Unexpected Relationships: Periodontal Diseases: Atherosclerosis–Plaque Destabilization? From the Teeth to a Coronary Event
Abstract
:Simple Summary
Abstract
1. Introduction
2. Periodontal Disease and Atherosclerosis: Pathogenesis
2.1. Presence of Periodontal Pathogens in Atherosclerotic Plaques
2.2. Pathogenetic Mechanisms—Brief Overview
2.2.1. Periodontal Pathogens and Lipids
2.2.2. Periodontal Pathogens and Vascular Endothelium
2.2.3. Periodontal Pathogens and Smooth Muscle Cells
2.2.4. Periodontal Pathogens and Foam Cells
2.2.5. Periodontal Pathogens and Atherosclerotic Plaque Destabilization
2.2.6. Periodontal Pathogens and Platelets
2.2.7. Other
3. Periodontal Disease and Risk of Atherosclerosis Cardiovascular Diseases
4. Periodontal Treatment and Atherosclerosis Cardiovascular Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathiyakumar, V.; Kapoor, K.; Jones, S.R.; Banach, M.; Martin, S.S. Novel therapeutic targets for managing dyslipidemia. Trends Pharm. Sci. 2018, 39, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Banach, M. Fibrinogen and atherosclerotic cardiovascular diseases—review of literature and clinical studies. Int. J. Mol. Sci. 2022, 23, 193. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk factors for coronary artery disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/32119297/ (accessed on 15 January 2022).
- Gohlke-Bärwolf, C. Coronary artery disease-is menopause a risk factor? Basic Res. Cardiol. 2000, 95, 177–183. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar]
- Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe 2014: Epidemiological update. Eur. Heart J. 2014, 35, 2929–2933. [Google Scholar] [CrossRef] [Green Version]
- Khot, U.N.; Khot, M.B.; Bajzer, C.T.; Sapp, S.K.; Ohman, E.M.; Brener, S.J.; Ellis, S.G.; Lincoff, A.M.; Topol, E.J. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003, 290, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Czerniuk, M.R.; Górska, R.; Filipiak, K.J.; Opolski, G. Inflammatory response to acute coronary syndrome in patients with coexistent periodontal disease. J. Periodontol. 2004, 75, 1020–1026. [Google Scholar] [CrossRef]
- Zaremba, M.; Górska, R.; Suwalski, P.; Czerniuk, M.R.; Kowalski, J. Periodontitis as a risk factor of coronary heart diseases? Adv. Med. Sci. 2006, 51, 34–39. [Google Scholar]
- Czerniuk, M.R.; Górska, R.; Filipiak, K.J.; Opolski, G. C-reactive protein in patients with coexistent periodontal disease and acute coronary syndromes. J. Clin. Periodontol. 2006, 33, 415–420. [Google Scholar] [CrossRef]
- Paul, O.; Arora, P.; Mayer, M.; Chatterjee, S. Inflammation in periodontal disease: Possible link to vascular disease. Front. Physiol. 2021, 11, 609614. [Google Scholar] [CrossRef]
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global prevalence of periodontal disease and lack of its surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef]
- Sanz, M.; D’Aiuto, F.; Deanfield, J.; Fernandez, A.F. European workshop in periodontal health and cardiovascular disease—scientific evidence on the association between periodontal and cardiovascular diseases: A review of the literature. Eur. Heart J. Suppl. 2010, 12, 3–12. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. J. Dent. Res. 2014, 93, 1045–1053. [Google Scholar] [CrossRef]
- Ioannidou, E. The sex and gender intersection in chronic periodontitis. Front. Public Health 2017, 5, 189. [Google Scholar] [CrossRef] [Green Version]
- Botelho, J.; Proença, L.; Leira, Y.; Chambrone, L.; Mendes, J.J.; Machado, V. Economic burden of periodontal disease in Europe and the United States of America—An updated forecast. medRxiv 2021. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Immunomicrobial pathogenesis of periodontitis: Keystones, pathobionts, and host response. Trends Immunol. 2014, 35, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo-Lopez, M.; Villa-Islas, V.; Rocha Arriaga, C.; Villaseñor-Altamirano, A.B.; Guzmán-Solís, A.; Sandoval-Velasco, M.; Wesp, J.K.; Alcantara, K.; López-Corral, A.; Gómez-Valdés, J.; et al. Paleogenomic insights into the red complex bacteria Tannerella forsythia in Pre-Hispanic and Colonial individuals from Mexico. Philos. Trans. R Soc. Lond. B Biol. Sci. 2020, 375, 20190580. [Google Scholar] [CrossRef] [PubMed]
- Degasperi, G.R.; Etchegaray, A.; Marcelino, L.; Sicard, A.; Villalpando, K.; Pinheiro, S.L. Periodontal disease: General aspects from biofilm to the immune response driven by periodontal pathogen. Adv. Microbiol. 2018, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Surma, S.; Romańczyk, M.; Witalińska-Łabuzek, J.; Czerniuk, M.R.; Łabuzek, K.; Filipiak, K.J. Periodontitis, blood pressure, and the risk and control of arterial hypertension: Epidemiological, clinical, and pathophysiological aspects-review of the literature and clinical trials. Curr. Hypertens. Rep. 2021, 23, 27. [Google Scholar] [CrossRef]
- Priyamvara, A.; Dey, A.K.; Bandyopadhyay, D.; Katikineni, V.; Zaghlol, R.; Basyal, B.; Barssoum, K.; Amarin, R.; Bhatt, D.L.; Lavie, C.J. Periodontal inflammation and the risk of cardiovascular disease. Curr. Atheroscler. Rep. 2020, 22, 28. [Google Scholar] [CrossRef]
- Gheorghita, D.; Eördegh, G.; Nagy, F.; Antal, M. Periodontal disease, a risk factor for atherosclerotic cardiovascular disease. Orv. Hetil. 2019, 160, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.; Marco Del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef]
- McGill, H.C., Jr.; McMahan, C.A.; Herderick, E.E.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 2000, 72, 1307–1315. [Google Scholar]
- Zardawi, F.; Gul, S.; Abdulkareem, A.; Sha, A.; Yates, J. Association between periodontal disease and atherosclerotic cardiovascular diseases: Revisited. Front. Cardiovasc. Med. 2021, 7, 625579. [Google Scholar] [CrossRef]
- Del Pinto, R.; Pietropaoli, D.; Munoz-Aguilera, E.; D’Aiuto, F.; Czesnikiewicz-Guzik, M.; Monaco, A.; Guzik, T.J.; Ferri, C. Periodontitis and hypertension: Is the association causal? High Blood Press Cardiovasc. Prev. 2020, 27, 281–289. [Google Scholar] [CrossRef]
- Kholy, K.E.; Genco, R.J.; Van Dyke, T.E. Oral infections and cardiovascular disease. Trends Endocrinol. Metab. 2015, 26, 315–321. [Google Scholar] [CrossRef]
- Herrera, D.; Molina, A.; Buhlin, K.; Klinge, B. Periodontal diseases and association with atherosclerotic disease. Periodontology 2000 2020, 83, 66–89. [Google Scholar] [CrossRef]
- Liccardo, D.; Cannavo, A.; Spagnuolo, G.; Ferrara, N.; Cittadini, A.; Rengo, C.; Rengo, G. Periodontal disease: A risk factor for diabetes and cardiovascular disease. Int. J. Mol. Sci. 2019, 20, 1414. [Google Scholar] [CrossRef] [Green Version]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Links between atherosclerotic and periodontal disease. Exp. Mol. Pathol. 2016, 100, 220–235. [Google Scholar] [CrossRef]
- Carrizales-Sepúlveda, E.F.; Ordaz-Farías, A.; Vera-Pineda, R.; Flores-Ramírez, R. Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart Lung Circ. 2018, 27, 1327–1334. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; Falasca, F.; Turriziani, O.; Sessa, R. Infectious agents in atherosclerotic cardiovascular diseases through oxidative stress. Int. J. Mol. Sci. 2017, 18, 2459. [Google Scholar] [CrossRef] [Green Version]
- Gianos, E.; Jackson, E.A.; Tejpal, A.; Aspry, K.; O’Keefe, J.; Aggarwal, M.; Jain, A.; Itchhaporia, D.; Williams, K.; Batts, T.; et al. Oral health and atherosclerotic cardiovascular disease: A review. Am. J. Prev. Cardiol. 2021, 7, 100179. [Google Scholar] [CrossRef]
- Schenkein, H.A.; Papapanou, P.N.; Genco, R.; Sanz, M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontology 2000 2020, 83, 90–106. [Google Scholar] [CrossRef]
- Febbraio, M.; Roy, C.B.; Levin, L. Is there a causal link between periodontitis and cardiovascular disease? A concise review of recent findings. Int. Dent. J. 2022, 72, 37–51. [Google Scholar] [CrossRef]
- Figuero, E.; Lindahl, C.; Marín, M.J.; Renvert, S.; Herrera, D.; Ohlsson, O.; Wetterling, T.; Sanz, M. Quantification of periodontal pathogens in vascular, blood, and subgingival samples from patients with peripheral arterial disease or abdominal aortic aneurysms. J. Periodontol. 2014, 85, 1182–1193. [Google Scholar] [CrossRef]
- Haraszthy, V.I.; Zambon, J.J.; Trevisan, M.; Zeid, M.; Genco, R.J. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol. 2000, 71, 1554–1560. [Google Scholar] [CrossRef]
- Rath, S.K.; Mukherjee, M.; Kaushik, R.; Sen, S.; Kumar, M. Periodontal pathogens in atheromatous plaque. Indian J. Pathol. Microbiol. 2014, 57, 259–264. [Google Scholar] [CrossRef]
- Szulc, M.; Kustrzycki, W.; Janczak, D.; Michalowska, D.; Baczynska, D.; Radwan-Oczko, M. Presence of periodontopathic bacteria DNA in atheromatous plaques from coronary and carotid arteries. Biomed. Res. Int. 2015, 2015, 825397. [Google Scholar] [CrossRef] [Green Version]
- Mahendra, J.; Mahendra, L.; Nagarajan, A.; Mathew, K. Prevalence of eight putative periodontal pathogens in atherosclerotic plaque of coronary artery disease patients and comparing them with noncardiac subjects: A case-control study. Indian J. Dent. Res. 2015, 26, 189–195. [Google Scholar] [CrossRef]
- Mahendra, J.; Mahendra, L.; Felix, J.; Romanos, G.E. Genetic analysis of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in coronary plaque. J. Investig. Clin. Dent. 2014, 5, 201–207. [Google Scholar] [CrossRef]
- Rao, A.; D’Souza, C.; Subramanyam, K.; Rai, P.; Thomas, B.; Gopalakrishnan, M.; Karunasagar, I.; Kumar, B.K. Molecular analysis shows the presence of periodontal bacterial DNA in atherosclerotic plaques from patients with coronary artery disease. Indian Heart J. 2021, 73, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.; Bapat, R.; Anderson, W.; Dawson, D.; Hijazi, K.; Cherukara, G. Detection of periodontal microorganisms in coronary atheromatous plaque specimens of myocardial infarction patients: A systematic review and meta-analysis. Trends Cardiovasc. Med. 2021, 31, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Kędzia, A.; Ciecierski, M.; Kufel, A.; Wierzbowska, M.; Kwapisz, E. Isolation of anaerobic bacteria from atherosclerotic plaques from carotid arteries. Acta Angiol. 2012, 18, 59–67. [Google Scholar]
- Kannosh, I.; Staletovic, D.; Toljic, B.; Radunovic, M.; Pucar, A.; Matic Petrovic, S.; Grubisa, I.; Lazarevic, M.; Brkic, Z.; Vukcevic, J.K.; et al. The presence of periopathogenic bacteria in subgingival and atherosclerotic plaques—An age related comparative analysis. J. Infect. Dev. Ctries. 2018, 12, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Kim, H.J.; Cha, G.S.; Kim, H.J.; Kwon, E.Y.; Lee, J.Y.; Choi, J.; Joo, J.Y. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J. Periodontal. Implant. Sci. 2018, 48, 60–68. [Google Scholar] [CrossRef]
- Joo, J.Y.; Cha, G.S.; Chung, J.; Lee, J.Y.; Kim, S.J.; Choi, J. Peptide 19 of Porphyromonas gingivalis heat shock protein is a potent inducer of low-density lipoprotein oxidation. J. Periodontol. 2017, 88, 58–64. [Google Scholar] [CrossRef]
- Lönn, J.; Ljunggren, S.; Klarström-Engström, K.; Demirel, I.; Bengtsson, T.; Karlsson, H. Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J. Periodontal. Res. 2018, 53, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Ljunggren, S.; Bengtsson, T.; Karlsson, H.; Starkhammar Johansson, C.; Palm, E.; Nayeri, F.; Ghafouri, B.; Davies, J.; Svensäter, G.; Lönn, J. Modified lipoproteins in periodontitis: A link to cardiovascular disease? Biosci. Rep. 2019, 39, BSR20181665. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, J.; Liu, W.; Chu, Y.; Zhong, J.; Xie, Y.; Lou, X.; Ouyang, X. LOX-1 regulates P. gingivalis-induced monocyte migration and adhesion to human umbilical vein endothelial cells. Front. Cell Dev. Biol. 2020, 8, 596. [Google Scholar] [CrossRef]
- Reyes, L.; Getachew, H.; Dunn, W.A.; Progulske-Fox, A. Porphyromonas gingivalis W83 traffics via ICAM1 in microvascular endothelial cells and alters capillary organization in vivo. J. Oral Microbiol. 2020, 12, 1742528. [Google Scholar] [CrossRef] [Green Version]
- Dorn, B.R.; Dunn, W.A., Jr.; Progulske-Fox, A. Invasion of human coronary artery cells by periodontal pathogens. Infect. Immun. 1999, 67, 5792–5798. [Google Scholar] [CrossRef] [Green Version]
- Hajishengallis, G.; Wang, M.; Harokopakis, E.; Triantafilou, M.; Triantafilou, K. Porphyromonas gingivalis fimbriae proactively modulate beta2 integrin adhesive activity and promote binding to and internalization by macrophages. Infect. Immun. 2006, 74, 5658–5666. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Inagaki, S.; Kimizuka, R.; Okuda, K.; Hosaka, Y.; Nakagawa, T.; Ishihara, K. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol. 2008, 54, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, S.; Onishi, S.; Kuramitsu, H.K.; Sharma, A. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia”. Infect. Immun. 2006, 74, 5023–5028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Dong, Q.; Luo, Y.; Liu, Y.; Gao, L.; Pan, Y.; Zhang, D. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells. Int. J. Oral Sci. 2021, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Seymour, G.J.; Ford, P.J.; Cullinan, M.P.; Leishman, S.; West, M.J.; Yamazaki, K. Infection or inflammation: The link between periodontal and cardiovascular diseases. Future Cardiol. 2009, 5, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, C.; Stafford, G.P.; Murdoch, C. Porphyromonas gingivalis outer membrane vesicles increase vascular permeability. J. Dent. Res. 2020, 99, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, C.; Stafford, G.P.; Potempa, J.; Wilkinson, R.N.; Chen, Y.; Murdoch, C.; Widziolek, M. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 2021, 288, 1479–1495. [Google Scholar] [CrossRef] [PubMed]
- Song, L.T.; Tada, H.; Nishioka, T.; Nemoto, E.; Imamura, T.; Potempa, J.; Li, C.Y.; Matsushita, K.; Sugawara, S. Porphyromonas gingivalis gingipains-mediated degradation of plasminogen activator inhibitor-1 leads to delayed wound healing responses in human endothelial cells. J. Innate Immun. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Tang, Q.; Yu, S.; Sun, J.; Mei, F.; Zhao, J.; Chen, L. Porphyromonas gingivalis disrupts vascular endothelial homeostasis in a TLR-NF-kappaB axis dependent manner. Int. J. Oral Sci. 2020, 12, 28. [Google Scholar] [CrossRef]
- Kebschull, M.; Haupt, M.; Jepsen, S.; Deschner, J.; Nickenig, G.; Werner, N. Mobilization of endothelial progenitors by recurrent bacteremias with a periodontal pathogen. PLoS ONE 2013, 8, e54860. [Google Scholar] [CrossRef]
- Isola, G.; Giudice, A.L.; Polizzi, A.; Alibrandi, A.; Patini, R.; Ferlito, S. Periodontitis and tooth loss have Negative systemic impact on circulating progenitor cell levels: A clinical study. Genes 2019, 10, 1022. [Google Scholar] [CrossRef] [Green Version]
- Fujitani, T.; Aoyama, N.; Hirata, F.; Minabe, M. Association between periodontitis and vascular endothelial function using noninvasive medical device-a pilot study. Clin. Exp. Dent. Res. 2020, 6, 576–582. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Q.; Nie, J.; Zhang, C.; Zhou, X.; Yu, S.; Sun, J.; Cheng, X.; Dong, N.; Hu, Y.; et al. BMAL1-downregulation aggravates Porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress. Circ. Res. 2020, 126, 15–29. [Google Scholar] [CrossRef]
- Charoensaensuk, V.; Chen, Y.C.; Lin, Y.H.; Ou, K.L.; Yang, L.Y.; Lu, D.Y. Porphyromonas gingivalis induces proinflammatory cytokine expression leading to apoptotic death through the oxidative stress/NF-κB pathway in brain endothelial cells. Cells 2021, 10, 3033. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, W.; Hou, J.; Liu, Y.; Li, R.; Liu, J.; Li, C.; Tang, X.; Lin, L.; Pan, Y.; et al. Porphyromonas gingivalis-induced MIF regulates intercellular adhesion molecule-1 expression in EA.hy926 cells and monocyte-endothelial cell adhesion through the receptors CD74 and CXCR4. Inflammation 2019, 42, 874–883. [Google Scholar] [CrossRef] [Green Version]
- Bugueno, I.M.; Zobairi El-Ghazouani, F.; Batool, F.; El Itawi, H.; Anglès-Cano, E.; Benkirane-Jessel, N.; Toti, F.; Huck, O. Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Sci. Rep. 2020, 10, 1778. [Google Scholar] [CrossRef]
- Cao, C.; Ji, X.; Luo, X.; Zhong, L. Gingipains from Porphyromonas gingivalis promote the transformation and proliferation of vascular smooth muscle cell phenotypes. Int. J. Clin. Exp. Med. 2015, 8, 18327–18334. [Google Scholar]
- Zhang, B.; Elmabsout, A.A.; Khalaf, H.; Basic, V.T.; Jayaprakash, K.; Kruse, R.; Bengtsson, T.; Sirsjö, A. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genom. 2013, 14, 770. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Suzuki, J.; Ogawa, M.; Aoyama, N.; Hanatani, T.; Hirata, Y.; Nagai, R.; Izumi, Y.; Isobe, M. Porphyromonas gingivalis accelerates neointimal formation after arterial injury. J. Vasc. Res. 2012, 49, 417–424. [Google Scholar] [CrossRef]
- Li, J.; Deng, J.; Shang, S.; Liu, G.; Song, W.; Sun, P.; Jiang, W.; Pan, K. Effect of Porphyromonas gingivalis lipopolysaccharide on calcification of human umbilical artery smooth muscle cells co-cultured with human periodontal ligament cells. Exp. Med. 2021, 21, 655. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, Y.; Kim, M.K.; Park, H.R.; Kim, H.J.; Bae, S.K.; Bae, M.K. Infection of Porphyromonas gingivalis increases phosphate-induced calcification of vascular smooth muscle cells. Cells 2020, 9, 2694. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Xu, J.; Liu, F.; Hu, R.; Deng, H. Effects of Porphyromonas gingivalis lipopolysaccharide on the expression of key genes involved in cholesterol metabolism in macrophages. Arch. Med. Sci. 2016, 12, 959–967. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Wang, C.; Xiang, X.R.; Chen, F.C.; Yang, C.M.; Wu, J. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Oncol. Rep. 2013, 30, 1329–1336. [Google Scholar] [CrossRef]
- Xu, W.; Pan, Y.; Xu, Q.; Wu, Y.; Pan, J.; Hou, J.; Lin, L.; Tang, X.; Li, C.; Liu, J.; et al. Porphyromonas gingivalis ATCC 33277 promotes intercellular adhesion molecule-1 expression in endothelial cells and monocyte-endothelial cell adhesion through macrophage migration inhibitory factor. BMC Microbiol. 2018, 18, 16. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, X.; Liu, S.; Gu, L.; Zhou, X. MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis. Sci. Rep. 2017, 7, 12089. [Google Scholar] [CrossRef]
- Mubarokah, S.N.; Susilawati, I.D.A.; Sumarno, S.; Muliartha, I.K.G.; Sargowo, D. Porphyromonas gingivalis induced fragmentation of type IV collagen through macrophage-activated MMP-9: (in vitro study of collagenolytic mechanism in pathogenesis of atherosclerotic plaque rupture. Indones. Biomed. J. 2009, 1, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.M.; Inoue, Y.; Umeda, M.; Terasaki, H.; Chen, Z.Y.; Iwai, T. The periodontal anaerobe Porphyromonas gingivalis induced platelet activation and increased aggregation in whole blood by rat model. Thromb. Res. 2011, 127, 418–425. [Google Scholar] [CrossRef]
- Zhan, Y.; Lu, R.; Meng, H.; Wang, X.; Hou, J. Platelet activation and platelet-leukocyte interaction in generalized aggressive periodontitis. J. Leukoc. Biol. 2016, 100, 1155–1166. [Google Scholar] [CrossRef]
- Klarström Engström, K.; Khalaf, H.; Kälvegren, H.; Bengtsson, T. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Mol. Oral Microbiol. 2015, 30, 62–73. [Google Scholar] [CrossRef]
- Zhang, T.; Kurita-Ochiai, T.; Hashizume, T.; Du, Y.; Oguchi, S.; Yamamoto, M. Aggregatibacter actinomycetemcomitans accelerates atherosclerosis with an increase in atherogenic factors in spontaneously hyperlipidemic mice. FEMS Immunol. Med. Microbiol. 2010, 59, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Jun, H.K.; Choi, B.K. Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE(−/−) mice. Oral Dis. 2014, 20, 803–808. [Google Scholar]
- Kesavalu, L.; Lucas, A.R.; Verma, R.K.; Liu, L.; Dai, E.; Sampson, E.; Progulske-Fox, A. Increased atherogenesis during Streptococcus mutans infection in ApoE-null mice. J. Dent. Res. 2012, 91, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochenek, G.; Häsler, R.; El Mokhtari, N.E.; König, I.R.; Loos, B.G.; Jepsen, S.; Rosenstiel, P.; Schreiber, S.; Schaefer, A.S. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum. Mol. Genet. 2013, 22, 4516–4527. [Google Scholar] [CrossRef] [PubMed]
- Munz, M.; Richter, G.M.; Loos, B.G.; Jepsen, S.; Divaris, K.; Offenbacher, S.; Teumer, A.; Holtfreter, B.; Kocher, T.; Bruckmann, C.; et al. Genome-wide association meta-analysis of coronary artery disease and periodontitis reveals a novel shared risk locus. Sci. Rep. 2018, 8, 13678. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kopra, E.; Lahdentausta, L.; Liljestrand, J.; Paju, S. Association between oral infections and cardiovascular diseases. Nor. Tannlegeforen Tid. 2020, 130, 122–127. [Google Scholar]
- Larvin, H.; Kang, J.; Aggarwal, V.R.; Pavitt, S.; Wu, J. Risk of incident cardiovascular disease in people with periodontal disease: A systematic review and meta-analysis. Clin. Exp. Dent. Res. 2021, 7, 109–122. [Google Scholar] [CrossRef]
- Gao, S.; Tian, J.; Li, Y.; Liu, T.; Li, R.; Yang, L.; Xing, Z. Periodontitis and number of teeth in the risk of coronary heart disease: An updated meta-analysis. Med. Sci. Monit. 2021, 27, e930112. [Google Scholar] [CrossRef]
- Qin, X.; Zhao, Y.; Guo, Y. Periodontal disease and myocardial infarction risk: A meta-analysis of cohort studies. Am. J. Emerg. Med. 2021, 48, 103–109. [Google Scholar] [CrossRef]
- Joshi, C.; Bapat, R.; Anderson, W.; Dawson, D.; Cherukara, G.; Hijazi, K. Serum antibody response against periodontal bacteria and coronary heart disease: Systematic review and meta-analysis. J. Clin. Periodontol. 2021, 48, 1570–1586. [Google Scholar] [CrossRef]
- Arsiwala, L.T.; Mok, Y.; Yang, C.; Ishigami, J.; Selvin, E.; Beck, J.D.; Allison, M.A.; Heiss, G.; Demmer, R.T.; Matsushita, K. Periodontal disease measures and risk of incident peripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) study. J. Periodontol. 2021. [Google Scholar] [CrossRef]
- Wang, J.; Geng, X.; Sun, J.; Zhang, S.; Yu, W.; Zhang, X.; Liu, H. The risk of periodontitis for peripheral vascular disease: A systematic review. Rev. Cardiovasc. Med. 2019, 20, 81–89. [Google Scholar]
- Zeng, X.T.; Leng, W.D.; Lam, Y.Y.; Yan, B.P.; Wei, X.M.; Weng, H.; Kwong, J.S. Periodontal disease and carotid atherosclerosis: A meta-analysis of 17,330 participants. Int. J. Cardiol. 2016, 203, 1044–1051. [Google Scholar] [CrossRef]
- González-Navarro, B.; Segura-Egea, J.J.; Estrugo-Devesa, A.; Pintó-Sala, X.; Jane-Salas, E.; Jiménez-Sánchez, M.C.; Cabanillas-Balsera, D.; López-López, J. Relationship between apical periodontitis and metabolic syndrome and cardiovascular events: A cross-sectional study. J. Clin. Med. 2020, 9, 3205. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Z.; Wang, Y.; Gao, H.; Wang, Y.; Zhang, Q. Association between periodontitis and carotid artery calcification: A systematic review and meta-analysis. Biomed. Res. Int. 2021, 2021, 3278351. [Google Scholar] [CrossRef]
- Rodean, I.P.; Lazăr, L.; Halațiu, V.B.; Biriș, C.; Benedek, I.; Benedek, T. Periodontal disease is associated with increased vulnerability of coronary atheromatous plaques in patients undergoing coronary computed tomography angiography-results from the Atherodent Study. J. Clin. Med. 2021, 10, 1290. [Google Scholar] [CrossRef]
- Cowan, L.T.; Lakshminarayan, K.; Lutsey, P.L.; Folsom, A.R.; Beck, J.; Offenbacher, S.; Pankow, J.S. Periodontal disease and incident venous thromboembolism: The Atherosclerosis Risk in Communities study. J. Clin. Periodontol. 2019, 46, 12–19. [Google Scholar] [CrossRef]
- Sánchez-Siles, M.; Rosa-Salazar, V.; Salazar-Sánchez, N.; Camacho-Alonso, F. Periodontal disease as a risk factor of recurrence of venous thromboembolic disease: A prospective study. Acta Odontol. Scand. 2015, 73, 8–13. [Google Scholar] [CrossRef]
- Kotronia, E.; Brown, H.; Papacosta, A.O.; Lennon, L.T.; Weyant, R.J.; Whincup, P.H.; Wannamethee, S.G.; Ramsay, S.E. Oral health and all-cause, cardiovascular disease, and respiratory mortality in older people in the UK and USA. Sci. Rep. 2021, 11, 16452. [Google Scholar] [CrossRef]
- Bengtsson, V.W.; Persson, G.R.; Berglund, J.S.; Renvert, S. Periodontitis related to cardiovascular events and mortality: A long-time longitudinal study. Clin. Oral Investig. 2021, 25, 4085–4095. [Google Scholar] [CrossRef]
- Qi, J.; Zihang, Z.; Zhang, J.; Park, Y.M.; Shrestha, D.; Jianling, B.; Merchant, A.T. Periodontal antibodies and all-cause and cardiovascular disease mortality. J. Dent. Res. 2020, 99, 51–59. [Google Scholar] [CrossRef]
- Romandini, M.; Baima, G.; Antonoglou, G.; Bueno, J.; Figuero, E.; Sanz, M. Periodontitis, edentulism, and risk of mortality: A systematic review with meta-analyses. J. Dent. Res. 2021, 100, 37–49. [Google Scholar] [CrossRef]
- Yu, Y.H.; Cheung, W.S.; Steffensen, B.; Miller, D.R. Number of teeth is associated with all-cause and disease-specific mortality. BMC Oral Health 2021, 21, 568. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Zhang, M.; Wang, Q.; Xu, H.; Dong, X.; Gao, Z.; Chen, J.; Wei, Y.; Qin, F. Tooth loss and risk of cardiovascular disease and stroke: A dose-response meta-analysis of prospective cohort studies. PLoS ONE 2018, 13, e0194563. [Google Scholar]
- Zhou, M.; Dong, J.; Zha, L.; Liao, Y. Causal association between periodontal diseases and cardiovascular diseases. Genes 2022, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, S.E.; Forrest, J.L. An umbrella review of systematic reviews of the evidence of a causal relationship between periodontal disease and cardiovascular diseases: Position paper from the Canadian Dental Hygienists Association. Can. J. Dent. Hyg. 2020, 54, 32–41. [Google Scholar]
- Sweeting, L.A.; Davis, K.; Cobb, C.M. Periodontal Treatment Protocol (PTP) for the general dental practice. J. Dent. Hyg. 2008, 82, 16–26. [Google Scholar]
- Roca-Millan, E.; González-Navarro, B.; Sabater-Recolons, M.M.; Marí-Roig, A.; Jané-Salas, E.; López-López, J. Periodontal treatment on patients with cardiovascular disease: Systematic review and meta-analysis. Med. Oral. Patol. Oral Cir. Bucal. 2018, 23, 681–690. [Google Scholar] [CrossRef]
- Teeuw, W.J.; Slot, D.E.; Susanto, H.; Gerdes, V.E.; Abbas, F.; D’Aiuto, F.; Kastelein, J.J.; Loos, B.G. Treatment of periodontitis improves the atherosclerotic profile: A systematic review and meta-analysis. J. Clin. Periodontol. 2014, 41, 70–79. [Google Scholar] [CrossRef]
- Laky, M.; Anscheringer, I.; Wolschner, L.; Heber, S.; Haririan, H.; Schrottmaier, W.C.; Kral-Pointner, J.B.; Salzmann, M.; Volf, I.; Moritz, A.; et al. Periodontal treatment limits platelet activation in patients with periodontitis-a controlled-randomized intervention trial. J. Clin. Periodontol. 2018, 45, 1090–1097. [Google Scholar] [CrossRef]
- Arvanitidis, E.; Bizzarro, S.; Alvarez Rodriguez, E.; Loos, B.G.; Nicu, E.A. Reduced platelet hyper-reactivity and platelet-leukocyte aggregation after periodontal therapy. Thromb. J. 2017, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Toregeani, J.F.; Nassar, C.A.; Nassar, P.O.; Toregeani, K.M.; Gonzatto, G.K.; Vendrame, R.; Castilhos, J.S.; Rotta, L.S.; Reinheimer, A.C.; Longoni, A.; et al. Evaluation of periodontitis treatment effects on carotid intima-media thickness and expression of laboratory markers related to atherosclerosis. Gen. Dent. 2016, 64, 55–62. [Google Scholar]
- Czesnikiewicz-Guzik, M.; Osmenda, G.; Siedlinski, M.; Nosalski, R.; Pelka, P.; Nowakowski, D.; Wilk, G.; Mikolajczyk, T.P.; Schramm-Luc, A.; Furtak, A.; et al. Causal association between periodontitis and hypertension: Evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur. Heart J. 2019, 40, 3459–3470. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.B.; Xia, W.H.; Ren, J.; Yu, B.B.; Tong, X.Z.; Chen, Y.B.; Chen, S.; Feng, L.; Dai, J.; Tao, J.; et al. Effect of intensive periodontal therapy on blood pressure and endothelial microparticles in patients with prehypertension and periodontitis: A randomized controlled trial. J. Periodontol. 2017, 88, 711–722. [Google Scholar] [CrossRef]
- Fu, Y.W.; Li, X.X.; Xu, H.Z.; Gong, Y.Q.; Yang, Y. Effects of periodontal therapy on serum lipid profile and proinflammatory cytokines in patients with hyperlipidemia: A randomized controlled trial. Clin. Oral Investig. 2016, 20, 1263–1269. [Google Scholar] [CrossRef]
- Mauri-Obradors, E.; Merlos, A.; Estrugo-Devesa, A.; Jané-Salas, E.; López-López, J.; Viñas, M. Benefits of non-surgical periodontal treatment in patients with type 2 diabetes mellitus and chronic periodontitis: A randomized controlled trial. J. Clin. Periodontol. 2018, 45, 345–353. [Google Scholar] [CrossRef]
- D’Aiuto, F.; Gkranias, N.; Bhowruth, D.; Khan, T.; Orlandi, M.; Suvan, J.; Masi, S.; Tsakos, G.; Hurel, S.; Hingorani, A.D.; et al. Systemic effects of periodontitis treatment in patients with type 2 diabetes: A 12 month, single-centre, investigator-masked, randomised trial. Lancet Diabetes Endocrinol. 2018, 6, 954–965. [Google Scholar] [CrossRef]
- Peng, C.H.; Yang, Y.S.; Chan, K.C.; Kornelius, E.; Chiou, J.Y.; Huang, C.N. Periodontal treatment and the risks of cardiovascular disease in patients with type 2 diabetes: A retrospective cohort study. Intern. Med. 2017, 56, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Montero, E.; López, M.; Vidal, H.; Martínez, M.; Virto, L.; Marrero, J.; Herrera, D.; Zapatero, A.; Sanz, M. Impact of periodontal therapy on systemic markers of inflammation in patients with metabolic syndrome: A randomized clinical trial. Diabetes Obes. Metab. 2020, 22, 2120–2132. [Google Scholar] [CrossRef]
- López, N.J.; Quintero, A.; Casanova, P.A.; Ibieta, C.I.; Baelum, V.; López, R. Effects of periodontal therapy on systemic markers of inflammation in patients with metabolic syndrome: A controlled clinical trial. J. Periodontol. 2012, 83, 267–278. [Google Scholar] [CrossRef]
- Santos-Paul, M.A.; Neves, R.S.; Gowdak, L.H.W.; de Paula, F.J.; David-Neto, E.; Bortolotto, L.A.; Ramires, J.A.F.; De Lima, J.J.G. Cardiovascular risk reduction with periodontal treatment in patients on the waiting list for renal transplantation. Clin. Transplant. 2019, 33, e13658. [Google Scholar] [CrossRef]
- Huang, S.T.; Yu, T.M.; Ke, T.Y.; Wu, M.J.; Chuang, Y.W.; Li, C.Y.; Chiu, C.W.; Lin, C.L.; Liang, W.M.; Chou, T.C.; et al. Intensive periodontal treatment reduces risks of hospitalization for cardiovascular disease and all-cause mortality in the hemodialysis population. J. Clin. Med. 2018, 7, 344. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.W.; Chen, C.M.; Yeh, Y.C.; Chen, Y.Y.; Guo, R.Y.; Lin, Y.P.; Li, Y.C. Dental treatment procedures for periodontal disease and the subsequent risk of ischaemic stroke: A retrospective population-based cohort study. J. Clin. Periodontol. 2019, 46, 642–649. [Google Scholar] [CrossRef]
- Aarabi, G.; Raedel, M.; Kreutzburg, T.; Hischke, S.; Debus, E.S.; Marschall, U.; Seedorf, U.; Behrendt, C.A. Periodontal treatment and peripheral arterial disease severity—A retrospective analysis of health insurance claims data. Vasa 2020, 49, 128–132. [Google Scholar] [CrossRef]
- Montenegro, M.M.; Ribeiro, I.W.J.; Kampits, C.; Saffi, M.A.L.; Furtado, M.V.; Polanczyk, C.A.; Haas, A.N.; Rösing, C.K. Randomized controlled trial of the effect of periodontal treatment on cardiovascular risk biomarkers in patients with stable coronary artery disease: Preliminary findings of 3 months. J. Clin. Periodontol. 2019, 46, 321–331. [Google Scholar] [CrossRef]
- Saffi, M.A.L.; Rabelo-Silva, E.R.; Polanczyk, C.A.; Furtado, M.V.; Montenegro, M.M.; Ribeiro, I.W.J.; Kampits, C.; Rösing, C.K.; Haas, A.N. Periodontal therapy and endothelial function in coronary artery disease: A randomized controlled trial. Oral Dis. 2018, 24, 1349–1357. [Google Scholar] [CrossRef]
- Javed, F.; Kellesarian, S.V.; Al-Kheraif, A.A.; Ranna, V.; Qadri, T.; Yunker, M.; Malmstrom, H.; Romanos, G.E. Effect of Nd:YAG laser-assisted non-surgical periodontal therapy on clinical periodontal and serum biomarkers in patients with and without coronary artery disease: A short-term pilot study. Lasers Surg. Med. 2016, 48, 929–935. [Google Scholar] [CrossRef]
- Bokhari, S.A.; Khan, A.A.; Butt, A.K.; Azhar, M.; Hanif, M.; Izhar, M.; Tatakis, D.N. Non-surgical periodontal therapy reduces coronary heart disease risk markers: A randomized controlled trial. J. Clin. Periodontol. 2012, 39, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Kao, Y.W.; Shia, B.C.; Chiang, H.C.; Chen, M.; Wu, S.Y. Association of tooth scaling with acute myocardial infarction and analysis of the corresponding medical expenditure: A nationwide population-based study. Int. J. Environ. Res. Public Health 2021, 18, 7613. [Google Scholar] [CrossRef] [PubMed]
- Gugnani, N.; Gugnani, S. Can treatment of severe periodontitis in patients with ST-segment elevation myocardial infarction improve endothelial function? Evid. Based Dent. 2021, 22, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.G.; Schmidt, M.M.; Lopes, R.D.; Dipp, T.; Feijó, I.P.; Schmidt, K.E.S.; Gazeta, C.A.; Azeredo, M.L.; Markoski, M.; Pellanda, L.C.; et al. Treating periodontal disease in patients with myocardial infarction: A randomized clinical trial. Eur. J. Intern. Med. 2020, 71, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeza, M.; Morales, A.; Cisterna, C.; Cavalla, F.; Jara, G.; Isamitt, Y.; Pino, P.; Gamonal, J. Effect of periodontal treatment in patients with periodontitis and diabetes: Systematic review and meta-analysis. J. Appl. Oral Sci. 2020, 28, e20190248. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Li, Q.; Wu, Q.; Yao, M.; Chen, Y.; Zhou, H. Effect of non-surgical periodontal therapy on glycemic control of type 2 diabetes mellitus: A systematic review and Bayesian network meta-analysis. BMC Oral Health 2019, 19, 176. [Google Scholar] [CrossRef]
- Esteves Lima, R.P.; Atanazio, A.R.S.; Costa, F.O.; Cunha, F.A.; Abreu, L.G. Impact of non-surgical periodontal treatment on serum TNF-alpha levels in individuals with type 2 diabetes: A systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2021, 21, 101546. [Google Scholar] [CrossRef]
- Garde, S.; Akhter, R.; Nguyen, M.A.; Chow, C.K.; Eberhard, J. Periodontal therapy for improving lipid profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Int. J. Mol. Sci. 2019, 20, 3826. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sridhar, S.; McIntosh, A.; Messow, C.M.; Aguilera, E.M.; Del Pinto, R.; Pietropaoli, D.; Gorska, R.; Siedlinski, M.; Maffia, P.; et al. Periodontal therapy and treatment of hypertension-alternative to the pharmacological approach. A systematic review and meta-analysis. Pharmacol. Res. 2021, 166, 105511. [Google Scholar] [CrossRef]
- Da Silva, T.A.; Abreu, L.G.; Esteves Lima, R.P. A meta-analysis on the effect of periodontal treatment on the glomerular filtration rate of chronic kidney disease individuals: A systematic review and meta-analysis was conducted to assess the impact of the periodontal treatment on the glomerular filtration rate of individuals with chronic kidney disease. Spec. Care Dent. 2021, 41, 670–678. [Google Scholar]
- Okada, M.; Kobayashi, T.; Ito, S.; Yokoyama, T.; Abe, A.; Murasawa, A.; Yoshie, H. Periodontal treatment decreases levels of antibodies to Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and periodontitis. J. Periodontol. 2013, 84, 74–84. [Google Scholar] [CrossRef]
- Fabbri, C.; Fuller, R.; Bonfá, E.; Guedes, L.K.; D’Alleva, P.S.; Borba, E.F. Periodontitis treatment improves systemic lupus erythematosus response to immunosuppressive therapy. Clin. Rheumatol. 2014, 33, 505–509. [Google Scholar] [CrossRef]
- Holmlund, A.; Lampa, E.; Lind, L. Poor response to periodontal treatment may predict future cardiovascular disease. J. Dent. Res. 2017, 96, 768–773. [Google Scholar] [CrossRef]
- Surma, S.; Banach, M.; Lewek, J. COVID-19 and lipids. The role of lipid disorders and statin use in the prognosis of patients with SARS-CoV-2 infection. Lipids Health Dis. 2021, 20, 141. [Google Scholar] [CrossRef]
- Petit, C.; Batool, F.; Bugueno, I.M.; Schwinté, P.; Benkirane-Jessel, N.; Huck, O. Contribution of statins towards periodontal treatment: A review. Mediat. Inflamm. 2019, 2019, 6367402. [Google Scholar] [CrossRef]
- Tahamtan, S.; Shirban, F.; Bagherniya, M.; Johnston, T.P.; Sahebkar, A. The effects of statins on dental and oral health: A review of preclinical and clinical studies. J. Transl. Med. 2020, 18, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniz, F.W.M.G.; Taminski, K.; Cavagni, J.; Celeste, R.K.; Weidlich, P.; Rösing, C.K. The effect of statins on periodontal treatment-a systematic review with meta-analyses and meta-regression. Clin. Oral Investig. 2018, 22, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Szwed, P.; Gąsecka, A.; Zawadka, M.; Eyileten, C.; Postuła, M.; Mazurek, T.; Szarpak, Ł.; Filipiak, K.J. Infections as novel risk factors of atherosclerotic cardiovascular diseases: Pathophysiological links and therapeutic implications. J. Clin. Med. 2021, 10, 2539. [Google Scholar] [CrossRef]
- Altun, E.; Walther, C.; Borof, K.; Petersen, E.; Lieske, B.; Kasapoudis, D.; Jalilvand, N.; Beikler, T.; Jagemann, B.; Zyriax, B.C.; et al. Association between dietary pattern and periodontitis-a cross-sectional study. Nutrients 2021, 13, 4167. [Google Scholar] [CrossRef]
- Vivek, B.; Ramesh, K.S.V.; Gautami, P.S.; Sruthima, G.N.V.S.; Dwarakanath, C.; Anudeep, M. Effect of periodontal treatment on oral health-related quality of life—a randomised controlled trial. J. Taibah Univ. Med. Sci. 2021, 16, 856–863. [Google Scholar] [CrossRef]
- Anand, P.S.; Jadhav, P.; Kamath, K.P.; Kumar, S.R.; Vijayalaxmi, S.; Anil, S. A case-control study on the association between periodontitis and coronavirus disease (COVID-19). J. Periodontol. 2021. [Google Scholar] [CrossRef]
- Joshipura, K.; Muñoz-Torres, F.; Fernández-Santiago, J.; Patel, R.; Lopez-Candales, A. Over-the-counter mouthwash use, nitric oxide and hypertension risk. Blood Press. 2020, 29, 103–112. [Google Scholar] [CrossRef]
- Joshipura, K.; Muñoz-Torres, F.; Morou-Bermudez, E.; Patel, R. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes. Nitric. Oxide. 2017, 71, 14–20. [Google Scholar] [CrossRef]
- Sobierajski, T.; Surma, S.; Romańczyk, M.; Łabuzek, K.; Filipiak, K.J.; Oparil, S. What is or what is not a risk factor for arterial hypertension? Not Hamlet, but medical students answer that question. Curr. Hypertens. Rep. 2022, in press. Available online: https://www.editorialmanager.com/hypr/default1.aspx (accessed on 15 January 2022).
Author; Year | Type of Study | Characteristics and Size of the Sample | Intervention | Results | Conclusions |
---|---|---|---|---|---|
Laky et al. 2018 [119] | RCT | 52 patients with PD | Intensive PT | Follow-up: 3 months. Subgingival debridement reduces the risk of aggravated platelet activation | PT is characterized by an antithrombotic effect |
Arvanitidis et al. 2017 [120] | CT | 25 patients with PD | Non-surgical PT Blood sample collection before and after PT | Follow-up: 3 months. Binding of PAC-1 (p = 0.026), the expression of P-selectin (p = 0.045) and CD63 (p = 0.042) and formation of platelet-leukocyte complexes (p = 0.045) in response to the P. gingivalis were significant lower after PT. Reduction in platelet hyper-reactivity was found. | PT is characterized by an antithrombotic effect |
Toregeani et al. 2016 [121] | CT | 44 patients with PD | Standard PT and control | Follow-up: 6 months. Both groups experienced a statistically significant decrease in CIMT (p < 0.05) | PT has anti-atherosclerotic properties |
Cześnikiewicz—Guzik et al. 2019 [122] | RCT | 101 patients with arterial hypertension and PD | Intensive PT and control PT BP was assessed using an ABPM | Follow-up: 2 months. ↓ SBP: −11.1 mmHg (95% CI: 6.5–15.8 mmHg) in SG (p < 0.01) ↓ DBP: −8.3 mmHg (95% CI: 4.0–12.6 mmHg) in SG (p < 0.01) | PT is characterized by an antihypertensive effect |
Zhou et al. 2017 [123] | RCT | 107 patients with prehypertension and PD Without antihypertensive therapy | Intensive PT and control PT | Follow-up: 6 months. Absolute differences Intensive vs. control PT: ↓ SBP: 12.57 mmHg (95% CI: 10.45–14.69 mmHg, p < 0.05) ↓ DBP: 9.65 mmHg (95% CI: 7.06–12.24 mmHg, p < 0.05) ↓ EMP: 581.59/μL (95% CI: 348.12–815.06, p < 0.05) | Intensive PT without any antihypertensive medication therapy may be an effective to lower levels of BP and improve vascular endothelial function in patients with prehypertension |
Fu et al. 2016 [124] | RCT | 109 patients with hyperlipidemia and PD | Intensive PT and standard PT | Follow-up: 6 months. ↓ TG (p < 0.05) ↑ HDL (p < 0.05) ↓ TNF-α (p < 0.05) ↓ IL-1β (p < 0.001) ↓IL-6 (p < 0.001) | PT is characterized by lipid-lowering and anti-inflammatory effects |
Mauri— Obradors et al. 2018 [125] | RCT | 60 patients with PD and T2DM | Intensive PT and standard PT | Follow-up: 6 months. In intensive PT group: ↓ HbA1C (p < 0.05) ↓ FPG (p < 0.05) | PT improves glycemic control in T2DM patients |
D’Aiuto et al. 2018 [126] | RCT | 264 patients with PD and T2DM | Intensive PT and minimal PT | Follow-up: 12 months. Intensive vs. control PT: ↓ HbA1C by 0.6% (95% CI: 0.3–0.9, p < 0.0001) | PT improves glycemic control in T2DM patients |
Peng et al. 2017 [127] | Retrospective cohort | 15195 patients with PD and T2DM | Advanced PT (3039 patients) Non-advanced PT (12156 patients) | Advanced PT: ↓ risk of MI by 8% (HR = 0.92; 95% CI: 0.85–0.99) and ↓ risk of HF by 40% (HR = 0.60; 95% CI: 0.45–0.80) | Advanced PT reduces the risk of MI and HF in patients with T2DM |
Montero et al. 2020 [128] | RCT | 63 patients with metabolic syndrome and PD | Intensive PT and minimal PT | Follow-up: 6 months. hs-CRP was 1.2 mg/L (95% CI: 0.4–2.0, p = 0.004) lower in intensive PT group | PT has an anti-inflammatory effect in metabolic syndrome patients |
López et al. 2012 [129] | RCT | 165 patients with metabolic syndrome and PD | Intensive PT and minimal PT | Follow-up: 12 months. ↓ CRP (p = 0.001) in both groups ↓ Fibrinogen: only in study group (p = 0.005) | PT has an anti-inflammatory effect in metabolic syndrome patients |
Santos-Paul et al. 2019 [130] | CT | 409 hemodialysis patients | 206 patients underwent PT and 203 untreated control | Follow-up: 24 months. PT was associated with reduction in cardiovascular events (HR = 0.43; 95% CI: 0.22–0.87), coronary events (HR = 0.31; 95% CI: 0.12–0.83), and cardiovascular deaths (HR = 0.43; 95% CI: 0.19–0.98) | PT improves the cardiovascular prognosis of patients with ESRD |
Huang et al. 2018 [131] | Retrospective cohort | 7226 hemodialysis patients | Intensive PT and control | Follow-up: 10 years. Reduction risk of hospitalization for CVDs (HR = 0.78; 95% CI: 0.73–0.84, p < 0.001) in PT treatment group. PT led to significantly lower cumulative incidences of CVDs (p < 0.001) and mortality (p < 0.001) | Intensive PT was associated with reduced risks of CVDs and overall mortality in patients with ESRD |
Lin et al. 2019 [132] | Retrospective cohort | 161923 patients with PD (gingivitis or periodontitis) | PT and control | Follow-up: 10 years. Intensive PT was associated with a significantly lower risk of stroke for both the gingivitis and periodontitis groups (HR = 0.36 and 0.80; 95% CI: 0.14–0.97 and 0.69–0.93, respectively). | PT reduces the risk of ischemic stroke |
Aarabi et al. 2020 [133] | Retrospective | 70944 patients with PAD and PD | PT and control | Patients with PAD who were not PT had a significantly higher risk of more severe PAD (OR = 1.97; 95% CI: 1.83–2.13) | PT can reduce the severity of PAD |
Montenegro et al. 2019 [134] | RCT | 82 patients with PD and stable CAD | Standard PT and minimal PT | Follow-up: 3 months. Test vs. control group ↓ CRP: 1.40 ± 0.96 mg/L to 1.33 ± 1.26 mg/L (p = 0.01) ↓ IL-6: 6.20 ± 17.90 pg/mL to 4.11 ± 11.50 pg/mL (p = 0.04) ↓ IL-8: 14.18 ± 18.20 pg/mL to 11.12 ± 11.86 pg/mL (p = 0.04) | PT has an anti-inflammatory effect in CAD patients |
Saffi et al. 2018 [135] | RCT | 69 patients with PD and stable CAD | PT and control | Follow-up: 3 months. sVCAM-1: control vs. PT: 1201.8 ± 412.5 ng/mL vs. 1050.3 ± 492.3 ng/mL (p = 0.04) sICAM-1: control vs. PT: 292.9 ± 132.7 ng/mL vs. 231.1 ± 103.7 ng/mL (p = 0.01) | PT prevented increases of vascular inflammation in CAD patients |
Javed et al. 2016 [136] | RCT | 44 patients with PD and CAD 43 patients only with PD | Non-surgical PT alone or non-surgical PT + laser therapy | Follow-up: 3 months. Patients who had received non-surgical PT + laser therapy demonstrated significantly lower serum IL-1β (p < 0.05) and MMP-9 (p < 0.05) levels as compared to patients who had undergone non-surgical PT alone | Non-surgical PT + laser therapy is characterized by a stronger anti-inflammatory effect than non-surgical PT alone in patients with CAD |
Bokhari et al. 2012 [137] | RCT | 317 patients with PD and CAD | Standard PT and control | Follow-up: 2 months. ↓ CRP (p = 0.007) ↓ Fibrinogen (p = 0.01) ↓ White blood cell (p < 0.001) | PT has an anti-inflammatory effect in CAD patients |
Kao et al. 2021 [138] | Retrospective cohort | 14328 subjects with different MI risk factors | 7164 subjects who underwent tooth scaling and 7164 participants without tooth scaling | Follow-up: 13 years. Risk of MI from the tooth scaling group was significantly lower (HR = 0.543; 95% CI: 0.441–0.670). Moreover, subjects who underwent 2 tooth scaling scales vs. 1 tooth scaling achieved a greater reduction in risk of MI. | PT reduces the risk of MI |
Gugnani and Gugnani 2021 [139] | RCT | 48 patients with PD and MI | Standard PT and control | Follow-up: 6 months. ↑ FMD: 9.0 ± 4.4% to 12.1 ± 5.6% (p = 0.01) in intervention and 12.2 ± 7.2% to 11.9 ± 4.0% (p = 0.79) in control | PT improves the endothelial function of patients with a MI |
Lobo et al. 2020 [140] | RCT | 44 patients with PD and MI | IG: standard PT CG: standard PT after study | Follow-up: 6 months. ↑ FMD: 3.05% vs. −0.29% (p = 0.03) | PT improves the endothelial function of patients with a recent MI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerniuk, M.R.; Surma, S.; Romańczyk, M.; Nowak, J.M.; Wojtowicz, A.; Filipiak, K.J. Unexpected Relationships: Periodontal Diseases: Atherosclerosis–Plaque Destabilization? From the Teeth to a Coronary Event. Biology 2022, 11, 272. https://doi.org/10.3390/biology11020272
Czerniuk MR, Surma S, Romańczyk M, Nowak JM, Wojtowicz A, Filipiak KJ. Unexpected Relationships: Periodontal Diseases: Atherosclerosis–Plaque Destabilization? From the Teeth to a Coronary Event. Biology. 2022; 11(2):272. https://doi.org/10.3390/biology11020272
Chicago/Turabian StyleCzerniuk, Maciej R., Stanisław Surma, Monika Romańczyk, Jacek M. Nowak, Andrzej Wojtowicz, and Krzysztof J. Filipiak. 2022. "Unexpected Relationships: Periodontal Diseases: Atherosclerosis–Plaque Destabilization? From the Teeth to a Coronary Event" Biology 11, no. 2: 272. https://doi.org/10.3390/biology11020272
APA StyleCzerniuk, M. R., Surma, S., Romańczyk, M., Nowak, J. M., Wojtowicz, A., & Filipiak, K. J. (2022). Unexpected Relationships: Periodontal Diseases: Atherosclerosis–Plaque Destabilization? From the Teeth to a Coronary Event. Biology, 11(2), 272. https://doi.org/10.3390/biology11020272