Should All Fractions of the Boar Ejaculate Be Prepared for Insemination Rather Than Using the Sperm Rich Only?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Boars and Semen Collection
2.3. Seminal Dose Preparation and Conservation
2.4. Sperm Analysis
2.4.1. Motility Analysis by CASA
2.4.2. Viability Assay
2.4.3. Acrosome Status
2.4.4. Mitochondrial Activity
2.4.5. DNA Fragmentation
2.5. Estrus Detection and Artificial Insemination (AI)
2.6. Return to Estrus and Pregnancy Diagnosis
2.7. Farrowing and Litter Performance
2.8. Offspring Growth Parameters
2.9. Blood Collection and Analysis
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez Rodriguez, A.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Martínez, H.; Kvist, U.; Saravia, F.; Wallgren, M.; Johannisson, A.; Sanz, L.; Peña, F.J.; Martínez, E.A.; Roca, J.; Vázquez, J.M.; et al. The physiological roles of the boar ejaculate. Soc. Reprod. Fertil. Suppl. 2009, 66, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Garner, D.L.; Hafez, E.S.E. Spermatozoa and seminal plasma. In Reproduction in Farm Animals; Hafez, B., Hafez, E.S.E., Eds.; Lippincott Williams & Wilkin: Baltimore, MD, USA, 2000; pp. 96–109. ISBN 9781119265306. [Google Scholar]
- Schulze, M.; Ammon, C.; Schaefer, J.; Luther, A.M.; Jung, M.; Waberski, D. Impact of different dilution techniques on boar sperm quality and sperm distribution of the extended ejaculate. Anim. Reprod. Sci. 2017, 182, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Henning, H.; Rüdiger, K.; Wallner, U.; Waberski, D. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions. Theriogenology 2013, 80, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Rüdiger, K.; Waberski, D. Rotation of Boar Semen Doses During Storage Affects Sperm Quality. Reprod. Domest. Anim. 2015, 50, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, A.F.; Luther, A.M.; Jakop, U.; Schulze, M.; Bortolozzo, F.P.; Waberski, D. Factors influencing the response of spermatozoa to agitation stress: Implications for transport of extended boar semen. Theriogenology 2021, 175, 54–60. [Google Scholar] [CrossRef]
- Wiebke, M.; Hensel, B.; Nitsche-Melkus, E.; Jung, M.; Schulze, M. Cooled storage of semen from livestock animals (part I): Boar, bull, and stallion. Anim. Reprod. Sci. 2021, 106822. [Google Scholar] [CrossRef]
- Höfner, L.; Luther, A.M.; Waberski, D. The role of seminal plasma in the liquid storage of spermatozoa. Anim. Reprod. Sci. 2020, 220, 106290. [Google Scholar] [CrossRef]
- Aneas, S.B.; Gary, B.G.; Bouvier, B.P. Collectis® automated boar collection technology. Theriogenology 2008, 70, 1368–1373. [Google Scholar] [CrossRef]
- Lellbach, C.; Leiding, C.; Rath, D.; Staehr, B. Effects of automated collection methods on semen quality and economic efficiency of boar semen production. Theriogenology 2008, 70, 1389. [Google Scholar] [CrossRef]
- Khalifa, T.; Rekkas, C.; Samartzi, F.; Lymberopoulos, A.; Kousenidis, K.; Dovenski, T. Highlights on artificial insemination (AI) technology in the pigs. Maced. Vet. Rev. 2014, 37, 5–34. [Google Scholar] [CrossRef] [Green Version]
- Perez-Patiño, C.; Barranco, I.; Parrilla, I.; Valero, M.L.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J. Proteom. 2016, 142, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, L.; Wasilewska-Sakowska, K.; Zasiadczyk, Ł.; Piątkowska, E.; Karpiesiuk, K. Fractionated Seminal Plasma of Boar Ejaculates Analyzed by LC-MS/MS: Its Effects on Post-Thaw Semen Quality. Genes 2021, 12, 1574. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.M.; Waberski, D. In vitro aging of boar spermatozoa: Role of sperm proximity and seminal plasma. Andrology 2019, 7, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Leal, D.F.; Torres, M.A.; Ravagnani, G.M.; Martins, S.M.M.K.; Meirelles, F.V.; de Andrade, A.F.C. Absence of seminal plasma from sperm-rich fraction decreases boar sperm quality characteristics during the course of liquid storage. Anim. Reprod. Sci. 2018, 198, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Pavaneli, A.P.P.; da Silva Passarelli, M.; de Freitas, F.V.; Ravagnani, G.M.; Torres, M.A.; Martins, S.M.M.K.; Yeste, M.; de Andrade, A.F.C. Removal of seminal plasma prior to liquid storage of boar spermatozoa: A practice that can improve their fertilizing ability. Theriogenology 2019, 125, 79–86. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Llamas-López, P.J.; Jacome, M.A.; Sarrias-Gil, L.; López Albors, O. Morphological changes in the porcine cervix: A comparison between nulliparous and multiparous sows with regard to post-cervical artificial insemination. Theriogenology 2019, 127, 120–129. [Google Scholar] [CrossRef]
- Waberski, D.; Luther, A.M.; Grünther, B.; Jäkel, H.; Henning, H.; Vogel, C.; Peralta, W.; Weitze, K.F. Sperm function in vitro and fertility after antibiotic-free, hypothermic storage of liquid preserved boar semen. Sci. Rep. 2019, 9, 14748. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Mellagi, A.P.G.; Ulguim, R.R.; Hernández-Caravaca, I.; Llamas-López, P.J.; Bortolozzo, F.P. Post-cervical artificial insemination in porcine: The technique that came to stay. Theriogenology 2019, 129, 37–45. [Google Scholar] [CrossRef]
- Schjenken, J.E.; Robertson, S.A. The Female Response to Seminal Fluid. Physiol. Rev. 2020, 100, 1077–1117. [Google Scholar] [CrossRef]
- Luongo, C.; González-Brusi, L.; Cots-Rodríguez, P.; Izquierdo-Rico, M.J.; Avilés, M.; García-Vázquez, F.A. Sperm Proteome after Interaction with Reproductive Fluids in Porcine: From the Ejaculation to the Fertilization Site. Int. J. Mol. Sci. 2020, 21, 6060. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rodríguez, M.; Martinez, C.A.; Wright, D.; Rodríguez-Martinez, H. The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci. Rep. 2020, 10, 5061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Rodriguez, M.; Atikuzzaman, M.; Venhoranta, H.; Wright, D.; Rodriguez-Martinez, H. Expression of immune regulatory genes in the porcine internal genital tract is differentially triggered by spermatozoa and seminal plasma. Int. J. Mol. Sci. 2019, 20, 513. [Google Scholar] [CrossRef] [Green Version]
- Bogacki, M.; Jalali, B.M.; Wieckowska, A.; Kaczmarek, M.M. Prolonged Effect of Seminal Plasma on Global Gene Expression in Porcine Endometrium. Genes 2020, 11, 1302. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, A.S.; Snijders, A.P.L.; Sostaric, E.; Aflatoonian, R.; Vazquez, J.L.; Vazquez, J.M.; Roca, J.; Martinez, E.A.; Wright, P.C.; Fazeli, A. Modulation of the oviductal environment by gametes. J. Proteome Res. 2007, 6, 4656–4666. [Google Scholar] [CrossRef]
- Bromfield, J.J.; Schjenken, J.E.; Chin, P.Y.; Care, A.S.; Jasper, M.J.; Robertson, S.A. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. USA 2014, 111, 2200–2205. [Google Scholar] [CrossRef] [Green Version]
- Martinez, C.A.; Cambra, J.M.; Gil, M.A.; Parrilla, I.; Alvarez-Rodriguez, M.; Rodriguez-Martinez, H.; Cuello, C.; Martinez, E.A. Seminal Plasma Induces Overexpression of Genes Associated with Embryo Development and Implantation in Day-6 Porcine Blastocysts. Int. J. Mol. Sci. 2020, 21, 3662. [Google Scholar] [CrossRef]
- Luongo, C.; Garrappa, G.; Llamas-López, P.J.; Rodríguez-Tobón, E.; López-Úbeda, R.; Abril-Sánchez, S.; García-Vázquez, F.A. Effect of boar seminal dose type (cervical compared with post-cervical insemination) on cooling curve, sperm quality and storage time. Anim. Reprod. Sci. 2020, 212, 106236. [Google Scholar] [CrossRef]
- Sebastián-Abad, B.; Llamas-López, P.J.; García-Vázquez, F.A. Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses. Vet. Sci. 2021, 8, 292. [Google Scholar] [CrossRef]
- Dziekońska, A.; Świader, K.; Koziorowska-Gilun, M.; Mietelska, K.; Zasiadczyk, L.; Kordan, W. Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Pol. J. Vet. Sci. 2017, 20, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Han, Q.; Ma, C.; Wang, Y.; Zhang, P.; Li, C.; Cheng, X.; Xu, H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front. Cell Dev. Biol. 2021, 9, 1845. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.M.; Aryal, U.K.; Sobreira, T.; Minton, A.M.; Casey, T.; Stewart, K.R. Shotgun proteome analysis of seminal plasma differentiate boars by reproductive performance. Theriogenology 2020, 157, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Kawano, N.; Araki, N.; Yoshida, K.; Hibino, T.; Ohnami, N.; Makino, M.; Kanai, S.; Hasuwa, H.; Yoshida, M.; Miyado, K.; et al. Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proc. Natl. Acad. Sci. USA 2014, 111, 4145–4150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvete, J.J.; Ensslin, M.; Mburu, J.; Lborra, A.; Martínez, P.; Adermann, K.; Waberski, D.; Sanz, L.; Töpfer-Petersen, E.; Weitze, K.F.; et al. Monoclonal antibodies against boar sperm zona pellucida-binding protein awn-1. Characterization of a continuous antigenic determinant and immunolocalization of AWN epitopes in inseminated sows. Biol. Reprod. 1997, 57, 735–742. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Saravia, F.; Wallgren, M.; Martinez, E.A.; Sanz, L.; Roca, J.; Vazquez, J.M.; Calvete, J.J. Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. J. Reprod. Immunol. 2010, 84, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Martinez, H.; Martinez, E.A.; Calvete, J.J.; Peña Vega, F.J.; Roca, J. Seminal Plasma: Relevant for Fertility? Int. J. Mol. Sci. 2021, 22, 4368. [Google Scholar] [CrossRef]
- O’Leary, S.; Armstrong, D.T.; Robertson, S.A. Transforming growth factor-β (TGFβ) in porcine seminal plasma. Reprod. Fertil. Dev. 2011, 23, 748–758. [Google Scholar] [CrossRef]
- O’Leary, S.; Jasper, M.J.; Warnes, G.M.; Armstrong, D.T.; Robertson, S.A. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 2004, 128, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Otero, Y.; Fernández-López, P.; Gil-Caballero, S.; Fernandez-Fuertes, B.; Bonet, S.; Barranco, I.; Yeste, M. 1 H Nuclear Magnetic Resonance of Pig Seminal Plasma Reveals Intra-Ejaculate Variation in Metabolites. Biomolecules 2020, 10, 906. [Google Scholar] [CrossRef]
- Hernández-Caravaca, I.; Izquierdo-Rico, M.J.; Matás, C.; Carvajal, J.A.; Vieira, L.; Abril, D.; Soriano-úbeda, C.; García-Vázquez, F.A. Reproductive performance and backflow study in cervical and post-cervical artificial insemination in sows. Anim. Reprod. Sci. 2012, 136, 14–22. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Hernández-Caravaca, I.; Yánez-Quintana, W.; Matás, C.; Soriano-Úbeda, C.; Izquierdo-Rico, M.J. Morphometry of boar sperm head and flagellum in semen backflow after insemination. Theriogenology 2015, 84, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Mühldorfer, K.; Schröter, F.; Schäfer, J.; Greber, K.; Jung, M.; Schulze, M. Low temperature preservation of porcine semen: Influence of short antimicrobial lipopeptides on sperm quality and bacterial load. Sci. Rep. 2020, 10, 13225. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Cha, C.J. Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef]
- Cheng, G.Z.; Li, J.Y.; Li, F.; Wang, H.Y.; Shi, G.X. Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein. Asian J. Androl. 2009, 11, 240–251. [Google Scholar] [CrossRef] [PubMed]
F1 (n = 17) | F2 (n = 17) | F3 (n = 17) | p-Value | |
---|---|---|---|---|
Volume (mL) | 102.35 ± 33.12 a | 157.35 ± 31.87 b | 308.23 ± 126.36 c | <0.0001 |
N° of Sperm/mL (×106) | 540.94 ± 153.68 a | 384.58 ± 119.29 b | 241.05 ± 96.94 c | <0.0001 |
N° of Sperm/ejaculate (×109) | 52.08 ± 11.20 a | 57.90 ± 13.03 ab | 64.67 ± 11.19 b | 0.012 |
N° of seminal doses/ejaculate | 26.04 ± 5.60 a | 28.95 ± 6.51 ab | 32.33 ± 5.59 b | 0.012 |
Seminal plasma per dose (%) * | 7.91 ± 3.76 a | 9.15 ± 2.92 ab | 15.19 ± 7.42 b | <0.0001 |
F1 (n = 17) | F2 (n = 17) | F3 (n = 17) | p-Value | |
---|---|---|---|---|
Total motility (%) | 90.89 ± 0.92 | 90.32 ± 0.68 | 89.11 ± 0.79 | 0.65 |
Progressive motility (%) | 37.53 ± 1.27 | 35.42 ± 1.89 | 39.16 ± 1.41 | 0.61 |
VCL (µm/s) | 61.68 ± 2.72 | 59.26 ± 2.65 | 55.00 ± 1.54 | 0.50 |
VSL (µm/s) | 22.32 ± 0.84 | 21.53 ± 0.85 | 23.00 ± 0.73 | 0.76 |
VAP (µm/s) | 39.32 ± 1.50 | 38.32 ± 1.06 | 37.53 ± 0.93 | 0.82 |
ALH (µm) | 1.95 ± 0.09 | 2.00 ± 0.06 | 1.89 ± 0.04 | 0.82 |
LIN (%) | 38.26 ± 1.69 | 38.53 ± 1.75 | 42.53 ± 1.34 | 0.48 |
STR (%) | 58.16 ± 1.62 | 57.00 ± 1.83 | 61.79 ± 1.51 | 0.47 |
WOB (%) | 64.63 ± 1.25 | 66.32 ± 1.19 | 68.68 ± 0.97 | 0.35 |
BCF (Hz) | 7.26 ± 0.15 | 6.79 ± 0.14 | 6.79 ± 0.11 | 0.24 |
Viability (%) | 93.05 ± 0.25 | 92.89 ± 0.30 | 92.11 ± 0.27 | 0.32 |
Acrosome integrity (%) | 95.16 ± 0.19 | 94.74 ± 0.23 | 94.32 ± 0.21 | 0.27 |
Mitochondrial activity (%) | 92.37 ± 0.34 | 92.37 ± 0.38 | 91.79 ± 0.34 | 0.74 |
DNA fragmentation (%) | 0.42 ± 0.09 | 1.11 ± 0.28 | 0.68 ± 0.15 | 0.33 |
Experimental Group | Sows (n) | Body Condition Score (1–5) | Back-Fat (mm) | Loin Depth (mm) | Parity | Weaning-to-Estrus Interval (Days) |
---|---|---|---|---|---|---|
F1 | 58 | 2.67 ± 0.66 | 11.33 ± 3.89 | 45.19 ± 7.12 | 3.76 ± 0.76 | 4.33 ± 0.98 |
F2 | 58 | 2.67 ± 0.66 | 11.24 ± 3.68 | 45.42 ± 7.78 | 3.74 ± 0.74 | 4.21 ± 0.99 |
F3 | 58 | 2.62 ± 0.59 | 11.57 ± 3.98 | 45.76 ± 7.04 | 3.72 ± 0.74 | 4.31 ± 0.90 |
Experimental Group | Sows (n) | Number of Inseminations per Sow | Pregnancy Rate (%) | Farrowing Rate (%) | Total Born Piglets (n) | Live-Born Piglets (n) | Fecundity Index * (n) |
---|---|---|---|---|---|---|---|
F1 | 58 | 2.50 ± 0.50 | 92.98 | 82.46 | 22.57 ± 4.73 | 18.45 ± 4.81 | 1521.12 ± 396.89 |
F2 | 58 | 2.62 ± 0.52 | 96.55 | 89.66 | 20.50 ± 6.50 | 16.92 ± 5.20 | 1517.32 ± 466.68 |
F3 | 58 | 2.53 ± 0.57 | 96.55 | 84.48 | 21.86 ± 4.28 | 18.82 ± 3.79 | 1589.60 ± 320.15 |
Experimental Group | Number of Piglets (Male/Female) (n) | Weight at Day 1 (kg) | Weight at Day 21 (kg) | DWG * (kg) |
---|---|---|---|---|
F1 | 611 (273/238) | 1.363 ± 0.348 | 4.916 ± 1.200 | 0.167 ± 0.052 |
F2 | 672 (299/289) | 1.392 ± 0.340 | 4.792 ± 1.279 | 0.160 ± 0.059 |
F3 | 626 (278/282) | 1.418 ± 0.349 | 4.837 ± 1.275 | 0.162 ± 0.056 |
F1 | F2 | F3 | |
---|---|---|---|
Fixed costs (€) 1 | 3.172 | 2.853 | 2.555 |
Variable costs (€) 2 | 0.315 | 0.284 | 0.254 |
Consumable costs (€) 3 | 0.425 | 0.403 | 0.371 |
Dose packaging (€) | 0.096 | 0.096 | 0.096 |
Extender (€) | 0.076 | 0.075 | 0.067 |
Osmotized water (€) | 0.050 | 0.049 | 0.044 |
PCR (€) | 0.203 | 0.182 | 0.163 |
Seminal dose cost (60 mL) (€) 4 | 3.91 | 3.54 | 3.18 |
Costs difference (%) | 0.00 | −9.53 | −20.77 |
F1 | F2 | F3 | |
---|---|---|---|
Number of sows inseminated | 100 | 100 | 100 |
Number of AI/sow per estrus 1 | 2.55 | 2.55 | 2.55 |
Seminal dose cost (€) 2 | 3.91 | 3.54 | 3.18 |
Seminal dose cost/100 inseminated sows (€) 3 | 997.05 | 902.70 | 810.90 |
Piglets born alive/100 inseminated sows (€) 4 | 1521 | 1517 | 1589 |
Seminal dose cost reduction/100 inseminated sows (€) # | 0 | 94.35 † | 186.15 †† |
Cost reduction/inseminated sow (€) # | 0 | 0.94 ¥ | 1.86 ¥¥ |
Cost reduction/piglet born alive (€) # | 0 | 0.06 * | 0.12 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luongo, C.; Llamas-López, P.J.; Hernández-Caravaca, I.; Matás, C.; García-Vázquez, F.A. Should All Fractions of the Boar Ejaculate Be Prepared for Insemination Rather Than Using the Sperm Rich Only? Biology 2022, 11, 210. https://doi.org/10.3390/biology11020210
Luongo C, Llamas-López PJ, Hernández-Caravaca I, Matás C, García-Vázquez FA. Should All Fractions of the Boar Ejaculate Be Prepared for Insemination Rather Than Using the Sperm Rich Only? Biology. 2022; 11(2):210. https://doi.org/10.3390/biology11020210
Chicago/Turabian StyleLuongo, Chiara, Pedro José Llamas-López, Iván Hernández-Caravaca, Carmen Matás, and Francisco Alberto García-Vázquez. 2022. "Should All Fractions of the Boar Ejaculate Be Prepared for Insemination Rather Than Using the Sperm Rich Only?" Biology 11, no. 2: 210. https://doi.org/10.3390/biology11020210
APA StyleLuongo, C., Llamas-López, P. J., Hernández-Caravaca, I., Matás, C., & García-Vázquez, F. A. (2022). Should All Fractions of the Boar Ejaculate Be Prepared for Insemination Rather Than Using the Sperm Rich Only? Biology, 11(2), 210. https://doi.org/10.3390/biology11020210