A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Soybean
1.2. Soybean Cyst Nematode (SCN)
1.3. Host–Pathogen Interactions
1.4. Recent Work on Soybean Resistance against SCN
2. What Is New at the rhg1 and Rhg4 Loci?
2.1. α- SNAP
2.2. WI12
2.3. SHMT
3. Defense Gene Activation and Epigenetic Control
4. Identifying Novel Sources of Resistance
5. Wild Soybean as a Resistance Reservoir
6. Novel Resistance Strategies and Breeding Approaches
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthet, V. Quality of Canadian Oilseed-Type Soybeans 2018; Canadian Grain Commission: Winnipeg, MB, Canada, 2018; pp. 1–15. [Google Scholar]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chung, C.Y.L.; Li, M.W.; Wong, F.L.; Wang, X.; Liu, A.; Wang, Z.; Leung, A.K.Y.; Wong, T.H.; Tong, S.W.; et al. A Reference-Grade Wild Soybean Genome. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome Sequence of the Palaeopolyploid Soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumrani, K.; Bhatia, V.S. Impact of Combined Stress of High Temperature and Water Deficit on Growth and Seed Yield of Soybean. Physiol. Mol. Biol. Plants 2018, 24, 37–50. [Google Scholar] [CrossRef]
- Li, X.; Fang, C.; Xu, M.; Zhang, F.; Lu, S.; Nan, H.; Su, T.; Li, S.; Zhao, X.; Kong, L.; et al. Quantitative Trait Locus Mapping of Soybean Maturity Gene E6. Crop Sci. 2017, 57, 2547–2554. [Google Scholar] [CrossRef] [Green Version]
- Tylka, G.L.; Marett, C.C. Known Distribution of the Soybean Cyst Nematode, Heterodera glycines, in the United States and Canada in 2020. Plant Heal. Prog. 2021, 22, 72–74. [Google Scholar] [CrossRef]
- Masonbrink, R.; Maier, T.; Hudson, M.; Severin, A.; Baum, T. A Chromosomal Assembly of the Soybean Cyst Nematode Genome. Authorea 2021, 21, 2407–2422. [Google Scholar] [CrossRef]
- Davis, E.L.; Tylka, G.L. Soybean Cyst Nematode Disease. Plant Heal. Instr. 2000. [Google Scholar] [CrossRef]
- Klink, V.P.; Overall, C.C.; Alkharouf, N.W.; MacDonald, M.H.; Matthews, B.F. Laser Capture Microdissection (LCM) and Comparative Microarray Expression Analysis of Syncytial Cells Isolated from Incompatible and Compatible Soybean (Glycine max) Roots Infected by the Soybean Cyst Nematode (Heterodera glycines). Planta 2007, 226, 1389–1409. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Weerasooriya, D.K.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Dissecting the Economic Impact of Soybean Diseases in the United States over Two Decades. PLoS ONE 2020, 15, e0231141. [Google Scholar] [CrossRef] [Green Version]
- McCarville, M.T.; Marett, C.C.; Mullaney, M.P.; Gebhart, G.D.; Tylka, G.L. Increase in Soybean Cyst Nematode Virulence and Reproduction on Resistant Soybean Varieties in Iowa from 2001 to 2015 and the Effects on Soybean Yields. Plant Health Prog. 2017, 18, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Boyd, L.A.; Ridout, C.; O’Sullivan, D.M.; Leach, J.E.; Leung, H. Plant-Pathogen Interactions: Disease Resistance in Modern Agriculture. Trends Genet. 2013, 29, 233–240. [Google Scholar] [CrossRef]
- Peyraud, R.; Dubiella, U.; Barbacci, A.; Genin, S.; Raffaele, S.; Roby, D. Advances on Plant–Pathogen Interactions from Molecular toward Systems Biology Perspectives. Plant J. 2017, 90, 720–737. [Google Scholar] [CrossRef]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI Crosstalk: An Integrative View of Plant Immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
- Gupta, R.; Lee, S.E.; Agrawal, G.K.; Rakwal, R.; Park, S.; Wang, Y.; Kim, S.T. Understanding the Plant-Pathogen Interactions in the Context of Proteomics-Generated Apoplastic Proteins Inventory. Front. Plant Sci. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Concibido, V.; Lange, D.; Denny, R.; Orf, J.; Young, N. Genome Mapping of Soybean Cyst Nematode Resistance Genes in ‘Peking’, PI 90763, and PI 88788 Using DNA Markers. Crop Sci. 1997, 37, 258–264. [Google Scholar] [CrossRef]
- Glover, K.D.; Wang, D.; Arelli, P.R.; Carlson, S.R.; Cianzio, S.R.; Diers, B.W. Near Isogenic Lines Confirm a Soybean Cyst Nematode Resistance Gene from PI 88788 on Linkage Group J. Crop Sci. 2004, 44, 936–941. [Google Scholar] [CrossRef]
- Kim, M.; Hyten, D.L.; Bent, A.F.; Diers, B.W. Fine Mapping of the SCN Resistance Locus Rhg1-b from PI 88788. Plant Genome 2010, 3, 81–89. [Google Scholar] [CrossRef]
- Liu, S.; Kandoth, P.K.; Warren, S.D.; Yeckel, G.; Heinz, R.; Alden, J.; Yang, C.; Jamai, A.; El-Mellouki, T.; Juvale, P.S.; et al. A Soybean Cyst Nematode Resistance Gene Points to a New Mechanism of Plant Resistance to Pathogens. Nature 2012, 492, 256–260. [Google Scholar] [CrossRef]
- Cook, D.E.; Lee, T.G.; Guo, X.; Melito, S.; Wang, K.; Bayless, A.M.; Wang, J.; Hughes, T.J.; Willis, D.K.; Clemente, T.E.; et al. Copy Number Variation of Multiple Genes at Rhg1 Mediates Nematode Resistance in Soybean. Science 2012, 338, 1206–1209. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Kandoth, P.K.; Lakhssassi, N.; Kang, J.; Colantonio, V.; Heinz, R.; Yeckel, G.; Zhou, Z.; Bekal, S.; Dapprich, J.; et al. The Soybean GmSNAP18 Gene Underlies Two Types of Resistance to Soybean Cyst Nematode. Nat. Commun. 2017, 8, 14822. [Google Scholar] [CrossRef]
- Bayless, A.M.; Zapotocny, R.W.; Han, S.; Grunwald, D.J.; Amundson, K.K.; Bent, A.F. The Rhg1-a (Rhg1 Low-Copy) Nematode Resistance Source Harbors a Copia-Family Retrotransposon within the Rhg1-Encoded α-SNAP Gene. Plant Direct 2019, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.; Baidoo, R. Current Research Status of Heterodera glycines Resistance and Its Implication on Soybean Breeding. Engineering 2018, 4, 534–541. [Google Scholar] [CrossRef]
- Shaibu, A.S.; Li, B.; Zhang, S.; Sun, J. Soybean Cyst Nematode-Resistance: Gene Identification and Breeding Strategies. Crop J. 2020, 8, 892–904. [Google Scholar] [CrossRef]
- Mitchum, M.G. Soybean Resistance to the Soybean Cyst Nematode Heterodera glycines: An Update. Phytopathology 2016, 106, 1444–1450. [Google Scholar] [CrossRef] [Green Version]
- Bayless, A.M.; Zapotocny, R.W.; Grunwald, D.J.; Amundson, K.K.; Diers, B.W.; Bent, A.F. An Atypical N-Ethylmaleimide Sensitive Factor Enables the Viability of Nematode-Resistant Rhg1 Soybeans. Proc. Natl. Acad. Sci. USA 2018, 115, E4512–E4521. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zielinski, R.E.; Hudson, M.E. T-SNAREs Bind the Rhg1 α-SNAP and Mediate Soybean Cyst Nematode Resistance. Plant J. 2020, 104, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Austin, H.W.; McNeece, B.T.; Sharma, K.; Niraula, P.M.; Lawrence, K.S.; Klink, V.P. An Expanded Role of the SNARE-Containing Regulon as It Relates to the Defense Process That Glycine max Has to Heterodera glycines. J. Plant Interact. 2019, 14, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Pant, S.R.; McNeece, B.T.; Lawrence, G.W.; Klink, V.P. Co-Regulation of the Glycine max Soluble N-Ethylmaleimide-Sensitive Fusion Protein Attachment Protein Receptor (SNARE)-Containing Regulon Occurs during Defense to a Root Pathogen. J. Plant Interact. 2016, 11, 74–93. [Google Scholar] [CrossRef]
- Wang, R.; Deng, M.; Yang, C.; Yu1, Q.; Zhang1, L.; Zhu1, Q.; Guo, X. A Qa-SNARE Complex Protein Contributes to Soybean Cyst Nematode Resistance through Regulation of Mitochondria-Mediated Cell Death. J. Exp. Bot. 2021, 72, 7145–7162. [Google Scholar] [CrossRef] [PubMed]
- Lawaju, B.R.; Niraula, P.; Lawrence, G.W.; Lawrence, K.S.; Klink, V.P. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. Front. Plant Sci. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Sharma, K.; Niraula, P.M.; Troell, H.A.; Adhikari, M.; Alshehri, H.A.; Alkharouf, N.W.; Lawrence, K.S.; Klink, V.P. Exocyst Components Promote an Incompatible Interaction between Glycine max (Soybean) and Heterodera glycines (the Soybean Cyst Nematode). Sci. Rep. 2020, 10, 1–22. [Google Scholar] [CrossRef]
- McNeece, B.T.; Sharma, K.; Lawrence, G.W.; Lawrence, K.S.; Klink, V.P. The Mitogen Activated Protein Kinase (MAPK) Gene Family Functions as a Cohort during the Glycine max Defense Response to Heterodera glycines. Plant Physiol. Biochem. 2019, 137, 25–41. [Google Scholar] [CrossRef]
- Niraula, P.M.; Sharma, K.; McNeece, B.T.; Troell, H.A.; Darwish, O.; Alkharouf, N.W.; Lawrence, K.S.; Klink, V.P. Mitogen Activated Protein Kinase (MAPK)Regulated Genes with Predicted Signal Peptides Function in the Glycine max Defense Response to the Root Pathogenic Nematode Heterodera glycines. PLoS ONE 2020, 15, e0241678. [Google Scholar] [CrossRef]
- Niraula, P.M.; Zhang, X.; Jeremic, D.; Lawrence, K.S.; Klink, V.P. Xyloglucan Endotransglycosylase/Hydrolase Increases Tightly-Bound Xyloglucan and Chain Number but Decreases Chain Length Contributing to the Defense Response That Glycine max Has to Heterodera glycines. PLoS ONE 2021, 16, e0244305. [Google Scholar] [CrossRef]
- Dong, J.; Hudson, M.E. WI12Rhg1 Interacts with DELLAs and Mediates Soybean Cyst Nematode Resistance through Hormone Pathways. Plant Biotechnol. J. 2021, 20, 283–296. [Google Scholar] [CrossRef]
- Achard, P.; Cheng, H.; De Grauwe, L.; Decat, J.; Schoutteten, H.; Moritz, T.; Van Der Straeten, D.; Peng, J.; Harberd, N.P. Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science 2006, 311, 91–94. [Google Scholar] [CrossRef]
- Gomi, K.; Matsuoka, M. Gibberellin Signalling Pathway. Curr. Opin. Plant Biol. 2003, 6, 489–493. [Google Scholar] [CrossRef]
- Kandoth, P.K.; Liu, S.; Prenger, E.; Ludwig, A.; Lakhssassi, N.; Heinz, R.; Zhou, Z.; Howland, A.; Gunther, J.; Eidson, S.; et al. Systematic Mutagenesis of Serine Hydroxymethyltransferase Reveals an Essential Role in Nematode Resistance. Plant Physiol. 2017, 175, 1370–1380. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Lee, T.G.; Rosa, D.P.; Hudson, M.; Diers, B.W. Impact of Rhg1 Copy Number, Type, and Interaction with Rhg4 on Resistance to Heterodera glycines in Soybean. Theor. Appl. Genet. 2016, 129, 2403–2412. [Google Scholar] [CrossRef]
- Patil, G.B.; Lakhssassi, N.; Wan, J.; Song, L.; Zhou, Z.; Klepadlo, M.; Vuong, T.D.; Stec, A.O.; Kahil, S.S.; Colantonio, V.; et al. Whole-Genome Re-Sequencing Reveals the Impact of the Interaction of Copy Number Variants of the Rhg1 and Rhg4 Genes on Broad-Based Resistance to Soybean Cyst Nematode. Plant Biotechnol. J. 2019, 17, 1595–1611. [Google Scholar] [CrossRef] [Green Version]
- Korasick, D.A.; Kandoth, P.K.; Tanner, J.J.; Mitchum, M.G.; Beamer, L.J. Impaired Folate Binding of Serine Hydroxymethyltransferase 8 from Soybean Underlies Resistance to the Soybean Cyst Nematode. J. Biol. Chem. 2020, 295, 3708–3718. [Google Scholar] [CrossRef]
- Lakhssassi, N.; Piya, S.; Bekal, S.; Liu, S.; Zhou, Z.; Bergounioux, C.; Miao, L.; Meksem, J.; Lakhssassi, A.; Jones, K.; et al. A Pathogenesis-Related Protein GmPR08-Bet VI Promotes a Molecular Interaction between the GmSHMT08 and GmSNAP18 in Resistance to Heterodera glycines. Plant Biotechnol. J. 2020, 18, 1810–1829. [Google Scholar] [CrossRef] [Green Version]
- Lakhssassi, N.; Patil, G.; Piya, S.; Zhou, Z.; Baharlouei, A.; Kassem, M.A.; Lightfoot, D.A.; Hewezi, T.; Barakat, A.; Nguyen, H.T.; et al. Genome Reorganization of the GmSHMT Gene Family in Soybean Showed a Lack of Functional Redundancy in Resistance to Soybean Cyst Nematode. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jain, S. The Pathogenesis Related Class 10 Proteins in Plant Defense against Biotic and Abiotic Stresses. Adv. Plants Agric. Res. 2015, 2, 305–314. [Google Scholar] [CrossRef]
- Lakhssassi, N.; Piya, S.; Knizia, D.; El Baze, A.; Cullen, M.A.; Meksem, J.; Lakhssassi, A.; Hewezi, T.; Meksem, K. Mutations at the Serine Hydroxymethyltransferase Impact Its Interaction with a Soluble Nsf Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines 2020, 8, 349. [Google Scholar] [CrossRef]
- Miraeiz, E.; Chaiprom, U.; Afsharifar, A.; Karegar, A.; Drnevich, J.M.; Hudson, M.E. Early Transcriptional Responses to Soybean Cyst Nematode HG Type 0 Show Genetic Differences among Resistant and Susceptible Soybeans. Theor. Appl. Genet. 2020, 133, 87–102. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Q.; Liu, S.; Wang, J.; Peng, D.; Kong, L. Combining Targeted Metabolite Analyses and Transcriptomics to Reveal the Specific Chemical Composition and Associated Genes in the Incompatible Soybean Variety PI437654 Infected with Soybean Cyst Nematode HG1.2.3.5.7. BMC Plant Biol. 2021, 21, 217. [Google Scholar] [CrossRef]
- Tirnaz, S.; Batley, J. Epigenetics: Potentials and Challenges in Crop Breeding. Mol. Plant 2019, 12, 1309–1311. [Google Scholar] [CrossRef]
- Rambani, A.; Pantalone, V.; Yang, S.; Rice, J.H.; Song, Q.; Mazarei, M.; Arelli, P.R.; Meksem, K.; Stewart, C.N.; Hewezi, T. Identification of Introduced and Stably Inherited DNA Methylation Variants in Soybean Associated with Soybean Cyst Nematode Parasitism. New Phytol. 2020, 227, 168–184. [Google Scholar] [CrossRef]
- Rambani, A.; Hu, Y.; Piya, S.; Long, M.; Rice, J.H.; Pantalone, V.; Hewezi, T. Identification of Differentially Methylated MiRNA Genes during Compatible and Incompatible Interactions between Soybean and Soybean Cyst Nematode. Mol. Plant Microbe Interact. 2020, 33, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Abeysekara, N.S.; Knight, J.M.; Liu, M.; Dong, J.; Hudson, M.E.; Bhattacharyya, M.K.; Cianzio, S.R. Mapping of New Quantitative Trait Loci for Sudden Death Syndrome and Soybean Cyst Nematode Resistance in Two Soybean Populations. Theor. Appl. Genet. 2018, 131, 1047–1062. [Google Scholar] [CrossRef] [PubMed]
- Ravelombola, W.S.; Qin, J.; Shi, A.; Nice, L.; Bao, Y.; Lorenz, A.; Orf, J.H.; Young, N.D.; Chen, S. Genome-Wide Association Study and Genomic Selection for Soybean Chlorophyll Content Associated with Soybean Cyst Nematode Tolerance. BMC Genom. 2019, 20, 904. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Steketee, C.J.; Boehm, J.D.; Noe, J.; Li, Z. Genome-Wide Association Analysis Pinpoints Additional Major Genomic Regions Conferring Resistance to Soybean Cyst Nematode (Heterodera glycines Ichinohe). Front. Plant Sci. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Webb, D.M.; Baltazar, B.M.; Rao-Arelli, A.P.; Schupp, J.; Clayton, K.; Keim, P.; Beavis, W.D. Genetic Mapping of Soybean Cyst Nematode Race-3 Resistance Loci in the Soybean PI 437.654. Theor. Appl. Genet. 1995, 91, 574–581. [Google Scholar] [CrossRef]
- Zhao, X.; Teng, W.; Li, Y.; Liu, D.; Cao, G.; Li, D.; Qiu, L.; Zheng, H.; Han, Y.; Li, W. Loci and Candidate Genes Conferring Resistance to Soybean Cyst Nematode HG Type 2.5.7. BMC Genom. 2017, 18, 462. [Google Scholar] [CrossRef] [Green Version]
- St-Amour, V.T.B.; Mimee, B.; Torkamaneh, D.; Jean, M.; Belzile, F.; O’Donoughue, L.S. Characterizing Resistance to Soybean Cyst Nematode in PI 494182, an Early Maturing Soybean Accession. Crop Sci. 2020, 60, 2053–2069. [Google Scholar] [CrossRef]
- Guo, W.; Chen, J.S.; Zhang, F.; Li, Z.Y.; Chen, H.F.; Zhang, C.J.; Chen, L.M.; Yuan, S.L.; Li, R.; Cao, D.; et al. Characterization of Pingliang Xiaoheidou (ZDD 11047), a Soybean Variety with Resistance to Soybean Cyst Nematode Heterodera glycines. Plant Mol. Biol. 2020, 103, 253–267. [Google Scholar] [CrossRef]
- Zhou, L.; Song, L.; Lian, Y.; Ye, H.; Usovsky, M.; Wan, J.; Vuong, T.D.; Nguyen, H.T. Genetic Characterization of QSCN10 from an Exotic Soybean Accession PI 567516C Reveals a Novel Source Conferring Broad-Spectrum Resistance to Soybean Cyst Nematode. Theor. Appl. Genet. 2021, 134, 859–874. [Google Scholar] [CrossRef]
- Young, L.D. Heterodera glycines Populations Selected for Repro- Duction on Hartwig Soybean. J. Nematol. 1998, 30, 523. [Google Scholar]
- Vuong, T.D.; Sleper, D.A.; Shannon, J.G.; Nguyen, H.T. Novel Quantitative Trait Loci for Broad-Based Resistance to Soybean Cyst Nematode (Heterodera glycines Ichinohe) in Soybean PI 567516C. Theor. Appl. Genet. 2010, 121, 1253–1266. [Google Scholar] [CrossRef]
- Zhao, C.; Takeshima, R.; Zhu, J.; Xu, M.; Sato, M.; Watanabe, S.; Kanazawa, A.; Liu, B.; Kong, F.; Yamada, T.; et al. A Recessive Allele for Delayed Flowering at the Soybean Maturity Locus E9 Is a Leaky Allele of FT2a, a FLOWERING LOCUS T Ortholog. BMC Plant Biol. 2016, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Arelli, P.R.; Young, L.D.; Concibido, V.C. Inheritance of Resistance in Soybean PI 567516C to LY1 Nematode Population Infecting Cv. Hartwig. Euphytica 2009, 165, 1–4. [Google Scholar] [CrossRef]
- Jiao, Y.; Vuong, T.D.; Liu, Y.; Li, Z.; Noe, J.; Robbins, R.T.; Joshi, T.; Xu, D.; Shannon, J.G.; Nguyen, H.T. Identification of Quantitative Trait Loci Underlying Resistance to Southern Root-Knot and Reniform Nematodes in Soybean Accession PI 567516C. Mol. Breed. 2015, 35, 131. [Google Scholar] [CrossRef] [Green Version]
- Usovsky, M.; Ye, H.; Vuong, T.D.; Patil, G.B.; Wan, J.; Zhou, L.; Nguyen, H.T. Fine-Mapping and Characterization of QSCN18, a Novel QTL Controlling Soybean Cyst Nematode Resistance in PI 567516C. Theor. Appl. Genet. 2021, 134, 621–631. [Google Scholar] [CrossRef]
- Fritz, L.A.; Arelli, P.R.; Mengistu, A. Registration of Three Soybean Germplasms with Novel Cyst Nematode Resistance from PI 567516C. J. Plant Regist. 2021, 15, 588–599. [Google Scholar] [CrossRef]
- Jiang, H.; Bu, F.; Tian, L.; Sun, Q.; Bao, D.; Zhao, X.; Han, Y. RNA-Seq-Based Identification of Potential Resistance Mechanism against the Soybean Cyst Nematode (Heterodera glycines) HG Type 0 in Soybean (Glycine max) Cv. Dongnong L-204. Crop Pasture Sci. 2020, 71, 539–551. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, L.; Bu, F.; Sun, Q.; Zhao, X.; Han, Y. RNA-Seq-Based Identification of Potential Resistance Genes against the Soybean Cyst Nematode (Heterodera glycines) HG Type 1.2.3.5.7 in ‘Dongnong L-10.’ Physiol. Mol. Plant Pathol. 2021, 114, 101627. [Google Scholar] [CrossRef]
- Kofsky, J.; Zhang, H.; Song, B.-H. The Untapped Genetic Reservoir: The Past, Current, and Future Applications of the Wild Soybean (Glycine soja). Front. Plant Sci. 2018, 9, 949. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Song, Q.; Griffin, J.D.; Song, B.H. Genetic Architecture of Wild Soybean (Glycine soja) Response to Soybean Cyst Nematode (Heterodera glycines). Mol. Genet. Genom. 2017, 292, 1257–1265. [Google Scholar] [CrossRef]
- Zhang, H.; Song, B.H. RNA-Seq Data Comparisons of Wild Soybean Genotypes in Response to Soybean Cyst Nematode (Heterodera glycines). Genom. Data 2017, 14, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Davis, E.L.; Wang, J.; Griffin, J.D.; Kofsky, J.; Song, B.H. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) Hg Type 2.5.7 in Wild Soybean (Glycine soja). Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kofsky, J.; Zhang, H.; Song, B.-H. Novel Resistance Strategies to Soybean Cyst Nematode (SCN) in Wild Soybean. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Qin, R.; Li, C.; Liu, C.; Jiang, Y.; Yu, J.; Chang, D.; Roberts, P.A.; Chen, Q.; Wang, C. Transgressive Resistance to Heterodera glycines in Chromosome Segment Substitution Lines Derived from Susceptible Soybean Parents. Plant Genome 2021, 2020, 1–20. [Google Scholar] [CrossRef]
- Lin, J.; Mazarei, M.; Zhao, N.; Hatcher, C.N.; Wuddineh, W.A.; Rudis, M.; Tschaplinski, T.J.; Pantalone, V.R.; Arelli, P.R.; Hewezi, T.; et al. Transgenic Soybean Overexpressing GmSAMT1 Exhibits Resistance to Multiple-HG Types of Soybean Cyst Nematode Heterodera glycines. Plant Biotechnol. J. 2016, 14, 2100–2109. [Google Scholar] [CrossRef]
- Tian, B.; Li, J.; Vodkin, L.O.; Todd, T.C.; Finer, J.J.; Trick, H.N. Host-Derived Gene Silencing of Parasite Fitness Genes Improves Resistance to Soybean Cyst Nematodes in Stable Transgenic Soybean. Theor. Appl. Genet. 2019, 132, 2651–2662. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Mutti, J.; Young, J.K.; Yang, M.; Schroder, M.; Lenderts, B.; Wang, L.; Peterson, D.; St. Clair, G.; Jones, S.; et al. Complex Trait Loci in Maize Enabled by CRISPR-Cas9 Mediated Gene Insertion. Front. Plant Sci. 2020, 11, 535. [Google Scholar] [CrossRef]
- Zheng, N.; Li, T.; Dittman, J.D.; Su, J.; Li, R.; Gassmann, W.; Peng, D.; Whitham, S.A.; Liu, S.; Yang, B. CRISPR/Cas9-Based Gene Editing Using Egg Cell-Specific Promoters in Arabidopsis and Soybean. Front. Plant Sci. 2020, 11, 800. [Google Scholar] [CrossRef]
- Kahn, T.W.; Duck, N.B.; McCarville, M.T.; Schouten, L.C.; Schweri, K.; Zaitseva, J.; Daum, J. A Bacillus thuringiensis Cry Protein Controls Soybean Cyst Nematode in Transgenic Soybean Plants. Nat. Commun. 2021, 12, 3380. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Ayliffe, M.; Sørensen, C.K. Plant Nonhost Resistance: Paradigms and New Environments. Curr. Opin. Plant Biol. 2019, 50, 104–113. [Google Scholar] [CrossRef]
- Kambakam, S.; Ngaki, M.N.; Sahu, B.B.; Kandel, D.R.; Singh, P.; Sumit, R.; Swaminathan, S.; Rajesh, M.K.; Bhattacharyya, M.K. Arabidopsis Nonhost Resistance PSS30 Gene Enhances Broad-spectrum Disease Resistance in the Soybean Cultivar Williams 82. Plant J. 2021, 107, 1432–1446. [Google Scholar] [CrossRef]
- Song, W.; Qi, N.; Liang, C.; Duan, F.; Zhao, H. Soybean Root Transcriptome Profiling Reveals a Nonhost Resistant Response during Heterodera glycines Infection. PLoS ONE 2019, 14, e0217130. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Lijie, C.; Xiaofeng, Z.H.U.; Yuanyuan, W.; Yuxi, D. Screening and Identification of Bacterium to Induce Resistance of Soybean against Heterodera glycines. Chinese J. Biol. Control 2013, 29, 661. [Google Scholar]
- Kang, W.; Zhu, X.; Wang, Y.; Chen, L.; Duan, Y. Transcriptomic and Metabolomic Analyses Reveal That Bacteria Promote Plant Defense during Infection of Soybean Cyst Nematode in Soybean. BMC Plant Biol. 2018, 18, 86. [Google Scholar] [CrossRef] [Green Version]
- Kalwa, U.; Legner, C.; Wlezien, E.; Tylka, G.; Pandey, S. New Methods of Removing Debris and Highthroughput Counting of Cyst Nematode Eggs Extracted from Field Soil. PLoS ONE 2019, 14, e0223386. [Google Scholar] [CrossRef]
- Akintayo, A.; Tylka, G.L.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. A Deep Learning Framework to Discern and Count Microscopic Nematode Eggs. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Legner, C.M.; Tylka, G.L.; Pandey, S. Robotic Agricultural Instrument for Automated Extraction of Nematode Cysts and Eggs from Soil to Improve Integrated Pest Management. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Sivasankara Pillai, S.; Dandurand, L.-M. Potato Cyst Nematode Egg Viability Assessment and Preparasitic Juvenile Screening Using a Large Particle Flow Cytometer and Sorter. Phytopathology 2021, 111, 713–719. [Google Scholar] [CrossRef]
- Neupane, S.; Purintun, J.; Mathew, F.; Varenhorst, A.; Nepal, M. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. Plants 2019, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Hewezi, T. Epigenetic Mechanisms in Nematode—Plant Interactions. Annu. Rev. Phytopathol. 2020, 58, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Ohri, P.; Bhardwaj, R. Genetic Toolbox and Regulatory Circuits of Plant-Nematode Associations. Plant Physiol. Biochem. 2021, 165, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ste-Croix, D.T.; St-Marseille, A.F.G.; Lord, E.; Bélanger, R.R.; Brodeur, J.; Mimee, B. Genomic Profiling of Virulence in the Soybean Cyst Nematode Using Single-Nematode Sequencing. Phytopathology 2021, 111, 137–148. [Google Scholar] [CrossRef] [PubMed]
Population/Study | QTL/SNP | Chromosome | Markers, Regions and/or SNPs | Ref. |
---|---|---|---|---|
AX19286 | SCN-3 | 08 | Satt470–Satt228/116.7–154.1 (cM) | [53] |
AX19287 | SCN-5 | 11 | Satt638–Satt197/37.7–46.4 (cM) | [53] |
GWAS | Gm03_3,334, 303_C_A | 03 | 3,334,303 (bp) | [54] |
GWAS | Gm03_39,574, 966_T_C | 03 | 39,574,966 (bp) | [54] |
GWAS | Gm06_50,593, 128_T_G | 06 | 50,593,128 (bp) | [54] |
GWAS | ss715606985 | 10 | 40,672,699 (bp) | [55] |
PI 494182 | CSqSCN-4 | 07 | 19.8–22.9(cM) | [58] |
Pingliang xiaoheidou | qSCN-PL10 | 10 | Marker1015405–Marker1014475 | [59] |
PI 567516C | qSCN10 | 10 | 42,430,713–42,809,800 (bp) | [60] |
PI 567516C | qSCN18 | 18 | 53,086,270–53,635,461 (bp) | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nissan, N.; Mimee, B.; Cober, E.R.; Golshani, A.; Smith, M.; Samanfar, B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. Biology 2022, 11, 211. https://doi.org/10.3390/biology11020211
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. Biology. 2022; 11(2):211. https://doi.org/10.3390/biology11020211
Chicago/Turabian StyleNissan, Nour, Benjamin Mimee, Elroy R. Cober, Ashkan Golshani, Myron Smith, and Bahram Samanfar. 2022. "A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode" Biology 11, no. 2: 211. https://doi.org/10.3390/biology11020211
APA StyleNissan, N., Mimee, B., Cober, E. R., Golshani, A., Smith, M., & Samanfar, B. (2022). A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. Biology, 11(2), 211. https://doi.org/10.3390/biology11020211