The Effect of Drying/Re-Flooding on Trace Metal, As and Se Fluxes in a Treatment Wetland: Addressing Growing Environmental Concerns
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Water Sample Collection and Analysis
3. Results
3.1. Environmental Conditions
Water Chemistry
3.2. Fe and Mn
3.3. Element Concentrations in Porewaters and Surface Waters and Mass-Flux Rates
4. Discussion
4.1. Metal Mobilization following Drying/Re-Flooding
4.2. Metal(loid) Exchange between Sediments and Surface Waters
4.2.1. Zero-Flux Elements
4.2.2. Sink Elements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Ponting, J.; Kelly, T.J.; Verhoef, A.; Watts, M.J.; Sizmur, T. The impact of increased flooding occurrence on the mobility of potentially toxic trace elements in floodplain soil–A review. Sci. Total Environ. 2021, 754, 142040. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere 2018, 197, 803–816. [Google Scholar] [CrossRef]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Effect of cyclic redox oscillations on water quality in freshwater acid sulfate soil wetlands. Sci. Total Environ. 2017, 581–582, 314–327. [Google Scholar] [CrossRef]
- Minnesota Stormwater Manual 2021. Available online: https://stormwater.pca.state.mn.us/index.php?title=Sediment_control_practices_-_sediments_traps_and_basins (accessed on 25 April 2021).
- Meybeck, M. Heavy metal contamination in rivers across the globe: An indicator of complex interactions between societies and catchments. In Understanding Freshwater Quality Problems in a Changing World, Proceedings of the H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweeden, 22–26 July 2013; IAHS Publication: Wallingford, UK; Oxfordshire, UK, 2013; Volume 361. [Google Scholar]
- Jasper, J.T.; Nguyen, M.T.; Jones, Z.L.; Ismail, N.S.; Sedlak, D.L.; Sharp, J.O.; Luthy, R.G.; Horne, A.J.; Nelson, K.L. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents. Environ. Eng. Sci. 2013, 30, 421–436. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Horne, A.J.; Fleming-Singer, M. Phytoremediation using constructed treatment wetlands: An overview. In Bioremediation of Aquatic and Terrestrial Ecosystems; Fingerman, M., Nagabhushanum, R., Eds.; Science Publishers: Enfield, NH, USA, 2005; pp. 329–377. [Google Scholar]
- Morse, J.W.; Rickard, D. Chemical Dynamics of Sedimentary Acid Volatile Sulfide. Environ. Sci. Technol. 2004, 38, 131A–136A. [Google Scholar] [CrossRef] [Green Version]
- di Toro, D.M.; Mahony, J.D.; Hansen, D.J.; Scott, K.J.; Carlson, A.R.; Ankley, G.T. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol. 1992, 26, 96–101. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W., III. Chemistry of iron sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef]
- Atkinson, C.A.; Jolley, D.; Simpson, S. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef] [Green Version]
- Burton, E.D.; Bush, R.T.; Sullivan, L.A. Acid-Volatile Sulfide Oxidation in Coastal Flood Plain Drains: Iron−Sulfur Cycling and Effects on Water Quality. Environ. Sci. Technol. 2006, 40, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.L.; Apte, S.C.; Batley, G.E. Effect of Short-Term Resuspension Events on the Oxidation of Cadmium, Lead, and Zinc Sulfide Phases in Anoxic Estuarine Sediments. Environ. Sci. Technol. 2000, 34, 4533–4537. [Google Scholar] [CrossRef]
- Petersen, W.; Willer, E.; Willamowski, C. Remobilization of trace elements from polluted anoxic sediments after resuspension in oxic water. Water Air Soil Pollut. 1997, 99, 515–522. [Google Scholar] [CrossRef]
- Morse, J.W. Interactions of trace metals with authigenic sulfide minerals: Implications for their bioavailability. Mar. Chem. 1994, 46, 1–6. [Google Scholar] [CrossRef]
- Morse, J.W. Release of toxic metals via oxidation of authigenic pyrite in resuspended sediments. In The Environmental Chemistry of Sulfide Oxidation; Alpers, C.N., Blowes, D.W., Eds.; American Chemical Society: Washington, DC, USA, 1994; pp. 289–297. [Google Scholar]
- Johnston, S.G.; Burton, E.; Bush, R.T.; Keene, A.F.; Sullivan, L.A.; Smith, D.; McElnea, A.E.; Ahern, C.R.; Powell, B. Abundance and fractionation of Al, Fe and trace metals following tidal inundation of a tropical acid sulfate soil. Appl. Geochem. 2010, 25, 323–335. [Google Scholar] [CrossRef]
- Johnston, S.G.; Keene, A.F.; Bush, R.T.; Burton, E.D.; Sullivan, L.A.; Smith, D.; McElnea, A.E.; Martens, M.A.; Wilbraham, S. Contemporary pedogenesis of severely degraded tropical acid sulfate soils after introduction of regular tidal inundation. Geoderma 2009, 149, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, L.A.; Bush, R.T. Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia. Mar. Freshw. Res. 2004, 55, 727–736. [Google Scholar] [CrossRef]
- Fakih, M.; Davranche, M.; Dia, A.; Nowack, B.; Petitjean, P.; Châtellier, X.; Gruau, G. A new tool for in situ monitoring of Fe-mobilization in soils. Appl. Geochem. 2008, 23, 3372–3383. [Google Scholar] [CrossRef]
- Grybos, M.; Davranche, M.; Gruau, G.; Petitjean, P. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interface Sci. 2007, 314, 490–501. [Google Scholar] [CrossRef]
- Zachara, J.M.; Fredrickson, J.K.; Smith, S.C.; Gassman, P.L. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochim. Cosmochim. Acta 2001, 65, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.G.; Keene, A.F.; Burton, E.; Bush, R.T.; Sullivan, L.A.; McElnea, A.E.; Ahern, C.R.; Smith, C.D.; Powell, B.; Hocking, R. Arsenic Mobilization in a Seawater Inundated Acid Sulfate Soil. Environ. Sci. Technol. 2010, 44, 1968–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornu, S.; Cattle, J.A.; Samouëlian, A.; Laveuf, C.; Guilherme, L.R.G.; Albéric, P. Impact of Redox Cycles on Manganese, Iron, Cobalt, and Lead in Nodules. Soil Sci. Soc. Am. J. 2009, 73, 1231–1241. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.G.; Morgan, B.; Burton, E.D. Legacy impacts of acid sulfate soil runoff on mangrove sediments: Reactive iron ac-cumulation, altered sulfur cycling and trace metal enrichment. Chem. Geol. 2016, 427, 43–53. [Google Scholar] [CrossRef]
- Poulton, S.W.; Krom, M.D.; Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 2004, 68, 3703–3715. [Google Scholar] [CrossRef] [Green Version]
- Luther, G.W., III; Kostka, J.E.; Church, T.M.; Sulzberger, B.; Stumm, W. Seasonal iron cycling in the salt-marsh sedimentary environment: The importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar. Chem. 1992, 40, 81–103. [Google Scholar] [CrossRef]
- Weber, F.-A.; Voegelin, A.; Kretzschmar, R. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate lim-itation. Geochim. Cosmochim. Acta 2009, 73, 5513–5527. [Google Scholar] [CrossRef]
- Hansen, D.; Duda, P.J.; Zayed, A.; Terry, N. Selenium Removal by Constructed Wetlands: Role of Biological Volatilization. Environ. Sci. Technol. 1998, 32, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Clary, J.; Jones, J.; Leisenring, M.; Hobson, P.; Strecker, E. International Stormwater BMP Database: 2020 Summary Statistics; The Water Research Foundation: Alexandria, VA, USA, 2020. [Google Scholar]
- Duda, P.J. Chevron’s Richmond Refinery Water Enhancement Wetland; Report to the Regional Water Quality Control Board; Chevron Report: Oakland, CA, USA, 1992. [Google Scholar]
- Yang, C.; Li, S.; Liu, R.; Sun, P.; Liu, K. Effect of reductive dissolution of iron(hydr)oxides on arsenic behavior in a wa-ter-sediment system: First release, then adsorption. Ecol. Eng. 2015, 83, 176–183. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Johnston, S.G.; Burton, E.D.; Bush, R.T.; Sullivan, L.A.; Slavich, P.G. Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality. Geoderma 2010, 160, 252–263. [Google Scholar] [CrossRef]
- Lovley, D.R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 1991, 55, 259–287. [Google Scholar] [CrossRef]
- SAS Institute. JMP IN, version 3.1.5; SAS Institute: Cary, NC, USA, 1996.
- Gambrell, R.P. Trace and Toxic Metals in Wetlands-A Review. J. Environ. Qual. 1994, 23, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B. Distinguishing Iron-Reducing from Sulfate-Reducing Conditions. Ground Water 2009, 47, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems, version 3.0 user’s manual; US EPA: Athens, GA, USA, 1991; EPA/600/391/021.
- Marion, G.M.; Babcock, K.L. Predicting specific conductance and salt concentration in dilute aqueous solutions. Soil Sci. 1976, 122, 181–187. [Google Scholar] [CrossRef]
- Davies, C.W. Ion Association; Butterworths: London, UK, 1962; pp. 37–62. [Google Scholar]
- Wilkin, R.; Ford, R.G. Use of Hydrochloric Acid for Determining Solid-Phase Arsenic Partitioning in Sulfidic Sediments. Environ. Sci. Technol. 2002, 36, 4921–4927. [Google Scholar] [CrossRef]
- Fox, P.M.; Doner, H.E. Accumulation, Release, and Solubility of Arsenic, Molybdenum, and Vanadium in Wetland Sediments. J. Environ. Qual. 2003, 32, 2428–2435. [Google Scholar] [CrossRef]
- Morse, J.W.; Luther, G.W., III. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W., III. Metal sulfide complexes and clusters. In Sulfide Mineralogy and Geochemistry; Vaughan, D.J., Rosso, J.J., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2006; Volume 61, pp. 421–504. [Google Scholar]
- O’Day, P.A.; Vlassopoulos, D.; Root, R.A.; Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13703–13708. [Google Scholar] [CrossRef] [Green Version]
- Sposito, G.; Weber, J.H. Sorption of trace metals by humic materials in soils and natural waters. Crit. Rev. Environ. Control 1986, 16, 193–229. [Google Scholar] [CrossRef]
- Borch, T.; Kretzschmar, R.; Kappler, A.; van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2010, 44, 15–23. [Google Scholar] [CrossRef]
- Masscheleyn, P.H.; Delaune, R.D.; Patrick, W.H., Jr. Arsenic and selenium chemistry as affected by sediment redox potential and pH. J. Environ. Qual. 1991, 20, 522–527. [Google Scholar] [CrossRef]
- Morse, J.W. Dynamics of trace metal interactions with authigenic sulfide minerals in anoxic sediments. In Metal Contaminated Aquatic Sediments; Allen, H.E., Ed.; Ann Arbor Press: Chelsea, MI, USA, 1995; pp. 187–199. [Google Scholar]
- Koretsky, C.M.; Moore, C.M.; Lowe, K.L.; Meile, C.; DiChristina, T.J.; van Cappellen, P. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry 2003, 64, 179–203. [Google Scholar] [CrossRef]
- Kostka, J.E.; Roychoudhury, A.; van Cappellen, P. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 2002, 60, 49–76. [Google Scholar] [CrossRef]
- Johnston, S.G.; Slavich, P.G.; Sullivan, L.A.; Hirst, P. Artificial drainage of floodwaters from sulfidic backswamps: Effects on deoxygenation in an Australian estuary. Mar. Freshw. Res. 2003, 54, 781–795. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, P.D.; Sedlak, D.L. Impact of Iron Amendment on Net Methylmercury Export from Tidal Wetland Microcosms. Environ. Sci. Technol. 2010, 44, 7659–7665. [Google Scholar] [CrossRef] [PubMed]
- Koretsky, C.M.; Haveman, M.; Cuellar, A.; Beuving, L.; Shattuck, T.; Wagner, M. Influence of Spartina and Juncus on Saltmarsh Sediments. I. Pore Water Geochemistry. Chem. Geol. 2008, 255, 87–99. [Google Scholar] [CrossRef]
- Canavan, R.W.; van Cappellen, P.; Zwolsman, J.J.G.; van den Berg, G.A.; Slomp, C.P. Geochemistry of trace metals in a fresh water sediment: Field results and diagenetic modeling. Sci. Total Environ. 2007, 381, 263–279. [Google Scholar] [CrossRef]
- Postma, D.; Jakobsen, R. Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 1996, 60, 3169–3175. [Google Scholar] [CrossRef]
- Druschel, G.K.; Labrenz, M.; Thomsen-Ebert, T.; Fowle, D.A.; Banfield, J.F. Geochemical modeling of ZnS in biofilms: An ex-ample of ore depositional processes. Econ. Geol. 2002, 97, 1319–1329. [Google Scholar] [CrossRef]
- Huerta-Diaz, M.A.; Morse, J.W. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 1992, 56, 2681–2702. [Google Scholar] [CrossRef]
- Morse, J.W.; Arakai, T. Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim. Cosmochim. Acta 1993, 57, 3635–3640. [Google Scholar] [CrossRef]
- Keene, A.F.; Johnston, S.G.; Bush, R.T.; Sullivan, L.A.; Burton, E.D.; McElnea, A.E.; Ahern, C.R.; Powell, B. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland. Biogeochemistry 2011, 103, 263–279. [Google Scholar] [CrossRef]
- Olivie-Lauquet, G.; Gruau, G.; Dia, A.; Riou, C.; Jaffrezic, A.; Henin, O. Release of trace elements in wetlands: Role of seasonal variability. Water Res. 2001, 35, 943–952. [Google Scholar] [CrossRef]
- Charriau, A.; Lesven, L.; Gao, Y.; Leermakers, M.; Baeyens, W.; Ouddane, B.; Billon, G. Trace metal behaviour in riverine sediments: Role of organic matter and sulfides. Appl. Geochem. 2011, 26, 80–90. [Google Scholar] [CrossRef] [Green Version]
- ElBishlawi, H.; Shin, J.Y.; Jaffe, P.R. Trace metal dynamics in the sediments of a constructed and natural urban tidal marsh: The role of iron, sulfide, and organic complexation. Ecol. Eng. 2013, 58, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Hansel, C.M.; La Force, M.J.; Fendorf, S.; Sutton, S. Spatial and Temporal Association of As and Fe Species on Aquatic Plant Roots. Environ. Sci. Technol. 2002, 36, 1988–1994. [Google Scholar] [CrossRef]
- Hansel, C.M.; Fendorf, S.; Sutton, S.; Newville, M. Characterization of Fe Plaque and Associated Metals on the Roots of Mine-Waste Impacted Aquatic Plants. Environ. Sci. Technol. 2001, 35, 3863–3868. [Google Scholar] [CrossRef]
- Firestone, M.K. Biological denitrification. In Nitrogen in Agricultural Soils; Stevenson, F.J., Ed.; ASA and SSSA; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1982; Volume 22, pp. 289–326. [Google Scholar]
- Terry, N.; Zayed, A.M. Physiology and biochemistry of leaves under iron deficiency. In Iron Nutrition in Soils and Plants; Abadia, J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 283–294. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1986; pp. 269–340. [Google Scholar]
- Falkner, K.K.; Klinkhammer, G.P.; Bowers, T.S.; Todd, J.F.; Lewis, B.L.; Landing, W.M.; Edmond, J.M. The behavior of barium in anoxic marine waters. Geochim. Cosmochim. Acta 1993, 57, 537–554. [Google Scholar] [CrossRef]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Hoagland, C.R.; Gentry, L.E.; David, M.B.; Kovacic, D.A. Plant Nutrient Uptake and Biomass Accumulation in a Constructed Wetland. J. Freshw. Ecol. 2001, 16, 527–540. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Wise, K.M. Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Res. 1998, 32, 1888–1900. [Google Scholar] [CrossRef]
- Klopatek, J.M.; Stearns, F.W. Primary Productivity of Emergent Macrophytes in a Wisconsin Freshwater Marsh Ecosystem. Am. Midl. Nat. 1978, 100, 320. [Google Scholar] [CrossRef]
- Tufano, K.J.; Fendorf, S. Confounding Impacts of Iron Reduction on Arsenic Retention. Environ. Sci. Technol. 2008, 42, 4777–4783. [Google Scholar] [CrossRef] [PubMed]
- Davranche, M.; Dia, A.; Fakih, M.; Nowack, B.; Gruau, G.; Ona-Nguema, G.; Petitjean, P.; Martin, S.; Hochreutener, R. Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study. Chem. Geol. 2013, 335, 24–35. [Google Scholar] [CrossRef]
- Kocar, B.D.; Borch, T.; Fendorf, S. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 980–994. [Google Scholar] [CrossRef]
- Sohrin, Y.; Matsui, M.; Kawashima, M.; Hojo, M.; Hasegawa, H. Arsenic Biogeochemistry Affected by Eutrophication in Lake Biwa, Japan. Environ. Sci. Technol. 1997, 31, 2712–2720. [Google Scholar] [CrossRef]
- Aurilio, A.C.; Mason, R.P.; Hemond, H.F. Speciation and Fate of Arsenic in Three Lakes of the Aberjona Watershed. Environ. Sci. Technol. 1994, 28, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.C.D.; Bruland, K.W. Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environ. Sci. Technol. 1991, 25, 420–427. [Google Scholar] [CrossRef]
pH | EC (µS cm−1) | Eh (mV) | |
---|---|---|---|
Inlet | 7.34 ± 0.22 | 3600 ± 700 | 281 ± 251 |
Outlet | 7.31 ± 0.19 | 4100 ± 400 | 288 ± 241 |
Porewater | 7.18 ± 0.20 | 6200 ± 2500 | 222 ± 294 |
Elements | Inlet Concentration (µg or mg */L) | Outlet Concentration (µg or mg */L) | Porewater Concentration (µg or mg */L) | Rate of Mass Removal (g or kg **/day) | Percent Removed from Inflow | Log K′sp of Sulfide Mineral § |
---|---|---|---|---|---|---|
Sink | ||||||
As | 36 ± 15 a | 28 ± 9 a | 18 ± 8 b | 30 ± 15 | 10 ± 6 | −64.3 ¶ |
Se | 23 ± 6 a | 7 ± 4 b | 6 ± 3 b | 96 ± 10 | 65 ± 4 | n.a. # |
Zero-Flux | ||||||
Ba | 50 ± 12 a | 49 ± 15 a | 70 ± 25 a | −29 ± 35 | −10 ± 11 | n.a. |
Cu | 31 ± 38 a | 26 ± 20 a | 21 ± 14 a | 7 ± 89 | −62 ± 60 | −23.2 |
Fe | 0.14 ± 0.08 a,* | 0.13 ± 0.1 a,* | 3.57 ± 2.15 b,* | −32 ± 177 | −22 ± 25 | −4.5mac † −19.0py |
Mo | 65 ± 10 a | 61 ± 18 a | 77 ± 68 a | −16 ± 60 | −6 ± 13 | −72.8 ‡ |
Zn | 274 ± 80 a | 250 ± 75 a | 210 ± 91 a | 85 ± 111 | −1 ± 8 | −12.4 |
Source | ||||||
Co | 4 ± 1 a | 6 ± 2 a | 22 ± 13 b | −17 ± 5 | −82 ± 19 | −8.3 |
Cr | 11 ± 10 a | 15 ± 15 a,b | 23 ± 13 b | −29 ± 21 | −97 ± 45 | n.d. |
Mg | 24 ± 5 a,* | 30 ± 6 a,* | 88 ± 32 b,* | −49.1 ± 18.2 ** | −38 ± 11 | n.a. |
Mn | 51 ± 37 a | 227 ± 212 b | 448 ± 189 c | −1094 ± 260 | −432 ± 94 | −0.7 |
Ni | 58 ± 35 a | 73 ± 24 a | 114 ± 53 b | −143 ± 112 | −83 ± 38 | −6.5 |
S | 2680 ± 920 a,* | 2910 ± 1030 a,* | 2510 ± 870 a,* | −2640 ± 1650 ** | −20 ± 9 | n.a. |
Sr | 0.61 ± 0.14 a,* | 0.68 ± 0.11 a,* | 1.33 ± 0.36 b,* | −693 ± 333 | −24 ± 9 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, D.J.; Horne, A.J. The Effect of Drying/Re-Flooding on Trace Metal, As and Se Fluxes in a Treatment Wetland: Addressing Growing Environmental Concerns. Biology 2022, 11, 188. https://doi.org/10.3390/biology11020188
Hansen DJ, Horne AJ. The Effect of Drying/Re-Flooding on Trace Metal, As and Se Fluxes in a Treatment Wetland: Addressing Growing Environmental Concerns. Biology. 2022; 11(2):188. https://doi.org/10.3390/biology11020188
Chicago/Turabian StyleHansen, Drew J., and Alex J. Horne. 2022. "The Effect of Drying/Re-Flooding on Trace Metal, As and Se Fluxes in a Treatment Wetland: Addressing Growing Environmental Concerns" Biology 11, no. 2: 188. https://doi.org/10.3390/biology11020188
APA StyleHansen, D. J., & Horne, A. J. (2022). The Effect of Drying/Re-Flooding on Trace Metal, As and Se Fluxes in a Treatment Wetland: Addressing Growing Environmental Concerns. Biology, 11(2), 188. https://doi.org/10.3390/biology11020188