Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area Description
2.2. Sites Localization
2.3. Field Surveys of the Study Area
2.4. Floristic Diversity Analysis
2.5. Collection of A. retroflexus
2.6. Biological Indices
2.7. Heavy Metal and Mineral Content in Soil and Plant Organs
2.8. Quantification of Organic Acid
2.9. Photosynthesis- and Photorespiration-Related Parameters
2.10. Quantification of Oxidative Damage Markers
2.11. Quantification of Antioxidant Parameters
2.12. Quantification of Detoxification-Related Parameters
2.13. Statistical Analysis
3. Results
3.1. Effect of Sewage Pollution on Floristic Composition
3.2. Growth Responses to Soil Contamination with Heavy Metals
3.3. Metals Accumulation and Uptake by A. retroflexus
3.4. ROS Production and Oxidative Damage
3.5. Heavy Metals Induced More Oxidative Damages in A. retroflexus Roots
3.6. A. retroflexus Antioxidant Defense System
3.7. Heavy Metal Detoxification Was More Pronounced in A. retroflexus Roots
3.8. Organ and Site-Specific Responses Are Supported by PCA Analysis
4. Discussion
4.1. The Species of the Study Area’s Life Form and Chorology
4.2. Effect of Heavy Metal Contamination on Plant Cover and Biodiversity
4.3. Tolerant and Sensitive Species in the Study Area
4.4. Heavy Metal Uptake and Detoxification in A. retroflexus
4.5. A. retroflexus Maintained High Growth under Heavy Metal Stress
4.6. A. retroflexus Showed High Redox Balance
5. Conclusions
Future Perspectives and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jan, S.; Rashid, B.; Azooz, M.M.; Hossain, M.A.; Ahmad, P. Genetic Strategies for Advancing Phytoremediation Potential in Plants: A Recent Update. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 431–454. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundel, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Ashraf, M.; Hussain, M.; Salam., H.A.; Bhatti, A.Z. Impact Assessment of Sewerage and Industrial Effluents on Water Resources, Soil, Crops and Human Health in Faisalabad; Pakistan Council of Research in Water Resources: Islamabad, Pakistan, 2006. [Google Scholar]
- Igwe, J.C.; Abia, A.A. A bioseparation process for removing heavy metals from waste water using biosorbents. Afr. J. Biotechnol. 2006, 5, 1167–1179. [Google Scholar]
- Alsherif, E.A.; Al-Shaikh, T.M.; Almaghrabi, O.; AbdElgawad, H. High Redox Status as the Basis for Heavy Metal Tolerance of Sesuvium portulacastrum L. Inhabiting Contaminated Soil in Jeddah, Saudi Arabia. Antioxidants 2022, 11, 19. [Google Scholar] [CrossRef]
- Malwina Tytła, M.; Widziewicz, K.; Zielewicz, E. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.; Singh, S.P. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 2005, 3, 1–18. [Google Scholar] [CrossRef]
- Dickinson, N.M.; Baker, A.J.M.; Doronila, A.; Laidlaw, S.; Reeves, R.D. Phytoremediation of inorganics: Realism and synergies. Int. J. Phytoremed. 2009, 11, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Antonkiewicz, J.; Jasiewicz, C. The use of plants accumulating heavy metals for detoxification of chemically polluted soils. J. Pol. Agric. Univ. 2002, 5, 121–143. [Google Scholar]
- Wei, X.; Li, Q.; Zhang, M.; Giles-Hansen, K.; Liu, W.; Fan, H.; Liu, S. Vegetation cover—another dominant factor in determining global water resources in forested regions. Glob. Change Biol. 2018, 24, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Omuto, C.T.; Vargas, R.R.; Alim, M.S.; Paron, P. Mixed-effects modelling of time series NDVI-rainfall relationship for detecting human-induced loss of vegetation cover in drylands. J. Arid. Environ. 2010, 74, 1552–1563. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Rana, V.; Kumar, A.; Maiti, S.K. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Environ. Sci. Pollut. Res. 2017, 24, 22990–23005. [Google Scholar] [CrossRef] [PubMed]
- Bayouli, I.T.; Bayouli, H.T.; Dell’Oca, A.; Meers, E.; Sun, J. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecol. Indic. 2021, 125, 107508. [Google Scholar] [CrossRef]
- Jauffret, S.; Lavorel, S. Are plant functional types relevant to describe degradation in arid, southern Tunisian steppes? J. Veg. Sci. 2003, 14, 399–408. [Google Scholar] [CrossRef]
- Fakhry, A.; Migahid, M. Effect of cement dust kiln pollution on the vegetation in Western Mediterranean desert of Egypt. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2011, 5, 480–486. [Google Scholar]
- Al-Sherif, E.A.; Ayesh, A.M.; Rawi, S.M. Floristic composition, life form and chorology of plant life at Khulais region western Saudi Arabia. Pak. J. Bot. 2013, 45, 29–38. [Google Scholar]
- Al-Sherif, E.A.; Fadl, M.A. Floristic study of the Al-Shafa Highlands in Taif, western Saudi Arabia. Flora 2016, 225, 20–29. [Google Scholar] [CrossRef]
- Feltner, K.C. The ten worst weeds of field crops; pigweed. Crop. Soils 1970, 22, 13–14. [Google Scholar]
- Weaver, S.E.; McWilliams, E.L. The biology of Canadian weeds. 44. Amaranthus retroflexus L., A. powellii S. Wats. and A. hybridus L. Can. J. Plant Sci. 1980, 60, 1215–1234. [Google Scholar] [CrossRef]
- Daget, P.; Godron, M. Pastoralisme: Troupeaux, Espaces et Soci´et´es; Aupelf/Uref; Hatier: Paris, France, 1995; p. 510. [Google Scholar]
- Curtis, J.T.; McIntosh, R.P. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Collenette, S. An Illustrated Guide to the Flowers of Saudi Arabia; Corpion Publishing Ltd.: London, UK, 1985. [Google Scholar]
- Collentette, S. Wild Flowers of Saudi Arabia; National Commission for Wildlife Conservation and Development: Riyadh, Saudi Arabia, 1999. [Google Scholar]
- Chaudhary, S. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 2001; Volume 2, pp. 1–432. [Google Scholar]
- Miller, A.G.; Cope, T.A. Flora of the Arabian Peninsula; Edinburgh University Press: Edinburgh, UK, 1996; Volume 1, pp. 1–586. [Google Scholar]
- Raunkiaer, C. Life Forms of Plants and Statistical Geography; Oxford University Press: Oxford, UK, 1934; p. 632. [Google Scholar]
- Zohary, M. Geobotanical Foundations of the Middle East; Gustav Fischer Verlag: Stuttgart, Germany, 1973; Volume 2. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Kadier, A.; Malyan, S.K.; Ahmad, A.; Bishnoi, N.R. Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Singh, D., Singh, H., Prabha, R., Eds.; Springer: Singapore, 2017; pp. 367–394. [Google Scholar]
- AbdElgawad, H.; Zinta, G.; Hamed, B.A.; Selim, S.; Beemster, G.; Hozzein, W.N.; Abuelsoud, W. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environ. Pollut. 2020, 258, 113705. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; Sébastjen, S.; Zinta, G.; Hassan, Y.H.; Abdel-Mawgoud, M.; Alkhalifah, D.A.; Hozzein, W.N.; Asard, H.; Abuelsoud, W. Soil arsenic toxicity differentially impacts C3 (barley) and C4 (maize) crops. J. Hazard. Mater. 2021, 6, 125331. [Google Scholar] [CrossRef]
- de Sousa, A.; Saleh, A.M.; Habeeb, T.H.; Hassan, Y.M.; Zrieq, R.; Wadaan, M.A.; AbdElgawad, H. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci. Total. Environ. 2019, 693, 133636. [Google Scholar] [CrossRef]
- Hemphill, J.K.; Venketeswaran, S. Chlorophyll and carotenoid accumulation in three chlorophyllous callus phenotypes of Glycine max. Am. J. Bot. 1978, 65, 1055–1063. [Google Scholar] [CrossRef]
- Feierabend, J.; Beevers, H. Developmental studies on microbodies in wheat leaves: I. Conditions influencing enzyme development. Plant Physiol. 1972, 49, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Novitskaya, N.; Trevanion, S.J.; Driscoll, S.; Foyer, C.H.; Noctor, G. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ. 2002, 25, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.Y.; Woollard, A.C.; Wolff, S.P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990, 268, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Hodges, D.M.; DeLong, J.; Forney, C.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Levine, R.L.; Williams, J.A.; Stadtman, E.P.; Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994, 233, 346–357. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- Kumar, K.B.; Khan, P.A. Peroxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Indian J. Exp. Bot. 1982, 20, 412–416. [Google Scholar]
- Dhindsa, R.S.; Plumb-Dhindsa, P.L.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Murshed, R.; Lopez-Lauri, F.; Sallanon, H. Microplate quantification of enzymes of the plant ascorbate—glutathione cycle. Anal. Biochem. 2008, 383, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Lester, P., Ed.; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Drotar, A.; Phelps, P.; Fall, R. Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci. 1985, 42, 35–40. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Mozer, T.J.; Tiemeier, D.C.; Jaworski, E.G. Purification and characterization of corn glutathione S-transferase. Biochemistry 1983, 22, 1068–1072. [Google Scholar] [CrossRef]
- Diopan, V.; Shestivska, S.; Adam, V.; Macek, T.; Mackova, M.; Havel, L.; Kizek, R. Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants. Plant Cell Tissue Organ Cult. 2008, 94, 291–298. [Google Scholar] [CrossRef]
- de Knecht, J.A.; Koevoets, P.L.; Verkleij, J.A.; Ernst, W.H. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol. 1992, 122, 681–688. [Google Scholar] [CrossRef]
- Cain, S.A. Life forms and phytoclimates. Bot. Rev. 1950, 16, 1–32. [Google Scholar] [CrossRef]
- Deschenes, J.M. Life form spectra of contrasting slops of the grazed pastures of Northern New Jersey. Neturalise Can. 1969, 96, 965–978. [Google Scholar]
- White, F.; Leonard, J. Phytogeographical links between Africa and Southwest Asia. Fl. Veg. Mundi 1991, 9, 229–246. [Google Scholar]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef]
- Pausas, J.G.; Austin, M.P. Patterns of plant species richness in relation to Different environments. J. Veg. Sci. 2001, 12, 153–166. [Google Scholar] [CrossRef]
- Blanár, D.; Guttová, A.; Mihál, I.; Plášek, V.; Hauer, T.; Palice, Z.; Ujházy, K. Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Carpathians. Biologia 2019, 74, 1591–1611. [Google Scholar] [CrossRef]
- Boutin, C.; Carpenter, D.V. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta. Sci. Total Environ. 2017, 576, 829–839. [Google Scholar] [CrossRef]
- De la Barrera, F.; Henríquez, C. Monitoring the Change in Urban Vegetation in 13 Chilean Cities Located in a Rainfall Gradient. What is the Contribution of the Widespread Creation of New Urban Parks? In IOP Conference Series: Materials Science and Engineering, Proceedings of the World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium, Prague, Czech Republic, 12–16 June 2017; IOP Publishing: Bristol, UK, 2017; Volume 245, p. 072023. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Rosas, C.I.; Enciso-Miranda, C.A.; Macías-Duarte, A.; Morales-Romero, D.; Villarruel-Sahagún, L. Urban vegetation cover correlates with environmental variables in a desert city: Insights of mitigation measures to climate change. Urban Ecosyst. 2020, 23, 1191–1207. [Google Scholar] [CrossRef]
- Shen, X.; Xue, Z.; Jiang, M.; Lu, X. Spatiotemporal change of vegetation coverage and its relationship with climate change in freshwater marshes of Northeast China. Wetlands 2019, 39, 429–439. [Google Scholar] [CrossRef]
- Little, E.E.; Greenberg, B.M.; Delonay, A.J. Environmental Toxicology and Risk Qssessment; American Society for Testing and Materials: Philadelphia, PA, USA, 1998; pp. 1–417. [Google Scholar]
- Davis, N.E.; Death, C.E.; Coulson, G.; Newby, L.; Hufschmid, J. Interspecific variation in the diets of herbivores in an industrial environment: Implications for exposure to fluoride emissions. Environ. Sci. Pollut. Res. 2016, 23, 10165–10176. [Google Scholar] [CrossRef]
- Tang, B.; Williams, P.L.; Xue, K.S.; Wang, J.S.; Tang, L. Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans. Chemosphere 2020, 260, 127627. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.M.; Nordstrom, D.K. Arsenic speciation and sorption in natural environments. Rev. Mineral. Geochem. 2014, 79, 185–216. [Google Scholar] [CrossRef]
- Sharma, R.; Bhardwaj, R.; Handa, N.; Gautam, V.; Kohli, S.K.; Bali, S.; Vig, A.P. Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: An overview. In Plant Metal Interaction: Emerging Remediation Techniques; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 263–283. [Google Scholar]
- Kumar, S.; Trivedi, P.K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 2018, 9, 751. [Google Scholar] [CrossRef] [Green Version]
- Yen, T.Y.; Villa, J.A.; DeWitt, J.G. Analysis of phytochelatin–cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 1999, 34, 930–941. [Google Scholar] [CrossRef]
- Zhu, X.; Victor, T.W.; Ambi, A.; Sullivan, J.K.; Hatfield, J.; Xu, F.; Van Nostrand, W.E. Copper accumulation and the effect of chelation treatment on cerebral amyloid angiopathy compared to parenchymal amyloid plaques. Metallomics 2020, 12, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Jozefczak, M.; Remans, T.; Vangronsveld, J.; Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012, 13, 3145–3175. [Google Scholar] [CrossRef] [Green Version]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.A.; Gill, S.S.; Gill, R.; Hasanuzzaman, M.; Duarte, A.C.; Pereira, E.; Tuteja, N. Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma 2014, 251, 1265–1283. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.L.D.S.; Vitti, G.C.; Trevizam, A.R. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil. Rev. Ceres 2014, 61, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Palacios, G.; Gomez, I.; Carbonell-Barrachina, A.; Pedreño, J.N.; Mataix, J. Effect of nickel concentration on tomato plant nutrition and dry matter yield. J. Plant Nutr. 1998, 21, 2179–2191. [Google Scholar] [CrossRef]
- Viehweger, K. How plants cope with heavy metals. Bot. Stud. 2014, 55, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuypers, A.; Hendrix, S.; Amaral dos Reis, R.; De Smet, S.; Deckers, J.; Gielen, H.; Keunen, E. Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front. Plant Sci. 2016, 7, 470. [Google Scholar] [CrossRef] [Green Version]
- Schützendübel, A.; Schwanz, P.; Teichmann, T.; Gross, K.; Langenfeld-Heyser, R.; Godbold, D.L.; Polle, A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol. 2001, 127, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Černý, M.; Habánová, H.; Berka, M.; Luklová, M.; Brzobohatý, B. Hydrogen peroxide: Its role in plant biology and crosstalk with signalling networks. Int. J. Mol. Sci. 2018, 19, 2812. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.L.; Zhang, C.H.; Ju, T.; Ge, Y. Differential responses of GSH and GST in two rice cultivars under Cd stress. J. Agro-Environ. Sci. 2009, 28, 305–310. [Google Scholar]
- Kumar, P.; Kumar Tewari, R.; Nand Sharma, P. Excess nickel–induced changes in antioxidative processes in maize leaves. J. Plant Nutr. Soil Sci. 2007, 170, 796–802. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Dalurzo, H.C.; Gomez, M.; Romero-Puertas, M.C.; Del Rio, L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001, 52, 2115–2126. [Google Scholar] [CrossRef]
Temperature °C | Relative Humidity (%) | Precipitation (mL) | |||||
---|---|---|---|---|---|---|---|
Mx | Mn | M | Mx | Mn | M | ||
January | 26.8 | 18.2 | 22.3 | 81 | 8 | 46 | 0 |
February | 28 | 19.6 | 23.6 | 87 | 14 | 53 | 1 |
March | 30.5 | 20.7 | 25.3 | 95 | 9 | 55 | 6.2 |
April | 32.8 | 23.2 | 27.8 | 83 | 17 | 53 | 0 |
May | 35.9 | 26.8 | 31.2 | 84 | 8 | 49 | 0 |
June | 37.9 | 27.3 | 32.3 | 86 | 5 | 52 | 0 |
July | 38.5 | 29.1 | 33.6 | 93 | 12 | 49 | 2 |
August | 38.7 | 30 | 34.2 | 81 | 19 | 52 | 0 |
September | 38.7 | 30 | 33.9 | 88 | 5 | 58 | TRACE |
October | 39.2 | 27 | 32.4 | 89 | 3 | 49 | 3.8 |
November | 33.1 | 25.3 | 28.8 | 88 | 23 | 57 | 19 |
December | 31.9 | 22.4 | 26.6 | 84 | 8 | 53 | 8 |
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
---|---|---|---|---|---|
Evenness (R) | 0.65 | 0.54 | 0.41 | 0.43 | 0.45 |
Shannon Index | 0.1292 | 0.1714 | 0.189 | 0.21 | 0.25 |
Species richness | 12 | 21 | 22 | 23 | 34 |
Cover % | 7 | 10 | 12 | 13 | 15 |
A. retroflexus relative density | 16.7 | 15.3 | 6.7 | 2.6 | 0.52 |
A. retroflexus frequency | 100 | 95 | 36 | 36 | 25 |
A. retroflexus FW (g/individual) | 178 ± 2.3 c | 189 ± 1.8 c | 210 ± 2.4 b | 254 ± 2.1 a | 256 ± 3.1 a |
A. retroflexus DW (g/individual) | 53.4 ± 1.1 c | 57. ± 1.02 c | 63 ± 1.1 b | 74.3 ± 1.6 a | 76 ± 1.6 a |
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
---|---|---|---|---|---|
Cd (mg/kg) | 1.23 ± 0.71 a | 1.07 ± 0.55 b | 0.76 ± 0.22 b | 0.19 ± 0.09 c | 0.24 ± 0.17 c |
Ni (mg/kg) | 5.16 ± 0.37 a | 4.90 ± 0.46 a | 3.02 ± 0.62 b | 1.16 ± 0.20 c | 0.36 ± 0.01d |
As (mg/kg) | 5.65 ± 0.99 a | 4.30 ± 0.68 a | 2.02 ± 0.43 b | 0.66 ± 0.22 c | 0.02 ± 0.01d |
Cu (mg/kg) | 30.3 ± 6.44 a | 19.35 ± 2.92 b | 7.63 ± 0.32 c | 1.26 ± 0.32d | 0.03 ± 0.01e |
Pb (mg/kg) | 0.41 ± 0.07 a | 0.28 ± 0.08 b | 0.20 ± 0.08 b | 0.18 ± 0.08 b | 0.02 ±0.00 c |
Co (mg/kg) | 0.33 ± 0.13 a | 0.31 ± 0.11 a | 0.26 ± 0.07 a | 0.30 ± 0.10 a | 0.01 ± 0.01 b |
Hg (mg/kg) | 0.39 ± 0.14 a | 0.34 ± 0.14 a | 0.27 ± 0.15 a | 0.29 ± 0.13 a | 0.05 ± 0.01 b |
Al (mg/kg) | 0.65 ± 0.29 a | 0.48 ± 0.16 a | 0.63 ± 0.33 a | 0.46 ± 0.19 a | 0.08 ± 0.03 b |
V (mg/kg) | 0.82 ± 0.07 a | 0.54 ± 0.17 b | 0.47 ± 0.15 b | 0.25 ± 0.07 c | 0.04 ± 0.01d |
Cr (mg/kg) | 0.82 ± 0.42 a | 0.58 ± 0.38 b | 0.49 ± 0.29 b | 0.25 ± 0.04 c | 0.03 ± 0.02d |
Zn (mg/kg) | 0.88 ± 0.08 a | 0.77 ± 0.07 a | 0.59 ± 0.06 b | 0.09 ± 0.01 c | 0.04 ± 0.00d |
Mn (mg/kg) | 0.02 ± 0.00 c | 0.036 ± 0.0 a b | 0.04 ± 0.00 b | 0.10 ± 0.01 a | 0.03 ± 0.01 b |
Mg (mg/kg) | 0.02 ± 0.01 c | 0.05 ± 0.02 b | 0.02 ± 0.01 c | 0.05 ± 0.01 b | 0.09 ± 0.05 a |
Ca (mg/kg) | 0.04 ± 0.01 b | 0.09 ± 0.02 a | 0.04 ± 0.01 b | 0.08 ± 0.02 a | 0.04 ± 0.01 b |
Ba (mg/kg) | 0.03 ± 0.01 b | 0.08 ± 0.02 a | 0.03 ± 0.01 b | 0.07 ± 0.02 a | 0.03 ± 0.00 b |
Fe (mg/kg) | 0.02 ± 0.01 c | 0.06 ± 0.02 b | 0.02 ± 0.01 c | 0.06 ± 0.02 b | 0.53 ± 0.09 a |
K (mg/kg) | 0.84 ± 0.01 a | 1.03 ± 0.03 a | 0.84 ± 0.12 a | 1.00 ± 0.01 a | 0.89 ± 0.06 a |
N (mg/kg) | 7.11 ± 0.45 a | 7.57 ± 0.76 a | 7.22 ± 0.94 a | 7.82 ± 1.17 a | 7.59 ± 0.53 a |
Phenols (mg/g) | 49.42 ± 7.5 a | 46.76 ± 4.7 a | 17.94 ± 3.1 b | 13.17 ± 1.0 b | 13.84 ± 0.1 b |
Citric acid (mg/g) | 25.1 ± 0.28 a | 8.41 ± 0.69 b | 8.26 ± 1.73 b | 4.47 ± 1.17 c | 4.01 ± 0.88 c |
pH | 7.80 ± 0.09 a | 7.5 ± 0.02 a | 7.4 ± 0.03 a | 7.3 ± 0.01 a | 7.3 ± 0.01 a |
O.M (%) | 1.85 ± 0.03 a | 1.43 ± 0.02 a | 1.35 ± 0.02 a | 1.40 ± 0.03 a | 0.99 ± 0.09 b |
E.C (ds m−1) | 1.01 ± 0.01 a | 0.97± 0.01 a | 0.81 ± 0.01 b | 0.88 ± 0.01 b | 0.75 ± 0.01 b |
Sands (%) | 61.1 ± 1.3 a | 67.74 ± 3.20 a | 61.49 ± 1.60 a | 70.78 ± 1.36 a | 63.99 ± 0.04 a |
Silts (%) | 21.6 ± 0.89 a | 17.90 ± 1.04 a | 21.2 ± 0.89 a | 16.00 ± 0.68 a | 14.44 ±0.04 a |
Clay (%) | 17.31 ± 0.78 a | 14.36 ± 1.05 a | 17.31 ± 0.8/8 a | 13.22 ± 0.74 a | 11.57 ±0.7 a |
Shoot | Roots | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
Cd | 23.24 ± 6.6 a | 19.9 ± 5.5 a | 11.9 ± 2.2 b | 3.02 ± 0.7 c | 1.1 ± 0.2 d | 66.4 ± 12 a | 57.1 ± 10 a | 32 ± 3.3 b | 10.30 ± 1.9 c | 7 ±0.8 d |
Ni | 161.3 ± 30 a | 160.2 ± 29 a | 90 ± 1.8 b | 32.7 ± 3.4 c | 1.50 ± 0.1 d | 486 ± 109 a | 480 ± 118 a | 256 ± 53 b | 117.1 ± 31 c | 16.9 ± 4.1 d |
As | 182.4 ± 36 a | 138 ± 27 b | 58.5 ± 5.8 c | 18.2 ± 3.5 d | 0.11 ± 0.03 e | 539 ± 113 a | 411 ± 88 a | 162 ± 23 b | 63.1 ± 11 c | 1.24 ± 0.1 d |
Cu | 1021 ± 190 a | 593 ± 113 b | 216 ± 4.0 c | 32. ± 5.1 d | 0.14 ± 0.02 e | 3081 ± 818 a | 1767 ± 4 b | 616± 15 c | 113.9 ± 22 d | 1.58 ± 0.2 e |
Pb | 5.07 ± 1.21 a | 3.45 ± 0.75 a | 2.3 ±0.27 b | 1.9 ± 0.29 b | 0.12 ± 0.01 c | 15.7 ± 5.69 a | 10.6 ± 3 b | 6.69 ± 2.2 c | 7.07 ± 2.2 c | 0.62 ± 0.22 d |
Co | 3.95 ± 0.74 a | 3.7 ± 0.70 a | 2.7 ± 0.19 b | 2.98 ± 0.35 b | 0.06 ± 0.02 c | 11.92 ± 3.2 a | 11.2± 3 a | 7.8 ± 2.3 b | 10.75 ± 3 b | 0.3 ± 0.04 c |
Hg | 4.85 ± 0.95 a | 4.3 ± 0.88 a | 3.12 ±0.08 b | 3.2 ± 0.54 b | 0.21± 0.12 c | 14.7 ± 4.4 a | 13.3 ± 4.1 a | 8.8 ± 2.2 b | 11.7 ± 3.9 a | 0.93 ± 0.24 c |
Al | 8.05 ± 1.52 a | 6.0 ± 1.30 a | 6.12 ± 0.44 a | 4.2 ± 0.4 b | 0.31± 0.08 c | 24.3 ± 6.7 a | 18.4 ± 6 b | 17.1 ± 2.8 b | 15.2 ± 3.6 b | 1.5 ± 0.25 c |
V | 9.83 ± 2.2 a | 6.1± 1.16 a | 4.7 ± 0.20 b | 2.6 ± 0.40 b | 0.18 ± 0.02 c | 30.22 ± 10 a | 18.6 ± 5 b | 13.6 ± 3 c | 9.45 ± 3 d | 0.93 ± 0.26 e |
Cr | 10.73 ± 2 a | 7.7 ± 1.51 ab | 5.7 ± 0.47 b | 2.09 ± 0.42 c | 0.17 ± 0.03 d | 32.82 ± 10 a | 23.5 ± 6 b | 16.6 ± 5 c | 7.70 ± 2.2 d | 0.88 ± 0.22 e |
Zn | 10.4 ± 2.9 a | 9.1± 2.5 a | 6.22 ± 1.48 b | 0.95 ± 0.26 c | 0.19 ± 0.02 d | 39.64 ± 9 a | 34.6 ± 8 a | 22.3 ± 4 b | 4.28 ± 1 c | 1.24 ± 0.19 d |
Mn | 0.64 ± 0.07 c | 1.01 ± 0.1 b | 1.18 ± 0.01 b | 2.7 ± 0.30 a | 0.90 ± 0.14 b | 0.93 ± 0.06 c | 1.4 ± 0.1 b | 1.60 ± 0.2 b | 4.11 ± 0.2 a | 1.29 ± 0.20 b |
Fe | 0.80 ± 0.13 c | 1.88 ± 0.3 b | 0.78 ± 0.09 c | 1.69 ± 0.2 b | 13.5 ± 1.3 a | 1.17 ± 0.1 d | 2.7 ± 0.3 b | 1.053 ± 0.1 c | 2.2 ± 0.6 b | 19.35 ± 1.9 a |
K | 22 ± 2.2 a | 27 ± 2.8 a | 24.8 ± 0.89 a | 26.9 ± 2.7 a | 23.6 ± 2.5 a | 32.2 ± 2 b | 40.5 ± 2 a | 33 ± 3.6 b | 40.8 ± 0.24 a | 33.75 ± 3 b |
N | 187.3 ± 19 b | 200 ± 22 a | 212 ± 5.5 a | 209 ± 27 a | 200 ± 2 a | 273 ± 17 b | 292 ± 23 b | 286 ± 30.2 b | 341. ± 47 a | 286.8 ± 30 b |
Mg | 0.68 ± 0.08 c | 1.6 ± 0.2 b | 0.67 ± 0.02 c | 1.44 ± 0.19 b | 2.4 ± 0.6 a | 0.99 ± 0.09 c | 2.3 ± 0.2 b | 0.91 ± 0.1 c | 2.00 ± 0.34 b | 3.53 ± 0.8 a |
Ca | 1.16 ± 0.17 b | 2.7 ± 0.4 a | 1.16 ± 0.10 b | 2.41 ± 0.3 a | 1.18 ± 0.1 b | 1.69 ± 0.2 b | 3 ± 0.48 a | 1.57 ± 0.2 b | 3.26 ± 0.77 a | 1.7 ±0.19 b |
Ba | 0.97 ± 0.13 b | 2.2 ± 0.3 a | 0.95 ± 0.07 b | 2.05 ± 0.29 a | 0.9 ± 0.10 b | 1.42 ± 0.15 b | 3.3 ± 0.3 a | 1.2 ± 0.17 b | 2.81 ± 0.59 a | 1.3 ± 0.14 b |
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BCF | TF | BCF | TF | BCF | TF | BCF | TF | BCF | TF | |
Cd | 53.9 ± 2 a | 0.34 ± 0.0 a | 53.4 ± 2 a | 0.3 ± 0.0 a | 42.8 ± 2.4 b | 0.36 ± 0.0 a | 54.2 ± 1.2 a | 0.29 ± 0.0 a | 30 ± 1.3 c | 0.16 ± 0.01 b |
Pb | 94 ± 1.2 a | 0.32 ± 0.0 a | 97.9 ± 2 a | 0.32 ± 0.0 a | 84.9 ± 2.4 b | 0.34 ± 0.3 a | 101 ± 2.1 a | 0.27 ± 0.4 ab | 46 ± 1 c | 0.19 ± 0.02 b |
Ni | 95 ± 11 a | 0.3 ± 0.04 a | 95.6 ± 1 a | 0.33 ± 0.1 a | 80.5 ± 1.4 b | 0.35 ± 0.06 a | 95.6 ± 13 a | 0.27 ± 0.05 b | 62 ± 2.3 c | 0.08 ± 0.01 c |
Co | 101 ± 1 a | 0.3 ± 0.0 a | 91.3 ± 1 a | 0.3 ± 0.0 a | 80.8 ± 11 b | 0.34 ± 0.08 a | 90.3 ± 1.0 a | 0.27 ± 0.04 b | 53 ± 1.3 c | 0.21 ± 0.03 b |
As | 38 ± 14 a | 0.3 ± 0.0 a | 37 ± 15 a | 0.3 ± 0.0 a | 33.4 ± 1 ab | 0.35 ± 0.01 a | 39 ± 14 ab | 0.28 ± 0.0 b | 31 ± 2.1 c | 0.09 ± 0.01 c |
Hg | 36.1 ± 1 a | 0.32 ± 0.0 a | 36.1 ± 2 a | 0.3 ± 0.02 a | 30.1 ± 1.2 ab | 0.35 ± 0.0 a | 35.8 ± 1.3 a | 0.27 ± 0.04 b | 30 ± 0.9 b | 0.23 ± 0.05 b |
Cu | 37 ± 13 a | 0.3 ± 0.0 a | 39.2 ± 12 a | 0.3 ± 0.01 a | 32.9 ± 1.0 a | 0.35 ± 0.01 a | 40.4 ± 9.5 a | 0.28 ± 0.06 a | 18.6 ± 2 b | 0.09 ± 0.02 b |
Al | 37 ± 0.0 a | 0.3 ± 0.0 a | 38 ± 0.0 a | 0.3 ± 0.01 a | 27.1 ± 7.8 b | 0.35 ± 0.05 a | 33 ± 0.03 a | 0.21 ± 0.02 b | 19 ± 0.01 c | 0.20 ± 0.01 b |
V | 36.8 ± 1 a | 0.32 ± 0.08 a | 34.4 ± 1 a | 0.33 ± 0.1 a | 29.1 ± 0.0 b | 0.34 ± 0.01 a | 37.8 ± 1.6 a | 0.27 ± 0.04 a | 23.2 ± 1.4 c | 0.19 ± 0.01 b |
Cr | 40.0 ± 1 a | 0.32 ± 0.07 a | 40.5 ± 0.1 a | 0.32 ± 0 a | 33.8 ± 1.02 b | 0.34 ± 0.03 a | 30.8 ± 1.2 b | 0.27 ± 0.03ab | 29.3 ± 1.2 b | 0.20 ± 0.01 b |
Zn | 45.0 ± 2 a | 0.26 ± 0.0 a | 44. ± 1.6 a | 0.2 ± 0.0 a | 37.8 ± 0.12 b | 0.27 ± 0.09 a | 47.5 ± 2.1 a | 0.22 ± 0.02 b | 31.0 ± 1.02 c | 0.15 ± 0.01 c |
Fe | 58.5 ± 2 a | 0.7 ± 0.0 a | 45.8 ± 2.8 a | 0.7 ± 0.08 a | 52.0 ± 1.03 a | 0.74 ± 0.0 a | 37.5 ± 2.7 b | 0.75 ± 0.11 a | 36.5 ± 3.6 b | 0.70 ± 0.09 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsherif, E.A.; Al-Shaikh, T.M.; AbdElgawad, H. Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia. Biology 2022, 11, 164. https://doi.org/10.3390/biology11020164
Alsherif EA, Al-Shaikh TM, AbdElgawad H. Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia. Biology. 2022; 11(2):164. https://doi.org/10.3390/biology11020164
Chicago/Turabian StyleAlsherif, Emad A., Turki M. Al-Shaikh, and Hamada AbdElgawad. 2022. "Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia" Biology 11, no. 2: 164. https://doi.org/10.3390/biology11020164
APA StyleAlsherif, E. A., Al-Shaikh, T. M., & AbdElgawad, H. (2022). Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia. Biology, 11(2), 164. https://doi.org/10.3390/biology11020164