How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Drugs on Bone
3.1.1. Cocaine
3.1.2. Opioids
3.1.3. Amphetamines
3.1.4. Cannabinoids
3.1.5. Alcohol
3.1.6. Tobacco
3.1.7. Oral Glucocorticoids
3.1.8. Non-Steroid Anti-Inflammatory Drugs (NSAIDs)
3.1.9. Paracetamol
3.1.10. Gonadotropin Releasing Hormone Agonists (GnRHa)
3.2. Proton Pump Inhibitors
3.3. Antiretroviral Therapy
3.4. Anti-Depressant Drugs
3.5. Anti-Epileptic Drugs
3.6. Antidiabetic Drugs
3.7. Antiresorptive Drugs
3.8. Antithrombotic Drugs
3.9. Other Drugs
3.10. Oral Pathology
3.11. Other Skeletal Involvement
3.12. Summary of Results and Further Observations
4. Discussion
4.1. Limitations
4.2. Implications for Forensic Anthropology: Effects on Age-at-Death, Sex Estimation and Other Parameters
4.2.1. Implications for Personal Identification
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cattaneo, C. Forensic anthropology: Developments of a classical discipline in the new millennium. Forensic Sci. Int. 2007, 165, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Komar, D.A.; Buikstra, J.E. Forensic Anthropology: Contemporary Theory and Practice; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- de Boer, H.; Obertová, Z.; Cunha, E.; Adalian, P.; Baccino, E.; Fracasso, T.; Kranioti, E.; Lefévre, P.; Lynnerup, N.; Petaros, A.; et al. Strengthening the role of forensic anthropology in personal identification: Position statement by the Board of the Forensic Anthropology Society of Europe (FASE). Forensic Sci. Int. 2020, 315, 110456. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Grant, N.; Roberts, J. Redefining forensic anthropology in the 21st century and its role in mass fatality investigations. Eur. J. Anat. 2021, 25, 19–34. [Google Scholar]
- Christensen, A.; Passalacqua, N.; Bartelink, E. (Eds.) Forensic Anthropology: Current Methods and Practice, 2nd ed.; Academic Press: London, UK, 2019. [Google Scholar]
- Marquez-Grant, N. An overview of age estimation in forensic anthropology: Perspectives and practical considerations. Ann. Hum. Biol. 2015, 42, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.M.; Passalacqua, N.V.; Bartelink, E.J. Age Estimation. In Forensic Anthropology: Current Methods and Practice, 2nd ed; Christensen, A.M., Passalacqua, N., Bartelink, E., Eds.; Academic Press: London, UK, 2019; pp. 307–349. [Google Scholar]
- Garvin, H.M. Adult Sex Determination: Methods and application. In A Companion to Forensic Anthropology; Dirkmaat, D., Ed.; Wiley-Blackwell: Chichester, UK, 2012; pp. 239–247. [Google Scholar]
- Ousley, S.D. Estimating Stature. In A Companion to Forensic Anthropology; Dirkmaat, D., Ed.; Wiley-Blackwell: Chichester, UK, 2012; pp. 330–334. [Google Scholar]
- Hefner, J.T.; Ousley, S.D.; Dirkmaat, D.C. Morphoscopic Traits and the Assessment of Ancestry; Wiley-Blackwell: Chichester, UK, 2012; pp. 287–310. [Google Scholar]
- Ousley, S.D.; Jantz, R.L. Fordisc 3 and Statistical Methods for Estimating Sex And Ancestry. In A Companion to Forensic Anthropology; Dirkmaat, D., Ed.; Wiley-Blackwell: Chichester, UK, 2012; pp. 311–329. [Google Scholar]
- Ross, A.; Williams, S. Ancestry Studies in Forensic Anthropology: Back on the Frontier of Racism. Biology 2021, 10, 602. [Google Scholar] [CrossRef]
- Latham, K.; Bartelink, E.; Finnegan, M. (Eds.) New Perspectives in Forensic Human Skeletal Identification; Academic Press: London, UK, 2018. [Google Scholar]
- Goodman, S.B.; Jiranek, W.; Petrow, E.; Yasko, A.W. The Effects of Medications on Bone. J. Am. Acad. Orthop. Surg. 2007, 15, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Imbert, L.; Boskey, A. Effects of Drugs on Bone Quality. Clin. Rev. Bone Miner. Metab. 2016, 14, 167–196. [Google Scholar] [CrossRef]
- UNODC. World Drug Report. 2021. Available online: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html (accessed on 1 October 2021).
- United Nations. World Drug Report 2018: Global Overview of Drug Demand and Supply. Latest Trends, Cross-Cutting Issues. 2018. Available online: https://www.unodc.org/wdr2018 (accessed on 15 March 2020).
- Rubin, K. The manifestation of cocaine-induced midline destructive lesion in bone tissue and its identification in human skeletal remains. Forensic Sci. Int. 2013, 231, 408e1. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, N. Drug Use, Homeostasis, and The Estimation of Age at Death from Skeletal Remains. 2014. Available online: https://www.academia.edu/6036089/Drug_use_homeostasis_and_the_estimation_of_age_at_death_from_skeletal_remains (accessed on 15 March 2020).
- Michael, A.R.; Bengtson, J.D. Chronic alcoholism and bone remodeling processes: Caveats and considerations for the forensic anthropologist. J. Forensic Leg. Med. 2016, 38, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Andronowski, J.M.; Cole, M.E.; Davis, R.A.; Schuller, A.; Tubo, G.R.; LaMarca, A.R.; Taylor, J.T. The Longitudinal Effects Of Prolonged Opioid Use On Cortical Bone Remodeling In A Rabbit Model: Part I—Intraskeletal Variability and Regional Differences Detected Via Micro-Computed Tomography. In Proceedings of the American Academy of Forensic Sciences 73rd Annual Scientific Meeting 2021, Seattle, WA, USA, 9 December 2021. [Google Scholar]
- McGrath, K.K.; Jenkins, A.J. Detection of Drugs of Forensic Importance in Postmortem Bone. Am. J. Forensic Med. Pathol. 2009, 30, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, A.; Gika, H.; Mastrogianni, O.; Krokos, A.; Theodoridis, G.; Zaggelidou, E.; Raikos, N. Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC–MS/MS. Forensic Sci. Int. 2018, 290, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Rubin, K.M. The current state and future directions of skeletal toxicology: Forensic and humanitarian implications of a proposed model for the in vivo incorporation of drugs into the human skeleton. Forensic Sci. Int. 2018, 289, 419–428. [Google Scholar] [CrossRef]
- Smith, S.Y.; Doyle, N.; Felx, M. Introduction and Considerations in Bone Toxicology. In Bone Toxicology; Smith, S., Varela, A., Samadfam, R., Eds.; Springer: Cham, Germany, 2017; pp. 3–26. [Google Scholar]
- Watterson, J. Challenges in forensic toxicology of skeletonised human remains. Analyst 2006, 131, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.; Biehler-Gomez, L.; Seneci, P.; Cattaneo, C.; Di Candia, D. Detecting drugs in dry bone: A pilot study of skeletal remains with a post-mortem interval over 23 years. Int. J. Leg. Med. 2021, 135, 457–463. [Google Scholar] [CrossRef]
- Richards, V. An Overview of How Drugs Affect the Skeleton: Implications for Forensic Anthropology. Unpublished Master’s Thesis, Cranfield University, Cranfield, UK, 2014. [Google Scholar]
- Drug Enforcement Administration. Drugs of Abuse. 2017. Available online: https://www.dea.gov/sites/default/files/drug_of_abuse.pdf (accessed on 16 March 2020).
- Siegrist, M.; Wiegand, T.J. Cocaine. In Encyclopedia of Toxicology: Third Edition; Wexler, P., Ed.; Academic Press: London, UK, 2014; pp. 999–1002. [Google Scholar]
- Néel, A.; Agard, C.; Hamidou, M. Vasculitides induced by cocaine and/or levamisole. Jt. Bone Spine 2018, 85, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Tan, D.; Marnejon, T.P. Cutaneous Vasculopathy Associated with Levamisole-Adulterated Cocaine. Clin. Med. Res. 2012, 11, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, H.L.; Millard, D.R. A New Cocaine Abuse Complex: Involvement of Nose, Septum, Palate, and Pharynx. Arch. Otolaryngol. Head Neck Surg. 1989, 115, 235–237. [Google Scholar] [CrossRef]
- Gupta, A.; Hawrych, A.; Wilson, W.R. Cocaine-Induced Sinonasal Destruction. Otolaryngol. Neck Surg. 2001, 124, 480. [Google Scholar] [CrossRef]
- Padilla-Rosas, M.; Jimenez-Santos, C.I.; García-González, C.L. Palatine perforation induced by cocaine. Medicina Oral Patología Oral y Cirugia Bucal 2006, 11, E239–E242. [Google Scholar]
- Schweitzer, V.G. Osteolytic sinusitis and pneumomediastinum: Deceptive otolaryngologic complications of cocaine abuse. Laryngoscope 1986, 96, 206–210. [Google Scholar] [CrossRef]
- Molina, P.C.; Carmona, E.F.; Palza, C.A.M.; Serrano, R.L.T. Orbital and Nasal Complications Secondary to Inhaled Cocaine Abuse. Acta Otorrinolaringol. 2012, 63, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Lascaratos, G.; McHugh, J.; McCarthy, K.; Bunting, H. Advanced cocaine-related necrotising sinusitis presenting with restrictive ophthalmolplegia. Orbit 2016, 35, 164–166. [Google Scholar] [CrossRef]
- Brembilla, C.; Lanterna, L.A.; Risso, A.; Bombana, E.; Gritti, P.; Trezzi, R.; Bonaldi, G.; Biroli, F. Craniovertebral junction instability as an extension of cocaine-induced midline destructive lesions: Case report. J. Neurosurg. Spine 2015, 23, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Manchikanti, L.; Singh, A. Therapeutic opioids: A ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Physician 2008, 11, S63–S88. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.V.; Raphael, J.H.; Southall, J.L.; Labib, M.H.; Whallett, A.J.; Ashford, R.L. Hypogonadism and low bone mineral density in patients on long-term intrathecal opioid delivery therapy. BMJ Open 2013, 3, e002856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, M.J. The Effect of Opioid Therapy on Endocrine Function. Am. J. Med. 2013, 126, S12–S18. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Nebeker, J.R.; Sauer, B.; LaFleur, J. Factors associated with screening or treatment initiation among male United States veterans at risk for osteoporosis fracture. Bone 2012, 50, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boshra, V. Evaluation of Osteoporosis Risk Associated with Chronic Use of Morphine, Fentanyl and Tramadol in Adult Female Rats. Curr. Drug Saf. 2011, 6, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ramli, F.F.; Hashim, S.A.S.; Effendy, N.M. Factors Associated with Low Bone Density in Opioid Substitution Therapy Patients: A Systematic Review. Int. J. Med Sci. 2021, 18, 575–581. [Google Scholar] [CrossRef]
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Fracture risk associated with the use of morphine and opiates. J. Intern. Med. 2006, 260, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, F.; Scerpa, M.S.; Centanni, M. The Effect of Opiates on Bone Formation and Bone Healing. Curr. Osteoporos. Rep. 2020, 18, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Ezzatabadipour, M.; Majidi, M.; Malekpour-Afshar, R.; Eftekharvaghefi, S.H.; Nematollahi-Mahani, S.N. The Effects of Morphine on Tissue Structure of the Growth Plate in Male Rats. Iran. J. Basic Med Sci. 2011, 14, 514–520. [Google Scholar] [PubMed]
- Saeidinezhad, M.; Razban, V.; Safizadeh, H.; Ezzatabadipour, M. Effects of maternal consumption of morphine on rat skeletal system development. BMC Musculoskelet. Disord. 2021, 22, 1–10. [Google Scholar] [CrossRef]
- Kim, T.W.; Alford, D.P.; Malabanan, A.; Holick, M.; Samet, J. Low bone density in patients receiving methadone maintenance treatment. Drug Alcohol Depend. 2006, 85, 258–262. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kwon, D.H.; Lee, B.D.; Kim, Y.T.; Ahn, Y.B.; Yoon, K.Y.; Sa, S.J.; Cho, W.; Cho, S.N. Frequency of osteoporosis in 46 men with methamphetamine abuse hospitalized in a National Hospital. Forensic Sci. Int. 2009, 188, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Grey, A.; Rix-Trott, K.; Horne, A.; Gamble, G.; Bolland, M.; Reid, I. Decreased bone density in men on methadone maintenance therapy. Addiction 2010, 106, 349–354. [Google Scholar] [CrossRef]
- Milos, G.; Gallo, L.M.; Sosic, B.; Uebelhart, D.; Goerres, G.; Haeuselmann, H.-J.; Eich, M. Bone Mineral Density in Young Women on Methadone Substitution. Calcif. Tissue Res. 2011, 89, 228–233. [Google Scholar] [CrossRef]
- Pérez-Castrillón, J.L.; Olmos, J.M.; Gómez, J.J.; Barrallo-Gimeno, A.; Riancho, J.A.; Perera, L.; Valero, C.; Amado, J.A.; González-Macías, J. Expression of Opioid Receptors in Osteoblast-Like MG-63 Cells, and Effects of Different Opioid Agonists on Alkaline Phosphatase and Osteocalcin Secretion by These Cells. Neuroendocrinology 2000, 72, 187–194. [Google Scholar] [CrossRef]
- Pedrazzoni, M.; Vescovi, P.P.; Maninetti, L.; Michelini, M.; Zaniboni, G.; Pioli, G.; Costi, D.; Alfano, F.S.; Passeri, M. Effects of chronic heroin abuse on bone and mineral metabolism. Eur. J. Endocrinol. 1993, 129, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, H.; Stĕpán, J. [Bone metabolism in individuals dependent on heroin and after methadone administration]. Cas. Lek. Ceskych 2003, 142, 606–608. [Google Scholar]
- Brancós, M.A.; Peris, P.; Miró, J.; Monegal, A.; Gatell, J.; Mallolas, J.; Mensa, J.; García, S.; Muñoz-Gómez, J. Septic arthritis in heroin addicts. Semin. Arthritis Rheum. 1991, 21, 81–87. [Google Scholar] [CrossRef]
- Allison, D.C.; Holtom, P.D.; Patzakis, M.J.; Zalavras, C.G. Microbiology of Bone and Joint Infections in Injecting Drug Abusers. Clin. Orthop. Relat. Res. 2010, 468, 2107–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.J.; Hu, L.T. Septic arthritis of the pubic symphysis: Review of 100 cases. Medicine 2003, 82, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Delaney, F.T.; Stanley, E.; Bolster, F. The needle and the damage done: Musculoskeletal and vascular complications associated with injected drug use. Insights Imaging 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Endress, C.; Guyot, D.R.; Fata, J.; Salciccioli, G. Cervical osteomyelitis due to i.v. heroin use: Radiologic findings in 14 patients. Am. J. Roentgenol. 1990, 155, 333–335. [Google Scholar] [CrossRef]
- Singh, G.; Shetty, R.R.; Ravidass, M.J.; Anilkumar, P.G. Cervical osteomyelitis associated with intravenous drug use. Emerg. Med. J. 2006, 23, e16. [Google Scholar] [CrossRef] [Green Version]
- Grund, J.-P.C.; Latypov, A.; Harris, M. Breaking worse: The emergence of krokodil and excessive injuries among people who inject drugs in Eurasia. Int. J. Drug Policy 2013, 24, 265–274. [Google Scholar] [CrossRef]
- Poghosyan, Y.M.; Hakobyan, K.A.; Poghosyan, A.Y.; Avetisyan, E.K. Surgical treatment of jaw osteonecrosis in “Krokodil” drug addicted patients. J. Cranio-Maxillofac. Surg. 2014, 42, 1639–1643. [Google Scholar] [CrossRef]
- Hakobyan, K.; Poghosyan, Y. Spontaneous bone formation after mandible segmental resection in “krokodil” drug-related jaw osteonecrosis patient: Case report. Oral Maxillofac. Surg. 2017, 21, 267–270. [Google Scholar] [CrossRef]
- Sergent, J.-F.; Bader, G.; Hamon, J.; Peigne, L.; Lejeune, S. Krokodil (Desomorphine)-induced osteonecrosis of the maxilla: A case report and literature review. J. Oral Med. Oral Surg. 2019, 25, 26. [Google Scholar] [CrossRef]
- Tomita, M.; Katsuyama, H.; Watanabe, Y.; Okuyama, T.; Fushimi, S.; Ishikawa, T.; Nata, M.; Miyamoto, O. Does methamphetamine affect bone metabolism? Toxicology 2014, 319, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Katsuragawa, K. Effect of methamphetamine abuse on the bone quality of the calcaneus. Forensic Sci. Int. 1999, 101, 43–48. [Google Scholar] [CrossRef]
- Mosti, M.P.; Flemmen, G.; Hoff, J.; Stunes, A.K.; Syversen, U.; Wang, E. Impaired skeletal health and neuromuscular function among amphetamine users in clinical treatment. Osteoporos. Int. 2016, 27, 1003–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustemeyer, J.; Melenberg, A.; Junker, K.; Sari-Rieger, A. Osteonecrosis of the maxilla related to long-standing methamphetamine abuse: A possible new aspect in the etiology of osteonecrosis of the jaw. Oral Maxillofac. Surg. 2014, 18, 237–241. [Google Scholar] [CrossRef]
- Faucett, E.A.; Marsh, K.M.; Farshad, K.; Erman, A.B.; Chiu, A.G. Maxillary Sinus Manifestations of Methamphetamine Abuse. Allergy Rhinol. 2015, 6, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, J.; Levine, M.A. Bones and Joints: The Effects of Cannabinoids on the Skeleton. J. Clin. Endocrinol. Metab. 2019, 104, 4683–4694. [Google Scholar] [CrossRef]
- Idris, A.I.; Ralston, S.H. Role of cannabinoids in the regulation of bone remodeling. Front. Endocrinol. 2012, 3, 136. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, A.; Robertson, R.; Ferreira, N.B.; McKenzie, J.; Fraser, W.D.; Ralston, S.H. Heavy Cannabis Use Is Associated With Low Bone Mineral Density and an Increased Risk of Fractures. Am. J. Med. 2017, 130, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Bab, I.; Zimmer, A.; Melamed, E. Cannabinoids and the skeleton: From marijuana to reversal of bone loss. Ann. Med. 2009, 41, 560–567. [Google Scholar] [CrossRef]
- Bourne, D.; Plinke, W.; Hooker, E.R.; Nielson, C.M. Cannabis use and bone mineral density: NHANES 2007–2010. Arch. Osteoporos. 2017, 12, 29. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Anoushiravani, A.A.; Adams, C.; Young, J.; Richardson, K.; Rosenbaum, A.J. Cannabinoid Use in Musculoskeletal Illness: A Review of the Current Evidence. Curr. Rev. Musculoskelet. Med. 2020, 13, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.W. Alcohol’s harmful effects on bone. Alcohol Health Res. World 1998, 22, 190–194. [Google Scholar] [PubMed]
- Maurel, D.B.; Boisseau, N.; Benhamou, C.L.; Jaffre, C. Alcohol and bone: Review of dose effects and mechanisms. Osteoporos. Int. 2012, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, P. Alcohol and bone. Wien. Med. Wochenschr. 2014, 164, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.F. Alcohol-Induced Bone Disease: Impact of Ethanol on Osteoblast Proliferation. Alcohol. Clin. Exp. Res. 1997, 21, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, Y.; Liu, Y.; Chen, H.; Shi, S.; Liu, Y. Cellular and molecular mechanisms of alcohol-induced osteopenia. Cell. Mol. Life Sci. 2017, 74, 4443–4453. [Google Scholar] [CrossRef]
- Cheraghi, Z.; Doosti-Irani, A.; Almasi-Hashiani, A.; Baigi, V.; Mansournia, N.; Etminan, M.; Mansournia, M.A. The effect of alcohol on osteoporosis: A systematic review and meta-analysis. Drug Alcohol Depend. 2019, 197, 197–202. [Google Scholar] [CrossRef]
- Gaddini, G.W.; Turner, R.T.; Grant, K.A.; Iwaniec, U.T. Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton. Alcohol. Clin. Exp. Res. 2016, 40, 657–671. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.H.; Chang, S.J.; Koh, S.B.; Kim, K.S.; Lee, T.Y.; Ryu, S.Y.; Song, J.S.; Park, J.K. Association between alcohol consumption and bone strength in Korean adults: The Korean Genomic Rural Cohort Study. Metabolism 2011, 60, 351–358. [Google Scholar] [CrossRef]
- Prieto-Alhambra, D.; Turkiewicz, A.; Reyes, C.; Timpka, S.; Rosengren, B.; Englund, M. Smoking and Alcohol Intake but Not Muscle Strength in Young Men Increase Fracture Risk at Middle Age: A Cohort Study Linked to the Swedish National Patient Registry. J. Bone Miner. Res. 2019, 35, 498–504. [Google Scholar] [CrossRef]
- Richards, C.J.; Graf, K.W.; Mashru, R.P. The Effect of Opioids, Alcohol, and Nonsteroidal Anti-inflammatory Drugs on Fracture Union. Orthop. Clin. North Am. 2017, 48, 433–443. [Google Scholar] [CrossRef]
- Jacobs, B. Alcoholism-induced bone necrosis. N. Y. State J. Med. 1992, 92, 334–338. [Google Scholar] [PubMed]
- Matsumoto, K.; Ogawa, H.; Akiyama, H. Multifocal Osteonecrosis Secondary to Chronic Alcohol Ingestion. Case Rep. Orthop. 2015, 2015, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, S.; Browne, M.; Rasmussen, S.A.; Druschel, C.M.; Sun, L.; Jabs, E.; Romitti, P.A.; The National Birth Defects Prevention Study. Associations between periconceptional alcohol consumption and craniosynostosis, omphalocele, and gastroschisis. Birth Defects Res. Part A Clin. Mol. Teratol. 2011, 91, 623–630. [Google Scholar] [CrossRef]
- Wong, P.K.K.; Christie, J.J.; Wark, J.D. The effects of smoking on bone health. Clin. Sci. 2007, 113, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, C.; Alessi, A.; Girotti, G.; Zanforlini, B.M.; Bertocco, A.; Mazzochin, M.; Zoccarato, F.; Piovesan, F.; Dianin, M.; Giannini, S.; et al. The Impact of Smoking on Bone Metabolism, Bone Mineral Density and Vertebral Fractures in Postmenopausal Women. J. Clin. Densitom. 2020, 23, 381–389. [Google Scholar] [CrossRef]
- Jaramillo, J.D.; Wilson, C.; Stinson, D.J.; Lynch, D.A.; Bowler, R.P.; Lutz, S.; Bon, J.M.; Arnold, B.; McDonald, M.-L.N.; Washko, G.R.; et al. Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk. Ann. Am. Thorac. Soc. 2015, 12, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Al-Bashaireh, A.M.; Haddad, L.G.; Weaver, M.; Chengguo, X.; Kelly, D.L.; Yoon, S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J. Osteoporos. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strozyk, D.; Gress, T.M.; Breitling, L.P. Smoking and bone mineral density: Comprehensive analyses of the third National Health and Nutrition Examination Survey (NHANES III). Arch. Osteoporos. 2018, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Mizrak, S.; Turan, V.; Inan, S.; Uysal, A.; Yilmaz, C.; Ercan, G. Effect of Nicotine on RANKL and OPG and Bone Mineral Density. J. Investig. Surg. 2014, 27, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Michaëlsson, K.; Wan, Z.; Larsson, S.C. Associations of Smoking and Alcohol and Coffee Intake with Fracture and Bone Mineral Density: A Mendelian Randomization Study. Calcif. Tissue Res. 2019, 105, 582–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Sham, M.H.; Zheng, L.W.; Cheung, L.K. Influence of Low-Dose Nicotine on Bone Healing. J. Trauma Inj. Infect. Crit. Care 2011, 70, E117–E121. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Merchan, E.C. The importance of smoking in orthopedic surgery. Hosp. Pr. 2018, 46, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Hernigou, J.; Schuind, F. Tobacco and bone fractures: A review of the facts and issues that every orthopaedic surgeon should know. Bone Jt. Res. 2019, 8, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Lorentzon, M.; Mellström, D.; Haug, E.; Ohlsson, C. Smoking is associated with lower bone mineral density and reduced cortical thickness in young men. J. Clin. Endocrinol. Metab. 2007, 92, 497–503. [Google Scholar] [CrossRef]
- Scolaro, J.A.; Schenker, M.L.; Yannascoli, S.; Baldwin, K.; Mehta, S.; Ahn, J. Cigarette smoking increases complications following fracture: A systematic review. J. Bone Jt. Surg. Am. Vol. 2014, 96, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.P.; Lourenço, J.D.; Junqueira, J.J.M.; de França, S.L.E.; Martins, J.S.; Junior, M.C.O.; Begalli, I.; Velosa, A.P.P.; Olivo, C.R.; Bastos, T.B.; et al. The deleterious effects of smoking in bone mineralization and fibrillar matrix composition. Life Sci. 2020, 241, 117132. [Google Scholar] [CrossRef]
- Aspera-Werz, R.H.; Chen, T.; Ehnert, S.; Zhu, S.; Fröhlich, T.; Nussler, A.K. Cigarette Smoke Induces the Risk of Metabolic Bone Diseases: Transforming Growth Factor Beta Signaling Impairment via Dysfunctional Primary Cilia Affects Migration, Proliferation, and Differentiation of Human Mesenchymal Stem Cells. Int. J. Mol. Sci. 2019, 20, 2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Cicuttini, F.; Blizzard, L.; Jones, G. Smoking interacts with family history with regard to change in knee cartilage volume and cartilage defect development. Arthritis Care Res. 2007, 56, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Niu, J.; Guermazi, A.; Grigoryan, M.; Hunter, D.J.; Clancy, M.; LaValley, M.; Genant, H.K.; Felson, D. Cigarette smoking and the risk for cartilage loss and knee pain in men with knee osteoarthritis. Ann. Rheum. Dis. 2006, 66, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Nasto, L.; Roughley, P.; Leme, A.; Houghton, A.; Usas, A.; Sowa, G.; Lee, J.; Niedernhofer, L.; Shapiro, S.; et al. Spine degeneration in a murine model of chronic human tobacco smokers. Osteoarthr. Cartil. 2012, 20, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Quelhas, D.; Kompala, C.; Wittenbrink, B.; Han, Z.; Parker, M.; Shapiro, M.; Downs, S.; Kraemer, K.; Fanzo, J.; Morris, S.; et al. The association between active tobacco use during pregnancy and growth outcomes of children under five years of age: A systematic review and meta-analysis. BMC Public Heal. 2018, 18, 1372. [Google Scholar] [CrossRef]
- Bowles, S. Drug Induced Osteoporosis; Pharmacotherapy Self-Assessment Program, American College of Clinical Pharmacy: Kansas City, MO, USA, 2012; pp. 203–224. [Google Scholar]
- Spoelhof, B.; Ray, S.D. Corticosteroids. In Encyclopedia of Toxicology: Third Edition; Wexler, P., Ed.; Academic Press: London, UK, 2014; pp. 1038–1042. [Google Scholar]
- Park, H.W.; Dahlin, A.; Tse, S.; Daun, Q.L.; Schuemann, B.; Martinez, F.D.; Peters, S.P.; Szefler, S.J.; Lima, J.J.; Kubo, M.; et al. Genetic procedures associated with improvement of asthma symptoms in response to inhaled corticosteroids. J. Allergy Clin. Immunol. 2014, 133, 664–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romas, E. Corticosteroid-induced osteoporosis and fractures. Aust. Prescr. 2008, 31, 45–49. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Akhter, M.P.; Gao, X.; Wang, X.-Y.; Zhao, G.; Wei, X.; Wu, H.-J.; Chen, H.; Wang, D.; Cui, L. Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clin. Interv. Aging 2018, 13, 1465–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, D.B.; Julius, J.R.; Breen, T.J.; Attie, K.M. Treatment of glucocorticoid-induced growth suppression with growth hormone. J. Clin. Endocrinol. Metab. 1998, 83, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Annexstad, E.J.; Bollerslev, J.; Westvik, J.; Myhre, A.G.; Godang, K.; Holm, I.; Rasmussen, M. The role of delayed bone age in the evaluation of stature and bone health in glucocorticoid treated patients with Duchenne muscular dystrophy. Int. J. Pediatr. Endocrinol. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, T.; Ahmed, S.F. The impact of corticosteroids on growth and bone health. Arch. Dis. Child. 2002, 87, 93–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Li, Y.; Ye, Y.-Y.; Huang, H.; Yi, H.-L.; Chen, M.; Guo, C. Effects of inhaled corticosteroids on bone age and growth in children with asthma. Chin. J. Contemp. Pediatrics 2012, 14, 359–361. (In Chinese) [Google Scholar]
- Black, S.; Aggrawal, A.; Payne-James, J. (Eds.) Age Estimation in the Living: A Practitioner’s Guide; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- García-Martínez, O.; De Luna-Bertos, E.; Ramos-Torrecillas, J.; Manzano-Moreno, F.; Ruiz, C. Repercussions of NSAIDS drugs on bone tissue: The osteoblast. Life Sci. 2015, 123, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Nwadinigwe, C.U.; Anyaehie, U.E. Effects of Cyclooxygenase inhibitors on bone and cartilage metabolism: A Review. Niger. J. Med. 2008, 16, 290–294. [Google Scholar] [CrossRef]
- Lisowska, B.; Kosson, D.; Domaracka, K. Lights and shadows of NSAIDs in bone healing: The role of prostaglandins in bone metabolism. Drug Des. Dev. Ther. 2018, 12, 1753–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisowska, B.; Kosson, D.; Domaracka, K. Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: The effects of these drugs on bone repair. Drug Des. Dev. Ther. 2018, 12, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.; Lysz, T. Celecoxib, NSAIDs and the skeleton. Drugs Today 2008, 44, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Dodwell, E.R.; Latorre, J.G.; Parisini, E.; Zwettler, E.; Chandra, D.; Mulpuri, K.; Snyder, B. NSAID Exposure and Risk of Nonunion: A Meta-Analysis of Case–Control and Cohort Studies. Calcif. Tissue Res. 2010, 87, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Ma, T.; Genovese, M.; Smith, R.L. Cox-2 Selective Inhibitors and Bone. Int. J. Immunopathol. Pharmacol. 2003, 16, 201–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geusens, P.; Emans, P.J.; de Jong, J.J.; van den Bergh, J.A. NSAIDs and fracture healing. Curr. Opin. Rheumatol. 2013, 25, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Pountos, I.; Georgouli, T.; Calori, G.M.; Giannoudis, P.V. Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis. Sci. World J. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuolteenaho, K.; Moilanen, T.; Moilanen, E. Non-Steroidal Anti-Inflammatory Drugs, Cyclooxygenase-2 and the Bone Healing Process. Basic Clin. Pharmacol. Toxicol. 2008, 102, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, B.M.; Nappo, K.E.; Christensen, D.L.; Holman, A.M.; Brooks, D.I.; Potter, B.K. Effect of NSAIDs on bone healing rates: A meta-analysis. J. Am. Acad. Orthop. Surg. 2019, 27, e330–e336. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.R.; Dragoo, J.L. The effect of nonsteroidal anti-inflammatory drugs on tissue healing. Knee Surgery, Sports Traumatol. Arthrosc. 2012, 21, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, T.; Levin, R.; Vrahas, M.S.; Solomon, D.H. Nonsteroidal antiinflammatory drugs and nonunion of humeral shaft fractures. Arthritis Care Res. 2005, 53, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoach, D.R.; Sams, V.G.; Lawson, C.M.; Enderson, B.L.; Smith, S.T.; Kline, H.; Barlow, P.B.; Wylie, D.R.; Krumenacker, L.A.; McMillen, J.C.; et al. Nonsteroidal anti-inflammatory drugs’ impact on nonunion and infection rates in long-bone fractures. J. Trauma Acute Care Surg. 2014, 76, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Lara, A.; Hutchinson, I.D.; Nuñez, F.; Smith, T.L.; Miller, A.N. Nonsteroidal Anti-Inflammatory Drugs and Bone-Healing. JBJS Rev. 2016, 4, e4. [Google Scholar] [CrossRef]
- Salari, P.; Abdollahi, M. Controversial effects of non-steroidal anti-inflammatory drugs on bone: A review. Inflamm. Allergy-Drug Targets 2009, 8, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, A.; Ofner, C.; Saporito, A.; Farshad, M.; Aguirre, J. The effect of nonsteroidal anti-inflammatory drugs on bone healing in humans: A qualitative, systematic review. J. Clin. Anesthesia 2018, 49, 92–100. [Google Scholar] [CrossRef]
- Xie, Y.; Pan, M.; Gao, Y.; Zhang, L.; Ge, W.; Tang, P. Dose-dependent roles of aspirin and other non-steroidal anti-inflammatory drugs in abnormal bone remodeling and skeletal regeneration. Cell Biosci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bjelle, A. NSAIDs and Cartilage Metabolism. Scand. J. Rheumatol. 1988, 18, 43–52. [Google Scholar] [CrossRef]
- Ding, C.; Cicuttini, F.; Jones, G. Do NSAIDs Affect Longitudinal Changes in Knee Cartilage Volume and Knee Cartilage Defects in Older Adults? Am. J. Med. 2009, 122, 836–842. [Google Scholar] [CrossRef]
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Fracture Risk Associated with Use of Nonsteroidal Anti-Inflammatory Drugs, Acetylsalicylic Acid, and Acetaminophen and the Effects of Rheumatoid Arthritis and Osteoarthritis. Calcif. Tissue Res. 2006, 79, 84–94. [Google Scholar] [CrossRef]
- Vestergaard, P. Pain-relief medication and risk of fractures. Curr. Drug Saf. 2008, 3, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Aliuskevicius, M.; Østgaard, S.E.; Hauge, E.M.; Vestergaard, P.; Rasmussen, S. Influence of Ibuprofen on Bone Healing After Colles’ Fracture: A Randomized Controlled Clinical Trial. J. Orthop. Res. 2020, 38, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, I.; Papageorgiou, S.N.; Kyrgidis, A.; Tzellos, T.-G.; Kouvelas, D. Effect of non-steroidal anti-inflammatory drugs on bone turnover: An evidence-based review. Rev. Recent Clin. Trials 2013, 8, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P.; Hermann, P.; Jensen, J.-E.B.; Eiken, P.; Mosekilde, L. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: Results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos. Int. 2011, 23, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.-Y. A Review on the Relationship between Aspirin and Bone Health. J. Osteoporos. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nuelle, J.A.; Coe, K.M.; Oliver, H.A.; Cook, J.L.; Hoernschemeyer, D.G.; Gupta, S.K. Effect of NSAID Use on Bone Healing in Pediatric Fractures: A Preliminary, Prospective, Randomized, Blinded Study. J. Pediatr. Orthop. 2020, 40, e683–e689. [Google Scholar] [CrossRef]
- Antonucci, R.; Zaffanello, M.; Puxeddu, E.; Porcella, A.; Cuzzolin, L.; Pilloni, M.D.; Fanos, V. Use of Non-steroidal Anti-inflammatory Drugs in Pregnancy: Impact on the Fetus and Newborn. Curr. Drug Metab. 2012, 13, 474–490. [Google Scholar] [CrossRef]
- Williams, L.J.; Pasco, J.A.; Henry, M.J.; Sanders, K.M.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Paracetamol (acetaminophen) use, fracture and bone mineral density. Bone 2011, 48, 1277–1281. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, L.; García-Martínez, O.; Arroyo-Morales, M.; Rubio-Ruiz, B.; Ruiz, C. Effect of acetaminophen (paracetamol) on human osteosarcoma cell line MG. Acta Pharmacol. Sin. 2010, 31, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.B.; Joseph, L.; Schwartzman, K.; Kreiger, N.; Tenenhouse, A.; Goltzman, D. The effect of cyclooxygenase-2 inhibitors on bone mineral density: Results from the Canadian Multicentre Osteoporosis Study. Osteoporos. Int. 2006, 17, 1410–1419. [Google Scholar] [CrossRef]
- Yoshida, K.; Yu, Z.; Greendale, G.A.; Ruppert, K.; Lian, Y.; Tedeschi, S.K.; Lin, T.-C.; Haneuse, S.; Glynn, R.J.; Hernández-Díaz, S.; et al. Effects of analgesics on bone mineral density: A longitudinal analysis of the prospective SWAN cohort with three-group matching weights. Pharmacoepidemiol. Drug Saf. 2018, 27, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Brunetti, G.; Acquafredda, A.; Delvecchio, M.; Lonero, A.; Gaeta, A.; Bulzis, P.S.; Corica, D.; Velletri, M.R.; De Luca, F.; et al. Metabolic Outcomes, Bone Health, and Risk of Polycystic Ovary Syndrome in Girls with Idiopathic Central Precocious Puberty Treated with Gonadotropin-Releasing Hormone Analogues. Horm. Res. Paediatr. 2017, 87, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Rachner, T.D.; Coleman, R.; Hadji, P.; Hofbauer, L.C. Bone health during endocrine therapy for cancer The Lancet. Diabetes Endocrinol. 2018, 6, 901–910. [Google Scholar]
- Mohamad, N.-V.; Ima-Nirwana, S.; Chin, K.-Y. The effects of gonadotropin-releasing hormone agonist (buserelin) and orchidectomy on bone turnover markers and histomorphometry in rats. Aging Male 2020, 23, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Handforth, C.; D’Oronzo, S.; Coleman, R.; Brown, J. Cancer Treatment and Bone Health. Calcif. Tissue Res. 2018, 102, 251–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauerbrun-Cutler, M.-T.; Alvero, R. Short- and long-term impact of gonadotropin-releasing hormone analogue treatment on bone loss and fracture. Fertil. Steril. 2019, 112, 799–803. [Google Scholar] [CrossRef]
- Shapiro, C.L. Osteoporosis: A Long-Term and Late-Effect of Breast Cancer Treatments. Cancers 2020, 12, 3094. [Google Scholar] [CrossRef]
- Smith, M.R. Therapy Insight: Osteoporosis during hormone therapy for prostate cancer. Nat. Clin. Pr. Urol. 2005, 2, 608–615. [Google Scholar] [CrossRef]
- Wallach, E.E.; Fogelman, I. Gonadotropin-releasing hormone agonists and the skeleton. Fertil. Steril. 1992, 57, 715–724. [Google Scholar] [CrossRef]
- Johansen, J.S.; Riis, B.J.; Hassager, C.; Moen, M.; Jacobson, J.; Christiansen, C. The Effect of a Gonadotropin-Releasing Hormone Agonist Analog (Nafarelin) on Bone Metabolism. J. Clin. Endocrinol. Metab. 1988, 67, 701–706. [Google Scholar] [CrossRef]
- Nencioni, T.; Penotti, M.; Barbieri-Carones, M.; Ortolani, S.; Trevisan, C.; Polvani, F. Gonadotropin releasing hormone agonist therapy and its effect on bone mass. Gynecol. Endocrinol. 1991, 5, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Uemura, T.; Mohri, J.; Osada, H.; Suzuki, N.; Katagiri, N.; Minaguchi, H. Effect of gonadotropin-releasing hormone agonist on the bone mineral density of patients with endometriosis*†. Fertil. Steril. 1994, 62, 246–250. [Google Scholar] [CrossRef]
- Antoniazzi, F.; Monti, E.; Gaudino, R.; Cavarzere, P.; Zaffanello, M.; Brugnara, M.; Perlini, S.; Maines, E.; Gallo, M.C.; Corso, S.D.; et al. Bone density in children treated with gonadotropin-releasing hormone analogs for central precocious puberty. Expert Rev. Endocrinol. Metab. 2010, 5, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.O.; Tangpricha, V. Osteoporosis and Bone Health in Transgender Persons. Endocrinol. Metab. Clin. North Am. 2019, 48, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Klink, D.; Caris, M.; Heijboer, A.; Van Trotsenburg, M.; Rotteveel, J. Bone Mass in Young Adulthood Following Gonadotropin-Releasing Hormone Analog Treatment and Cross-Sex Hormone Treatment in Adolescents With Gender Dysphoria. J. Clin. Endocrinol. Metab. 2015, 100, E270–E275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saggese, G.; Bertelloni, S.; Baroncelli, G.I.; Battini, R.; Franchi, G. Reduction of bone density: An effect of gonadotropin releasing hormone analogue treatment in central precocious puberty. Eur. J. Pediatr. 1993, 152, 717–720. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Fan, L.; Yang, J.; Wang, J.; Sun, J.; Wang, Z. Proton pump inhibitors therapy and risk of bone diseases: An update meta-analysis. Life Sci. 2019, 218, 213–223. [Google Scholar] [CrossRef]
- Mattsson, J.P.; Väänänen, K.; Wallmark, B.; Lorentzon, P. Omeprazole and bafilomycin, two proton pump inhibitors: Differentiation of their effects on gastric, kidney and bone H+-translocating ATPases. Biochim. et Biophys. Acta (BBA) Biomembr. 1991, 1065, 261–268. [Google Scholar] [CrossRef]
- Leontiadis, G.I.; Moayyedi, P. Proton Pump Inhibitors and Risk of Bone Fractures. Curr. Treat. Options Gastroenterol. 2014, 12, 414–423. [Google Scholar] [CrossRef]
- Arj, A.; Zade, M.R.; Yavari, M.; Akbari, H.; Zamani, B.; Asemi, Z. Proton pump inhibitors use and change in bone mineral density. Int. J. Rheum. Dis. 2016, 19, 864–868. [Google Scholar] [CrossRef]
- Targownik, L.E.; Goertzen, A.L.; Luo, Y.; Leslie, W. Long-Term Proton Pump Inhibitor Use Is Not Associated With Changes in Bone Strength and Structure. Am. J. Gastroenterol. 2017, 112, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Samji, H.; Cescon, A.; Hogg, R.S.; Modur, S.P.; Althoff, K.; Buchacz, K.; Burchell, A.N.; Cohen, M.; Gebo, K.A.; Gill, M.J.; et al. Closing the Gap: Increases in Life Expectancy among Treated HIV-Positive Individuals in the United States and Canada. PLoS ONE 2013, 8, e81355. [Google Scholar] [CrossRef]
- Biehler-Gomez, L.; Cabrini, A.; De Angelis, D.; Cattaneo, C. How do skeletons with HIV present? A study on the identified CAL Milano Cemetery Skeletal Collection. Leg. Med. 2018, 33, 11–16. [Google Scholar] [CrossRef]
- Cotter, A.G.; Powderly, W.G. Endocrine complications of human immunodeficiency virus infection: Hypogonadism, bone disease and tenofovir-related toxicity. Best Pr. Res. Clin. Endocrinol. Metab. 2011, 25, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Powderly, W.G. Osteoporosis and Bone Health in HIV. Curr. HIV/AIDS Rep. 2012, 9, 218–222. [Google Scholar] [CrossRef]
- Molia, A.C.; Strady, C.; Rouger, C.; Beguinot, I.M.; Berger, J.-L.; Trenque, T.C. Osteonecrosis in Six HIV-Infected Patients Receiving Highly Active Antiretroviral Therapy. Ann. Pharmacother. 2004, 38, 2050–2054. [Google Scholar] [CrossRef] [PubMed]
- Borges, Á.H.; Hoy, J.; Florence, E.; Sedlacek, D.; Stellbrink, H.-J.; Uzdaviniene, V.; Tomazic, J.; Gargalianos-Kakolyris, P.; Schmid, P.; Orkin, C.; et al. Antiretrovirals, Fractures, and Osteonecrosis in a Large International HIV Cohort. Clin. Infect. Dis. 2017, 64, 1413–1421. [Google Scholar] [CrossRef]
- Mccomsey, G.A.; Tebas, P.; Shane, E.; Yin, M.T.; Overton, E.T.; Huang, J.; Aldrovandi, G.M.; Cardoso, S.W.; Santana, J.L.; Brown, T.T. Bone Disease in HIV Infection: A Practical Review and Recommendations for HIV Care Providers. Clin. Infect. Dis. 2010, 51, 937–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güerri-Fernández, R.; Villar-García, J.; Díez-Pérez, A.; Prieto-Alhambra, D. HIV infection, bone metabolism, and fractures. Arq. Bras. Endocrinol. E Metabol. 2014, 58, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.N.; Ahmad, S.N.; Ahmad, N. HIV Infection and Bone Abnormalities. Open Orthop. J. 2017, 11, 777–784. [Google Scholar] [CrossRef]
- Knobel, H.; Guelar, A.; Vallecillo, G.; Nogues, X.; Díez, A. Osteopenia in HIV-infected patients: Is it the disease or is it the treatment? AIDS 2001, 15, 807–808. [Google Scholar] [CrossRef]
- Cazanave, C.; Dupon, M.; Lavignolle-Aurillac, V.; Barthe, N.; Lawson-Ayayi, S.; Mehsen, N.; Mercié, P.; Morlat, P.; Thiébaut, R.; Dabis, F. Reduced bone mineral density in HIV-infected patients: Prevalence and associated factors. AIDS 2008, 22, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, B.; Dockrell, D.; Bowman, C.; McCloskey, E. HIV and bone disease. Arch. Biochem. Biophys. 2010, 503, 66–77. [Google Scholar] [CrossRef]
- Ofotokun, I.; Weitzmann, M.N. HIV and bone metabolism. Discov. Med. 2011, 11, 385–393. [Google Scholar] [PubMed]
- Greenberg, S.B.; Lahart, C.J. HIV/AIDS: Clinical Considerations. In Kelley’s Textbook of Internal Medicine, 4th ed.; Humes, H.D., DuPont, H.L., Gardner, L.B., Griffin, J.W., Harris, E.D., Hazzard, W.R., King, T.E., Loriaux, D.L., et al., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; pp. 2320–2328. [Google Scholar]
- Winias, S.; Radithia, D.; Ernawati, D.S. Neuropathy complication of antiretroviral therapy in HIV/AIDS patients. Oral Dis. 2020, 26, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Young, N.; Neiderer, K.; Martin, B.; Jolley, D.; Dancho, J.F. HIV neuropathy induced Charcot neuroarthropathy: A case discussion. Foot 2012, 22, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.C.; Bevilacqua, N.J.; Dellacorte, M.P.; Francis, K.; Armstrong, D.G. Charcot’s arthropathy in a patient with HIV-associated neuropathy. J. Am. Podiatr. Med. Assoc. 2008, 98, 153–155. [Google Scholar] [PubMed]
- Brody, D.J.; Gu, Q. Antidepressant Use among adults: United States, 2015–NCHS Data Brief; No National Center for Health Statistics: Hyattsville, MD, USA, 2020. [Google Scholar]
- Bonnet, N.; Bernard, P.; Beaupied, H.; Bizot, J.C.; Trovero, F.; Courteix, D.; Benhamou, C.L. Various effects of antidepressant drugs on bone microarchitecture, mechanical properties and bone remodeling. Toxicol. Appl. Pharmacol. 2007, 221, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.J.; Berk, M.; Hodge, J.M.; Kotowicz, M.A.; Stuart, A.L.; Chandrasekaran, V.; Cleminson, J.; Pasco, J.A. Selective Serotonin Reuptake Inhibitors (SSRIs) and Markers of Bone Turnover in Men. Calcif. Tissue Res. 2018, 103, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Tsapakis, E.; Gamie, Z.; Tran, G.T.; Adshead, S.; Lampard, A.; Mantalaris, A.; Tsiridis, E. The adverse skeletal effects of selective serotonin reuptake inhibitors. Eur. Psychiatry 2012, 27, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Rauma, P.H.; Pasco, J.A.; Berk, M.; Stuart, A.L.; Koivumaa-Honkanen, H.; Honkanen, R.J.; Hodge, J.M.; Williams, L.J. The association between use of antidepressants and bone quality using quantitative heel ultrasound. Aust. N. Z. J. Psychiatry 2015, 49, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.; Kumar, M.; Talegaonkar, S.; Vohora, D. Serotonin reuptake inhibitors and bone health: A review of clinical studies and plausible mechanisms. Osteoporos. Sarcopenia 2017, 3, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Bruyere, O.; Reginster, J.-Y. Osteoporosis in patients taking selective serotonin reuptake inhibitors: A focus on fracture outcome. Endocrine 2015, 48, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Cooper, C.; Reginster, J.-Y.; Abrahamsen, B.; Adachi, J.; Brandi, M.; Bruyere, O.; Compston, J.; Ducy, P.; Ferrari, S.; et al. Antidepressant medications and osteoporosis. Bone 2012, 51, 606–613. [Google Scholar] [CrossRef]
- Sansone, R.A.; A Sansone, L. SSRIs: Bad to the bone? Innov. Clin. Neurosci. 2012, 9, 42–47. [Google Scholar] [PubMed]
- Howie, R.N.; Herberg, S.; Durham, E.; Grey, Z.; Bennfors, G.; Elsalanty, M.; LaRue, A.C.; Hill, W.D.; Cray, J.J. Selective serotonin re-uptake inhibitor sertraline inhibits bone healing in a calvarial defect model. Int. J. Oral Sci. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Abu Nada, L.; Al Subaie, A.; Mansour, A.; Wu, X.; Abdallah, M.-N.; Al-Waeli, H.; Ersheidat, A.; Stone, L.S.; Murshed, M.; Tamimi, F. The antidepressant drug, sertraline, hinders bone healing and osseointegration in rats’ tibiae. J. Clin. Periodontol. 2018, 45, 1485–1497. [Google Scholar] [CrossRef]
- Kurmanji, J.; Sulaiman, S.S.; Chandrasekaran, P.; Kah, L. PMH8 EFFECT OF VARIOUS ANTIDEPRESSANT GROUPS ON BONE MINERAL DENSITY (BMD). Value Heal. 2011, 14, A186. [Google Scholar] [CrossRef] [Green Version]
- Gebara, M.A.; Shea, M.L.; Lipsey, K.L.; Teitelbaum, S.L.; Civitelli, R.; Müller, D.J.; Reynolds, C.F., 3rd; Mulsant, B.H.; Lenze, E.J. Depression, antidepressants, and bone health in older adults: A systematic review. J. Am. Geriatr. Soc. 2014, 62, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Ahn, C. Effects of anti-epileptic drug therapy on bone mineral density in ambulatory epileptic children. Brain Dev. 1994, 16, 382–385. [Google Scholar] [CrossRef]
- Gissel, T.; Poulsen, C.S.; Vestergaard, P. Adverse effects of antiepileptic drugs on bone mineral density in children. Expert Opin. Drug Saf. 2007, 6, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Y.-X.; Zhu, J.-M.; Zhang, J.-M.; Zheng, Z. Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: A meta-analysis. J. Zhejiang Univ. Sci. B 2015, 16, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.; Chen, Q.; Zhang, X.; Li, M.; Liang, J.; Lin, W. Bone Mineral Density Loss in People With Epilepsy Taking Valproate as a Monotherapy: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef]
- Sakellarides, M.; Bright, T.; Todaro, M.; Roten, A.; Lauren, J.D.; O’Brien, T.J.; John, D.W. Short-term vs. long-term duration of AED (anti-epileptic drug) pharmacotherapy: Effects on bone health parameters. J. Clin. Neurosci. 2009, 16, 1532–1533. [Google Scholar] [CrossRef]
- Pack, A.M.; Morrell, M.J. Epilepsy and bone health in adults. Epilepsy Behav. 2004, 5, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Beerhorst, K.; Tan, I.Y.; De Krom, M.; Verschuure, P.; Aldenkamp, A.P. Antiepileptic drugs and high prevalence of low bone mineral density in a group of inpatients with chronic epilepsy. Acta Neurol. Scand. 2013, 128, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Pillai, K.K.; Vohora, D. Insights into liaison between antiepileptic drugs and bone. Drug Discov. Today 2009, 14, 428–435. [Google Scholar] [CrossRef]
- Mattson, R.H.; Gidal, B.E. Fractures, epilepsy, and antiepileptic drugs. Epilepsy Behav. 2004, 5, 36–40. [Google Scholar] [CrossRef]
- Nakken, K.; Taubøll, E. Bone loss associated with use of antiepileptic drugs. Expert Opin. Drug Saf. 2010, 9, 561–571. [Google Scholar] [CrossRef]
- Pack, A.M. The association between antiepileptic drugs and bone disease. Epilepsy Curr. 2003, 3, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Gupta, Y.K.; Arora, E.; Singh, H. Impact of antiepileptic drugs on bone health: Need for monitoring, treatment, and prevention strategies. J. Fam. Med. Prim. Care 2016, 5, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Wang, S.-Y.; Salter, D.M.; Wang, C.-C.; Chen, S.-J.; Fan, H.-C. The impact of the use of antiepileptic drugs on the growth of children. BMC Pediatr. 2013, 13, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elamir, Y.; Gianakos, A.L.; Lane, J.M.; Sharma, A.; Grist, W.P.; Liporace, F.A.; Yoon, R.S. The Effects of Diabetes and Diabetic Medications on Bone Health. J. Orthop. Trauma 2020, 34, e102–e108. [Google Scholar] [CrossRef] [PubMed]
- Meier, C.; Schwartz, A.V.; Egger, A.; Lecka-Czernik, B. Effects of diabetes drugs on the skeleton. Bone 2016, 82, 93–100. [Google Scholar] [CrossRef]
- Cortet, B.; Lucas, S.; Legroux-Gerot, I.; Penel, G.; Chauveau, C.; Paccou, J. Bone disorders associated with diabetes mellitus and its treatments. Jt. Bone Spine 2019, 86, 315–320. [Google Scholar] [CrossRef]
- Gilbert, M.P.; Pratley, R.E. The Impact of Diabetes and Diabetes Medications on Bone Health. Endocr. Rev. 2015, 36, 194–213. [Google Scholar] [CrossRef] [Green Version]
- Chandran, M. Diabetes Drug Effects on the Skeleton. Calcif. Tissue Res. 2016, 100, 133–149. [Google Scholar] [CrossRef]
- Adil, M.; Khan, R.A.; Kalam, A.; Venkata, S.K.; Kandhare, A.; Ghosh, P.; Sharma, M. Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies. Pharmacol. Rep. 2017, 69, 1328–1340. [Google Scholar] [CrossRef]
- Wolverton, D.; Blair, M.M. Fracture risk associated with common medications used in treating type 2 diabetes mellitus. Am. J. Heal. Pharm. 2017, 74, 1143–1151. [Google Scholar] [CrossRef]
- Lecka-Czernik, B. Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis. Curr. Osteoporos. Rep. 2010, 8, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Li, X. Impact of diabetes and its treatments on skeletal diseases. Front. Med. 2013, 7, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Guja, C.; Guja, L.; Miulescu, R.D. Effect of type 2 diabetes medications on fracture risk. Ann. Transl. Med. 2019, 7, 580. [Google Scholar] [CrossRef] [PubMed]
- Shirinsky, I.; Shirinsky, V.S. Effects of medication-treated diabetes on incidence and progression of knee osteoarthritis: A longitudinal analysis of the Osteoarthritis Initiative data. Rheumatol. Int. 2017, 37, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, C.L.M.H.; Petra, M.; Smith, R.; Athanasou, N.A. Bisphosphonate Treatment of Benign Multifocal and Unifocal Osteolytic Tumours of Bone. Sarcoma 2003, 7, 35–41. [Google Scholar] [CrossRef]
- Balke, M.; Campanacci, L.; Gebert, C.; Picci, P.; Gibbons, M.; Taylor, R.; Hogendoorn, P.; Kroep, J.; Wass, J.; Athanasou, N. Bisphosphonate treatment of aggressive primary, recurrent and metastatic Giant Cell Tumour of Bone. BMC Cancer 2010, 10, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, M.; Gupta, N. Bisphosphonate Related Jaw Osteonecrosis; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534771/ (accessed on 1 March 2022).
- Eleutherakis-Papaiakovou, E.; Bamias, A. Antiresorptive treatment-associated ONJ. Eur. J. Cancer Care 2017, 26, e12787. [Google Scholar] [CrossRef] [PubMed]
- Marx, R.E.; Sawatari, Y.; Fortin, M.; Broumand, V. Bisphosphonate-Induced Exposed Bone (Osteonecrosis/Osteopetrosis) of the Jaws: Risk Factors, Recognition, Prevention, and Treatment. J. Oral Maxillofac. Surg. 2005, 63, 1567–1575. [Google Scholar] [CrossRef]
- Siddiqi, A.; Payne, A.G.T.; Zafar, S. Bisphosphonate-induced osteonecrosis of the jaw: A medical enigma? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, e1–e8. [Google Scholar] [CrossRef]
- Lo, J.C.; O’Ryan, F.S.; Gordon, N.P.; Yang, J.; Hui, R.L.; Martin, D.; Hutchinson, M.; Lathon, P.V.; Sanchez, G.; Silver, P.; et al. Prevalence of Osteonecrosis of the Jaw in Patients With Oral Bisphosphonate Exposure. J. Oral Maxillofac. Surg. 2010, 68, 243–253. [Google Scholar] [CrossRef]
- Vidal-Real, C.; Sayáns, M.P.; Suarez-Penaranda, J.; Gandara-Rey, J.; Garcia-Garcia, A. Osteonecrosis of the jaws in 194 patients who have undergone intravenous bisphosphonate therapy in Spain. Medicina Oral Patología Oral y Cirugia Bucal 2015, 20, e267–e272. [Google Scholar] [CrossRef]
- Favia, G.; Tempesta, A.; Limongelli, L.; Crincoli, V.; Maiorano, E. Medication-Related Osteonecrosis of the Jaws: Considerations on a New Antiresorptive Therapy (Denosumab) and Treatment Outcome after a 13-Year Experience. Int. J. Dent. 2016, 2016, 1801676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.A.; Recknor, C.; Moffett, A.H., Jr.; Adachi, J.D.; Franek, E.; Lewiecki, E.M.; McClung, M.R.; Mautalen, C.A.; Ragi-Eis, S.; Nicholson, G.C.; et al. Impact of denosumab on the peripheral skeleton of postmenopausal women with osteoporosis: Bone density, mass, and strength of the radius, and wrist fracture. Menopause 2013, 20, 130–137. [Google Scholar] [PubMed]
- Cosman, F. Anabolic and Antiresorptive Therapy for Osteoporosis: Combination and Sequential Approaches. Curr. Osteoporos. Rep. 2014, 12, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Dadwal, G.; Schulte-Huxel, T.; Kolb, G. Effect of antithrombotic drugs on bone health. Zeitschrift für Gerontologie und Geriatrie 2019, 53, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.S.; Scuto, S.; Marino, E.; Giusti, M.; Xourafa, A.; Gaudio, A. Anticoagulants and Osteoporosis. Int. J. Mol. Sci. 2019, 20, 5275. [Google Scholar] [CrossRef] [Green Version]
- Gage, B.F.; Birman-Deych, E.; Radford, M.J.; Nilasena, D.S.; Binder, E.F. Risk of osteoporotic fracture in elderly patients taking warfarin: Results from the National Registry of Atrial Fibrillation 2. Arch. Intern. Med. 2006, 166, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Lindner, T.; Cockbain, A.J.; A El Masry, M.; Katonis, P.; Tsiridis, E.; Schizas, C.; Tsiridis, E. The effect of anticoagulant pharmacotherapy on fracture healing. Expert Opin. Pharmacother. 2008, 9, 1169–1187. [Google Scholar] [CrossRef]
- Abdulameer, A.H.; Sulaiman, S.; Kader, M. An Assessment of Osteoporotic Conditions among Users and Non-Users of Warfarin: A Case-Control Study. J. Clin. Diagn. Res. 2017, 11, OC21–OC24. [Google Scholar] [CrossRef]
- Lester, J.; Coleman, R. Bone loss and the aromatase inhibitors. Br. J. Cancer 2005, 93, S16–S22. [Google Scholar] [CrossRef] [Green Version]
- Perez, E.A.; Weilbaecher, K. Aromatase inhibitors and bone loss. Oncology 2006, 20, 1029–1048. [Google Scholar]
- Ribot, C.; Tremollieres, F.; Pouilles, J.M.; Louvet, J.P. Bone mineral density and thyroid hormone therapy. Clin. Endocrinol. 1990, 33, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Uzzan, B.; Campos, J.; Cucherat, M.; Nony, P.; Boissel, J.P.; Perret, G.Y. Effects on bone mass of long term treatment with thyroid hormones: A meta-analysis. J. Clin. Endocrinol. Metab. 1996, 81, 4278–4289. [Google Scholar] [CrossRef] [PubMed]
- Wexler, J.A.; Sharretts, J. Thyroid and bone. Endocrinol. Metab. Clin. N. Am. 2007, 36, 673–705. [Google Scholar] [CrossRef]
- Vestergaard, P. Skeletal Effects of Drugs to Treat Cancer. Curr. Drug Saf. 2008, 3, 173–177. [Google Scholar] [CrossRef]
- Monroy-Cisneros, K.; Esparza-Romero, J.; Valencia, M.E.; Guevara-Torres, A.G.; Méndez-Estrada, R.O.; Anduro-Corona, I.; Astiazarán-García, H. Antineoplastic treatment effect on bone mineral density in Mexican breast cancer patients. BMC Cancer 2016, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bodensteiner, D.C.; Doolittle, G.C. Adverse Haematological Complications of Anticancer Drugs. Drug Saf. 1993, 8, 213–224. [Google Scholar] [CrossRef]
- Madeddu, C.; Neri, M.; Sanna, E.; Oppi, S.; Macciò, A. Experimental Drugs for Chemotherapy- and Cancer-Related Anemia. J. Exp. Pharmacol. 2021, 13, 593–611. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulos, A.; Papadopoulos, P.; Andreadis, D. Chemotherapy: Oral side effects and dental interventions. A review of the literature. Stomatol. Dis. Sci. 2017, 1, 35–49. [Google Scholar] [CrossRef]
- Naidoo, U.; Goff, D.; Klibanski, A. Hyperprolactinemia and bone mineral density: The potential impact of antipsychotic agents. Psychoneuroendocrinology 2003, 28, 97–108. [Google Scholar] [CrossRef]
- Aronson, J.K. Chapter 6—Antipsychotic Drugs. In A Worldwide Yearly Survey of New Data in Adverse Drug Reactions and Interactions; Side Effects of Drugs Annual Book Series, 35; Aronson, J.L., Ed.; Elsevier: Oxford, UK, 2014; pp. 85–131. [Google Scholar]
- Shetty, V.; Harrell, L.; Murphy, D.A.; Vitero, S.; Gutierrez, A.; Belin, T.R.; Dye, B.A.; Spolsky, V.W. Dental disease patterns in methamphetamine users: Findings in a large urban sample. J. Am. Dent. Assoc. 2015, 146, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Sudhakara, P.; Desai, S.; Miranda, K.; Martinez, L.R. Understanding the Basis of METH Mouth Using a Rodent Model of Methamphetamine Injection, Sugar Consumption, and Streptococcus mutans Infection. mBio 2021, 12. [Google Scholar] [CrossRef]
- Antoniazzi, R.P.; Zanatta, F.B.; Rösing, C.K.; Feldens, C.A. Association Among Periodontitis and the Use of Crack Cocaine and Other Illicit Drugs. J. Periodontol. 2016, 87, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Antoniazzi, R.P.; Sari, A.R.; Casarin, M.; De Moraes, C.M.B.; Feldens, C.A. Association between crack cocaine use and reduced salivary flow. Braz. Oral Res. 2017, 31, e42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanksma, C.J.; Brand, H.S. Cocaine abuse: Orofacial manifestations and implications for dental treatment. Int. Dent. J. 2005, 55, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Brand, H.S.; Gonggrijp, S.; Blanksma, C.J. Cocaine and oral health. Br. Dent. J. 2008, 204, 365–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cury, P.R.; Oliveira, M.G.A.; Santos, J. Periodontal status in crack and cocaine addicted men: A cross-sectional study. Environ. Sci. Pollut. Res. 2016, 24, 3423–3429. [Google Scholar] [CrossRef]
- Keboa, M.T.; Enriquez, N.; Martel, M.; Nicolau, B.; Macdonald, M.E. Oral Health Implications of Cannabis Smoking: A Rapid Evidence Review. J. Can. Dent. Assoc. 2020, 86, k2. [Google Scholar]
- Thomas, M.; Denny, C. Medication-related tooth discoloration: A review. Dent. Updat. 2014, 41, 440–447. [Google Scholar] [CrossRef]
- Ashukem, M.T.; Levy, J.C.; Formaini, N. Minocycline induced black bone disease: An incidental finding during total shoulder arthroplasty. Curr. Orthop. Pr. 2016, 27, 698–701. [Google Scholar] [CrossRef]
- Sánchez, R.A.; Rogers, S.R.; Sheridan, J.P. Tetracycline and other tetracycline – derivative staining of the teeth and oral cavity. Int. J. Dermatol. 2004, 43, 709–715. [Google Scholar] [CrossRef]
- Alkhatib, M.N.; Holt, R.D.; Bedi, R. Smoking and tooth discolouration: Findings from a national cross-sectional study. BMC Public Heal. 2005, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, A.; Addy, M. Tooth discolouration and staining: A review of the literature. Br. Dent. J. 2001, 190, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Rhomberg, W.; Schuster, A. Premature Calcifications of Costal Cartilages: A New Perspective. Radiol. Res. Pr. 2014, 2014, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Ms, G.R.; Chen, X.; LaValley, M.; Jafarzadeh, S.R.; Lewis, C.E.; Torner, J.; Nevitt, M.C.; Misra, D.; MOST Study Investigators. The Association of Diuretics and Proton Pump Inhibitors With Chondrocalcinosis. ACR Open Rheumatol. 2021, 3, 390–394. [Google Scholar] [CrossRef]
- Gotway, M.B.; Marder, S.R.; Hanks, D.K.; Leung, J.W.T.; Dawn, S.K.; Gean, A.D.; Reddy, G.P.; Araoz, P.A.; Webb, W.R. Thoracic Complications of Illicit Drug Use: An Organ System Approach. Radiographics 2002, 22, S119–S135. [Google Scholar] [CrossRef]
- Stone, S.; A Malanga, G.; Capella, T. Corticosteroids: Review of the History, the Effectiveness, and Adverse Effects in the Treatment of Joint Pain. Pain Physician 2021, 24, S233–S246. [Google Scholar]
- Huang, Y.-J.; Kuo, C.-F. Can drugs trigger CPPD acute attacks? Jt. Bone Spine 2018, 86, 131–134. [Google Scholar] [CrossRef]
- Matlaga, B.R.; Shah, O.D.; Assimos, D.G. Drug-induced urinary calculi. Rev. Urol. 2003, 5, 227–231. [Google Scholar]
- Daudon, M.; Jungers, P. Drug-induced renal calculi: Epidemiology, prevention and management. Drugs 2004, 64, 245–275. [Google Scholar] [CrossRef]
- Franceschetti, L.; Di Candia, D.; Giordano, G.; Carabelli, I.; Vignali, G.; Cattaneo, C. Drugs in bone: Detectability of substances of toxicological interest in different states of preservation. J. Forensic Sci. 2021, 66, 677–686. [Google Scholar] [CrossRef]
- Fernandez-Lopez, L.; Mancini, R.; Pellegrini, M.; Rotolo, M.C.; Luna, A.; Falcon, M. Postmortem analysis of quetiapine and pregabalin in human bone. Leg. Med. 2020, 46, 101717. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; King, C.V.; Boratto, M.; Drummer, O.H. Post-Mortem Drug Analyses in Bone and Bone Marrow. Ther. Drug Monit. 2000, 22, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lopez, L.; Pellegrini, M.; Rotolo, M.C.; Maldonado, A.L.; Falcon, M.; Mancini, R. Development and validation of a method for analysing of duloxetine, venlafaxine and amitriptyline in human bone. Forensic Sci. Int. 2019, 299, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lopez, L.; Pellegrini, M.; Rotolo, M.C.; Luna, A.; Falcon, M.; Mancini, R. Development and Validation of a Method for the Analysis of Bisoprolol and Atenolol in Human Bone. Molecules 2019, 24, 2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Lopez, L.; Luna-Maldonado, A.; Falcon, M.; Mastrobattista, L.; Navarro-Zaragoza, J.; Mancini, R. Development and validation of a gas chromatography–mass spectrometry method for opiates and cocaine in human bone. J. Pharm. Biomed. Anal. 2019, 164, 636–641. [Google Scholar] [CrossRef]
- Vardakou, I.; Athanaselis, S.; Pistos, C.; Papadodima, S.; Spiliopoulou, C.; Moraitis, K. The clavicle bone as an alternative matrix in forensic toxicological analysis. J. Forensic Leg. Med. 2014, 22, 7–9. [Google Scholar] [CrossRef]
- Raikos, N.; Tsoukali, H.; Njau, S. Determination of opiates in postmortem bone and bone marrow. Forensic Sci. Int. 2001, 123, 140–141. [Google Scholar] [CrossRef]
- Fitzpatrick, L.A. Secondary causes of osteoporosis. Mayo Clin. Proc. 2002, 77, 453–468. [Google Scholar] [CrossRef] [Green Version]
Drug | Effect on Bone | Location | |
---|---|---|---|
Cocaine | Cocaine-induced midline destructive lesion (CIMDL) and other nasal deformities, septum perforation, infection (e.g., maxillary sinusitis) Periodontitis, dental caries, (ante-mortem) tooth loss, dental erosion. | Nasal septum, nasal walls, hard palate, maxilla and orbital walls. Dentition. | |
Opioids | Morphine | Osteoporosis, osteopenia, increase risk of fracture, longitudinal growth, skeletal development. | Not specific. Some fractures may be at sites such as hip, spine, forearm but not always attributed to osteoporosis. Cartilage affected during growth and development. |
Methadone | Increased risk of osteoporosis and osteopenia, increased risk of fracture, decrease in bone mineral density. | Not specific. Some fractures may be at sites such as hip, spine, forearm but not always attributed to osteoporosis. | |
Heroin | Decrease bone mineral density, osteoporosis, osteopenia, septic arthritis, bone turnover, osteomyelitis. | Not specific. Septic arthritis in sacroiliac, costoclavicular, hip and shoulder joint. Sometimes osteomyelitis in long bones at sites where injections. | |
Amphetamines | Osteonecrosis, Osteoporosis, Osteopenia, loss of bone density, maxillary sinusitis, osteomyelitis ‘Meth mouth’: Dental caries, periodontal disease, tooth loss, periodontitis, dental caries, dental erosion. | Loss of bone density throughout body. Osteonecrosis of jaw. Sinuses Dentition (‘Meth mouth’). | |
Cannabinoids | Possible loss of bone density, leading to osteoporosis and increased fracture risk. Periodontal disease. | Not specific. Dentition. | |
Alcohol | Effect on osteoblast proliferation, lower bone density, osteopenia, osteoporosis, increased fracture, poor fracture healing, avascular necrosis. | Throughout skeleton. This effect may depend on sex, age and lifestyle factors, patterns of drinking, volume of alcohol, etc. Avascular necrosis of femoral head. | |
Tobacco | Bone density, bone fractures, delayed haling of fractures or non-union. Periodontitis. | Throughout skeleton. Sites of osteoporotic fractures. No fractures to skull. Dentition. | |
Oral Glucocorticoids | Increased risk of osteoporosis, decrease in bone mineral density, fracture risk, slow fracture healing, delayed maturation, short stature. | Not specific. | |
Non-steroidal anti-inflammatory drugs (NSAIDs) | Delayed fracture and entheses healing. Fracture nonunion/malunion. Possible cartilage degeneration. Increase/decrease in BMD (type and dose-dependent). Possible increased/decreased fracture risk. Possible skeletal effects in fetus and newborn (therapy during pregnancy). | Changes not specific, observed hip, femur, spine, and forearm In fetus/newborn—cleft palate, fused ribs, decreased vertebral mineralization, deformation of lumbar arch, absent sacral arch, incomplete ossification of cervical arch, absent/hemicentric body of thoracic or lumbar vertebra. | |
Paracetamol | Possible decrease in BMD. Possible increased risk of fractures (at low doses). Possible impairment of implant osseointegration. | Observed in spine, hip, forearm. | |
Gonadotropin-releasing hormone (GnRH) agonist | Decrease in BMD (potentially reversible after treatment). Increased risk of fractures. Osteoporosis. Possible delay/attenuation of PBM. | Trabecular bone (lumbar spine), but also observed in hip, proximal femur, and radius. | |
Proton pump inhibitors | Increased risk of fractures. Osteoporosis. Possible decrease in BMD. | Any site, but in particular at the hips and lumbar vertebrae. | |
Antiretroviral therapy | Decrease in BMD, osteopenia, osteoporosis, osteonecrosis, osteomalacia, increased risk of fractures. Charcot joint (indirectly). | Throughout the skeleton, particularly at the femora, lumbar vertebrae and hips. Osteonecrosis on proximal femora, sometimes bilateral. | |
Antidepressant drugs | Reduced estrogen production. Osteoporosis. Increased risk of fracture. Decrease in bone mineral density. | Throughout skeleton. Osteoporotic fracture sites. | |
Anti-epileptic drugs | Decrease in bone mineral density and osteoporosis, increased risk of fracture, retarded growth and stunting. | Throughout skeleton. | |
Antidiabetic drugs | Decrease in bone mineral density, alteration of bone microstructure, increase risk of fractures, possibly osteoarthritis. | Throughout skeleton but increase risk in fracture particularly related to osteoporotic fracture sites. | |
Antiresorptive drugs | Osteonecrosis of the jaw. | In particular the mandible. | |
Antithrombotic drugs | Decrease in bone mineral density, increase risk of fractures and impaired fracture healing. | Throughout skeleton. Fractures at osteoporotic fracture sites. |
Decreased BMD/Osteoporosis | Increased Risk of Fractures | Bone Destruction/Osteonecrosis | |
---|---|---|---|
Cocaine | Y | ||
Methadone | Y | Y | Y |
Heroin | Y | Y | Y |
Amphetamines | Y | Y | |
Cannabinoids | Y? | ||
Alcohol | Y | Y | Y |
Tobacco | Y | Y | |
Oral glucocorticoids | Y | Y | |
NSAIDs | Possibly Y (low doses) | Possibly Y (when BMD is decreased) | |
Paracetamol | Possibly Y | Possibly Y | |
GnRH agonist | Y | Y | |
Proton pump inhibitors | Y | Y | |
Antiretroviral therapy | Y | Y | Y |
Antidepressant drugs | Y | Y | |
Anti-epileptic drugs | Y | Y | |
Antidiabetic drugs | Y | Y | |
Antiresorptive drugs | Y | ||
Antithrombotic drugs | Y | Y |
Class of Molecules | Drugs | Bone Samples | Number of Individuals Analyzed | Reference |
---|---|---|---|---|
Amphetamines | MDA | Cranium | 7 | [27] |
Anesthetics | Ketamine | Cranium, rib | 19 | [190] |
Anticonvulsant drugs | Pregabalin | Rib | 3 | [189] |
Carbamazepine | Femur | 36 | [275] | |
Antidepressants | Amitriptyline | Iliac crest, vertebra | 39 | [22] |
Femur | 36 | [275] | ||
Femur | 6 | [23] | ||
Rib | 7 | [276] | ||
Citalopram | Cranium, rib | 19 | [190] | |
Iliac crest, vertebra | 39 | [22] | ||
Dothiepin | Femur | 36 | [275] | |
Doxepin | Femur | 36 | [275] | |
Duloxetine | Rib | 7 | [276] | |
Mianserin | Femur | 36 | [275] | |
Moclobemide | Femur | 36 | [275] | |
Nordoxepin (Metabolite of doxepin) | Femur | 36 | [275] | |
Nortriptyline | Femur | 36 | [275] | |
Trazodone | Cranium, rib | 19 | [190] | |
Venlafaxine | Cranium, rib | 19 | [190] | |
Rib | 7 | [276] | ||
Antihistamine drugs | Diphenhydramine | Iliac crest, vertebra | 39 | [22] |
Antihypertensive drugs | Atenolol | Rib | 2 | [277] |
Bisoprolol | Rib | 2 | [277] | |
Antipsychotics | Chlorpromazine | Femur | 36 | [275] |
Clozapine | Femur | 36 | [275] | |
Haloperidol | Cranium, rib | 19 | [190] | |
Mesoridazine | Femur | 36 | [275] | |
Promazine | Cranium, rib | 19 | [190] | |
Quetiapine | Cranium | 19 | [190] | |
Rib | 3 | [189] | ||
Thioridazine | Femur | 36 | [275] | |
Benzodiazepines | Alprazolam | Cranium, rib | 19 | [190] |
Bromazepam | Femur | 6 | [23] | |
Delorazepam | Vertebra, rib | 7 | [27] | |
Cranium, rib | 19 | [190] | ||
Diazepam | Cranium vertebra, rib | 7 | [27] | |
Cranium, rib | 19 | [190] | ||
Iliac crest, vertebra | 39 | [22] | ||
Femur | 36 | [275] | ||
Femur | 6 | [23] | ||
Flurazepam | Cranium, rib | 19 | [190] | |
Lorazepam | Cranium | 7 | [27] | |
Cranium, rib | 19 | [190] | ||
Lormetazepam | Cranium, rib | 19 | [190] | |
Nordiazepam | Vertebra | 7 | [27] | |
Cranium, rib | 19 | [190] | ||
Iliac crest, vertebra | 39 | [22] | ||
Femur | 36 | [275] | ||
Femur | 6 | [23] | ||
Oxazepam | Femur | 36 | [275] | |
Temazepam | Femur | 36 | [275] | |
Cannabinoids | THCCOOH (Metabolite of THC) | Rib | 7 | [27] |
Curare | Laudanosine (Metabolite of atracurium) | Iliac crest, vertebra | 39 | [22] |
Opioids | 6-MAM | Rib | 6 | [278] |
Buprenorphine | Vertebra | 7 | [27] | |
Codeine | Iliac crest, vertebra | 39 | [22] | |
Femur | 36 | [275] | ||
Femur | 6 | [23] | ||
Clavicle | 3 | [279] | ||
Meperidine | Iliac crest, vertebra | 39 | [22] | |
Methadone | Cranium vertebra, rib | 7 | [27] | |
Rib | 6 | [278] | ||
Femur | 36 | [275] | ||
Morphine | Rib | 6 | [278] | |
Femur | 6 | [23] | ||
Femur | 1 | [280] | ||
Clavicle | 3 | [279] | ||
Norpropoxyphene (Metabolite of propoxyphene) | Iliac crest, vertebra | 39 | [22] | |
Femur | 36 | [275] | ||
Oxycodone | Iliac crest, vertebra | 39 | [22] | |
Femur | 36 | [275] | ||
Propoxyphene | Iliac crest, vertebra | 39 | [22] | |
Femur | 36 | [275] | ||
Tramadol | Cranium, rib | 19 | [190] | |
Rib | 6 | [278] | ||
Stimulants | Caffeine | Femur | 36 | [275] |
Cocaine | Cranium, rib | 19 | [190] | |
Femur | 6 | [23] | ||
Benzoylecgonine (Metabolite of cocaine) | Vertebra, rib | 7 | [27] | |
Cranium, rib | 19 | [190] | ||
Rib | 6 | [278] | ||
Iliac crest, vertebra | 39 | [22] | ||
Femur | 6 | [23] |
Possible Effects | Observations | |
---|---|---|
Age-at-death | Delayed maturation, pre-mature (costal) cartilage calcification, pubic symphysis morphology, joint disease, osteoporosis, tooth loss. | Likely age overestimation in adults. May require imaging such as body CT scans. Moreover, similar effects when estimation the age of a living person. If anomalies in age indicators perhaps enquire re medication and lifestyle environment. |
Sex estimation | Possible morphological changes in pelvis and skull. | Misdiagnosis. Research in transgender individuals required too. |
Physical attributes (stature, ancestry or population affinity) | Morphological assessment of nasal area may be altered by drug abuse. Stunted growth. | Ancestry estimation, stature. |
Unique features | Osteonecrosis of the jaw, dental problems, fracture patterns. | May be able to indicate some possible medications or be consistent with medication intake. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Grant, N.; Baldini, E.; Jeynes, V.; Biehler-Gomez, L.; Aoukhiyad, L.; Passalacqua, N.V.; Giordano, G.; Di Candia, D.; Cattaneo, C. How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology. Biology 2022, 11, 524. https://doi.org/10.3390/biology11040524
Márquez-Grant N, Baldini E, Jeynes V, Biehler-Gomez L, Aoukhiyad L, Passalacqua NV, Giordano G, Di Candia D, Cattaneo C. How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology. Biology. 2022; 11(4):524. https://doi.org/10.3390/biology11040524
Chicago/Turabian StyleMárquez-Grant, Nicholas, Elisa Baldini, Victoria Jeynes, Lucie Biehler-Gomez, Layla Aoukhiyad, Nicholas V. Passalacqua, Gaia Giordano, Domenico Di Candia, and Cristina Cattaneo. 2022. "How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology" Biology 11, no. 4: 524. https://doi.org/10.3390/biology11040524
APA StyleMárquez-Grant, N., Baldini, E., Jeynes, V., Biehler-Gomez, L., Aoukhiyad, L., Passalacqua, N. V., Giordano, G., Di Candia, D., & Cattaneo, C. (2022). How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology. Biology, 11(4), 524. https://doi.org/10.3390/biology11040524