastolic Blood Pressure (DBP) (mmHg) | 82.5 | 3.0 |
Heart Rate (HR) (beats per min) | 66.5 | 6.2 |
Exercise HR (beats per min) | 123.3 | 27.3 |
Estimated VO2 50–60% (mL/kg/min−1) | 28.3 | 5.6 |
Glucose (mg/dL) | 93.3 | 9.9 |
Total Cholesterol (Chol) (mg/dL) | 164.3 | 46.1 |
HDL (mg/dL) | 52.6 | 20.0 |
LDL (mg/dL) | 92.8 | 29.8 |
Albumin (g/dL) | 3.7 | 0.9 |
Hematocrit (%) | 44.3 | 2.5 |
Variable | Baseline | Post-Exercise | Delta | t-Value | p-Value |
---|---|---|---|---|---|
Entire Cohort | |||||
SCr (mg/dL) | 0.92 ± 0.23 | 0.91 ± 0.23 | 1.1% | −1.15 | 0.259 |
uCR (mg/dL) | 145.5 ± 104.5 | 178.1 ± 138.7 | 22.4% | 2.07 | 0.046 * |
CyC (ng/mL) | 611.82 ± 80.15 | 714.5 ± 167.12 | 16.8% | 4.24 | 0.0001 * |
uEGF (ng/mL) | 6574.16 ± 1519.64 | 6780.0 ± 1467.1 | 3.1% | 0.94 | 0.353 |
uEGF/uCR (ng/mL)/(mg/dL) | 1.56 ± 0.81 | 1.94 ± 1.33 | 24.4% | 1.71 | 0.096 |
eGFR (MDRD) | 98.46 ± 35.12 | 83.41 ± 32.60 | 15.3% | −1.75 | 0.089 |
eGFR (CKD-EPI) | 102.34 ± 45.78 | 107.90 ± 53.35 | 5.5% | 1.23 | 0.229 |
eGFR (CyC) | 142.80 ± 21.87 | 124.07 ± 31.82 | 13.1% | −3.94 | 0.0004 * |
eGFR (CyC and SCr) | 118.97 ± 23.05 | 113.47 ± 25.58 | 4.6% | −0.96 | 0.346 |
Group 1 (20–39) | |||||
SCr (mg/dL) | 0.96 ± 0.24 | 0.92 ± 0.25 | 3.4% | 1.107 | 0.280 |
uCR (mg/dL) | 150.68 ± 105.30 | 195.86 ± 144.67 | 29.9% | −1.97 | 0.061 |
CyC (ng/mL) | 614.83 ± 83.13 | 730.92 ± 185.50 | 18.9% | −3.70 | 0.001 * |
uEGF (ng/mL) | 6717.43 ± 1540.43 | 6934.24 ± 1436.27 | 3.2% | −0.782 | 0.442 |
uEGF/uCR (ng/mL)/(mg/dL) | 1.54 ± 0.84 | 1.83 ± 1.01 | 18.83% | −1.75 | 0.094 |
eGFR (MDRD) | 105.67 ± 37.02 | 87.47 ± 32.18 | 17.2% | 1.81 | 0.084 |
eGFR (CKD-EPI) | 103.1 ± 42.12 | 114.57 ± 52.68 | 11.1% | −1.05 | 0.303 |
eGFR (CyC) | 147.74 ± 22.03 | 126.57 ± 32.55 | 14.3% | 4.12 | 0.001 * |
eGFR (CyC and SCr) | 122.71 ± 21.97 | 118.13 ± 25.59 | 3.7% | 1.11 | 0.280 |
Group 2 (40–59) | |||||
SCr (mg/dL) | 0.93 ± 0.18 | 0.89 ± 0.19 | 4.3% | 0.616 | 0.551 |
uCR (mg/dL) | 137.69 ± 101.14 | 153.92 ± 123.48 | 11.8% | −1.24 | 0.235 |
CyC (ng/mL) | 616.32 ± 77.16 | 704.43 ± 129.78 | 14.3% | −2.63 | 0.020 * |
uEGF (ng/mL) | 6255.81 ± 1420.11 | 6458.86 ± 1441.45 | 3.2% | −0.64 | 0.535 |
uEGF/uCR (ng/mL)/(mg/dL) | 1.59 ± 0.74 | 1.64 ± 0.95 | 3.1% | −0.43 | 0.672 |
eGFR (MDRD) | 78.22 ± 14.24 | 75.79 ± 31.52 | 3.1% | 0.278 | 0.786 |
eGFR (CKD-EPI) | 84.64 ± 20.95 | 97.92 ± 52.32 | 15.7% | −0.919 | 0.378 |
eGFR (CyC) | 132.69 ± 18.55 | 116.90 ± 29.77 | 11.9% | 1.84 | 0.088 |
eGFR (CyC and SCr) | 105.91 ± 12.56 | 104.36 ± 21.71 | 1.5% | 0.205 | 0.841 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forsse, J.S.; Buckley, D.; Ismaeel, A.; Richardson, K.A.; Oliver, A.; Koutakis, P. Effect of Age and Acute-Moderate Intensity Exercise on Biomarkers of Renal Health and Filtration. Biology 2022, 11, 527. https://doi.org/10.3390/biology11040527
Forsse JS, Buckley D, Ismaeel A, Richardson KA, Oliver A, Koutakis P. Effect of Age and Acute-Moderate Intensity Exercise on Biomarkers of Renal Health and Filtration. Biology. 2022; 11(4):527. https://doi.org/10.3390/biology11040527
Chicago/Turabian StyleForsse, Jeffrey S., David Buckley, Ahmed Ismaeel, Kathleen A. Richardson, Autumn Oliver, and Panagiotis Koutakis. 2022. "Effect of Age and Acute-Moderate Intensity Exercise on Biomarkers of Renal Health and Filtration" Biology 11, no. 4: 527. https://doi.org/10.3390/biology11040527
APA StyleForsse, J. S., Buckley, D., Ismaeel, A., Richardson, K. A., Oliver, A., & Koutakis, P. (2022). Effect of Age and Acute-Moderate Intensity Exercise on Biomarkers of Renal Health and Filtration. Biology, 11(4), 527. https://doi.org/10.3390/biology11040527