Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Why Focus on Sediments?
1.2. Why Use the Ecological Risk Index?
1.3. Objectives of the Study
2. Methodology
2.1. Data Collection
2.2. Data Interpretation
2.2.1. Ecological Risk Index (ERI)
2.2.2. Human Health Risk Assessment
3. Results and Discussion
3.1. Heavy Metals in Sediments
3.2. Potential Ecological Risk Index
3.3. Human Health Risk Assessment
3.3.1. Copper
3.3.2. Lead (Pb)
3.3.3. Zinc
3.4. Exposure Behaviors of Heavy Metals
3.5. Thailand
3.5.1. The Gulf of Thailand
3.5.2. Other Rivers and Aquatic Ecosystems
3.6. Vietnam
3.6.1. Northern Vietnam
3.6.2. Halong Bay
3.6.3. Central Vietnam
3.6.4. Southern Vietnam
3.7. Indonesia
3.7.1. Jakarta Bay
3.7.2. Java
3.7.3. Sumatra
3.7.4. Sulawesi
3.7.5. Other Coastal Waters
3.8. Malaysia
3.8.1. West Coast of Peninsular Malaysia
3.8.2. East Coast of Peninsular Malaysia
3.8.3. The Straits of Johore
3.8.4. East Malaysia: Sabah and Sarawak
3.9. The Philippines
4. Conclusions
Recommendations
- (1)
- Discharges from human activities and industry, which include processing plants, should be tightened up by upgraded regulatory standards. Regulation of anthropogenic sources should be prioritized to reduce HM emissions, improve mitigation and remediation measures in areas with high background concentrations, and minimize HM bioavailability and bioaccessibility to living organisms in various environmental compartments.
- (2)
- For the management of marine protected areas in the ASEAN-5 countries, better cooperation of research activities among key governmental and non-governmental agencies should be continuous and promoted with investments and allocations of research fundings across the countries. Not just for environmental and health reasons, but also as a resource conservation measure, reprocessing or recycling of wastes containing HMs should be prioritized.
- (3)
- In the future, it will be important to collect more HMs monitoring data to develop reliable inventories for not only the sediment but also for other environmental media in the ASEAN-5 countries. The intake of HM-contaminated commercial organisms that could potentially pose a significant risk to human health suggests that regular monitoring of HMs and emerging potentially toxic chemicals in the aquatic ecosystems should be highly advised.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Monetary Fund World Economic Outlook Database: Report for Selected Countries and Subjects. Available online: https://www.imf.org/en/Publications/WEO/weo-database/2020/October/weo-report (accessed on 31 May 2021).
- Worldometer Population of South-Eastern Asia. Available online: https://www.worldometers.info/world-population/south-eastern-asia-population/ (accessed on 31 May 2021).
- UN Statistic Division. Table 3: Population by Sex, Rate of Population Increase, Surface Area and DensityUN; Demographic Yearbook; United Nations Statistics Division: New York, NY, USA, 2012. [Google Scholar]
- CIA. The World Factbook; Central intelligence Agency: FairFax County, VA, USA, 2011.
- Chan, C.Y.; Tran, N.; Dao, D.C.; Sulser, T.B.; Phillips, M.J.; Batka, M.; Wiebe, K.; Preston, N. Fish to 2050 in the ASEAN Region; Working Paper; WorldFish and International Food Policy Research Institute (IFPRI): Penang, Malaysia; Washington, DC, USA, 2017. [Google Scholar]
- Praveena, S.; Aris, A.Z.; Radojevic, M. Heavy Metals Dyanamics and Source In Intertidal Mangrove Sediment of Sabah, Borneo Island. EnvironmentAsia 2010, 3, 79–83. [Google Scholar]
- Ismail, A.; Ramli, R. Trace Metals in Sediments and Molluscs from an Estuary Receiving Pig Farms Effluent. Environ. Technol. 1997, 18, 509–515. [Google Scholar] [CrossRef]
- Sany, S.B.T.; Salleh, A.; Rezayi, M.; Saadati, N.; Narimany, L.; Tehrani, G.M. Distribution and Contamination of Heavy Metal in the Coastal Sediments of Port Klang, Selangor, Malaysia. Water. Air. Soil Pollut. 2013, 224, 1476. [Google Scholar] [CrossRef]
- Udechukwu, B.E.; Ismail, A.; Zulkifli, S.Z.; Omar, H. Distribution, Mobility, and Pollution Assessment of Cd, Cu, Ni, Pb, Zn, and Fe in Intertidal Surface Sediments of Sg. Puloh Mangrove Estuary, Malaysia. Environ. Sci. Pollut. Res. 2015, 22, 4242–4255. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, S.Z.; Ismail, A.; Mohamat-Yusuff, F.; Arai, T.; Miyazaki, N. Johor Strait as a Hotspot for Trace Elements Contamination in Peninsular Malaysia. Bull. Environ. Contam. Toxicol. 2010, 84, 568–573. [Google Scholar] [CrossRef]
- Kaewtubtim, P.; Meeinkuirt, W.; Seepom, S.; Pichtel, J. Heavy Metal Phytoremediation Potential of Plant Species in a Mangrove Ecosystem in Pattani Bay, Thailand. Appl. Ecol. Environ. Res. 2016, 14, 367–382. [Google Scholar] [CrossRef]
- Kaewtubtim, P.; Meeinkuirt, W.; Seepom, S.; Pichtel, J. Occurrence of Heavy Metals and Radionuclides in Sediments and Seawater in Mangrove Ecosystems in Pattani Bay, Thailand. Environ. Sci. Pollut. Res. 2017, 24, 7630–7639. [Google Scholar] [CrossRef] [PubMed]
- Kaewtubtim, P.; Meeinkuirt, W.; Seepom, S.; Pichtel, J. Phytomanagement of Radionuclides and Heavy Metals in Mangrove Sediments of Pattani Bay, Thailand Using Avicennia Marina and Pluchea Indica. Mar. Pollut. Bull. 2018, 127, 320–333. [Google Scholar] [CrossRef]
- Hosono, T.; Su, C.-C.; Siringan, F.; Amano, A.; Onodera, S. Effects of Environmental Regulations on Heavy Metal Pollution Decline in Core Sediments from Manila Bay. Mar. Pollut. Bull. 2010, 60, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Mugnai, C.; Giuliani, S.; Turetta, C.; Cu, N.H.; Bellucci, L.G.; Nhon, D.H.; Capodaglio, G.; Frignani, M. Metals in Sediment Cores from Nine Coastal Lagoons in Central Vietnam. Am. J. Environ. Sci. 2012, 8, 130–142. [Google Scholar]
- Koukina, S.E.; Lobus, N.V.; Peresypkin, V.I.; Dara, O.M.; Smurov, A.V. Abundance, Distribution and Bioavailability of Major and Trace Elements in Surface Sediments from the Cai River Estuary and Nha Trang Bay (South China Sea, Vietnam). Estuar. Coast. Shelf Sci. 2017, 198, 450–460. [Google Scholar] [CrossRef]
- Effendi, H.; Kawaroe, M.; Lestari, D.F. Ecological Risk Assessment of Heavy Metal Pollution in Surface Sediment of Mahakam Delta, East Kalimantan. Procedia Environ. Sci. 2016, 33, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Everaarts, J.M. Heavy Metals (Cu, Zn, Cd, Pb) in Sediment of the Java Sea, Estuarine and Coastal Areas of East Java and Some Deep-Sea Areas. Neth. J. Sea Res. 1989, 23, 403–413. [Google Scholar] [CrossRef]
- Amin, B.; Ismail, A.; Arshad, A.; Yap, C.K.; Kamarudin, M.S. Anthropogenic Impacts on Heavy Metal Concentrations in the Coastal Sediments of Dumai, Indonesia. Environ. Monit. Assess. 2009, 148, 291–305. [Google Scholar] [CrossRef]
- Wang, Q.; Hong, H.; Yang, D.; Li, J.; Chen, S.; Pan, C.; Lu, H.; Liu, J.; Yan, C. Health Risk Assessment of Heavy Metal and Its Mitigation by Glomalin-Related Soil Protein in Sediments along the South China Coast. Environ. Pollut. 2020, 263, 114565. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Borah, S.S.; Kalamdhad, A.S. Heavy Metal Pollution and Potential Ecological Risk Assessment for Surficial Sediments of Deepor Beel, India. Ecol. Indic. 2021, 122, 107265. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A Review of Ecological Risk Assessment and Associated Health Risks with Heavy Metals in Sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Fang, G.-C.; Yang, H.-C. Heavy Metals in the River Sediments of Asian Countries of Taiwan, China, Japan, India, and Vietnam during 1999–2009. Environ. Forensics 2010, 11, 201–206. [Google Scholar] [CrossRef]
- Haque, M.A.; Subramanian, V.; Gibbs, R.J. Copper, Lead, and Zinc Pollution of Soil Environment. C R C Crit. Rev. Environ. Control 1982, 12, 13–68. [Google Scholar] [CrossRef]
- Costa-Böddeker, S.; Hoelzmann, P.; Thuyên, L.X.; Huy, H.D.; Nguyen, H.A.; Richter, O.; Schwalb, A. Ecological Risk Assessment of a Coastal Zone in Southern Vietnam: Spatial Distribution and Content of Heavy Metals in Water and Surface Sediments of the Thi Vai Estuary and Can Gio Mangrove Forest. Mar. Pollut. Bull. 2017, 114, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Dung, T.T.T.; Linh, T.M.; Chau, T.B.; Hoang, T.M.; Swennen, R.; Cappuyns, V. Contamination Status and Potential Release of Trace Metals in a Mangrove Forest Sediment in Ho Chi Minh City, Vietnam. Environ. Sci. Pollut. Res. 2019, 26, 9536–9551. [Google Scholar] [CrossRef]
- Huong, N.T.L.; Masami, O.; Li, L.; Higashi, T.; Kanayama, M. Heavy Metal Contamination of River Sediments in Vietnam. Proc. Inst. Civ. Eng. - Water Manag. 2010, 163, 111–121. [Google Scholar] [CrossRef]
- Phuong, N.M.; Kang, Y.; Sakurai, K.; Iwasaki, K.; Kien, C.N.; Van Noi, N.; Son, L.T. Levels and Chemical Forms of Heavy Metals in Soils from Red River Delta, Vietnam. Water. Air. Soil Pollut. 2010, 207, 319–332. [Google Scholar] [CrossRef]
- Sany, S.B.T.; Salleh, A.; Sulaiman, A.H.; Sasekumar, A.; Rezayi, M.; Monazami tehrani, G. Heavy Metal Contamination in Water and Sediment of the Port Klang Coastal Area, Selangor, Malaysia. Environ. Earth Sci. 2012, 69, 2013–2025. [Google Scholar] [CrossRef]
- Yap, C.K. Sediment Watch: Monitoring, Ecological Risk Assessment and Environmental Management; Nova Science Publishers: New York, NY, USA, 2018; ISBN Nova Science Publishers. [Google Scholar]
- Yap, C.K.; Pang, B.H. Assessment of Cu, Pb, and Zn Contamination in Sediment of North Western Peninsular Malaysia by Using Sediment Quality Values and Different Geochemical Indices. Environ. Monit. Assess. 2011, 183, 23–39. [Google Scholar] [CrossRef]
- Yap, C.K.; Pang, B.H. Anthropogenic Concentrations of Cd, Ni and Zn in the Intertidal, River and Drainage Sediments Collected from North Western Peninsular Malaysia. Pertanika J. Sci. Technol. 2011, 19, 93–107. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhuang, S.; Lu, X.; Yu, B.; Fan, X.; Yang, Y. Ascertaining the Pollution, Ecological Risk and Source of Metal(Loid)s in the Upstream Sediment of Danjiang River, China. Ecol. Indic. 2021, 125, 107502. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Geochemical Evolution of the Continental Crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01 - Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 1–64. ISBN 978-0-08-043751-4. [Google Scholar]
- Yu, G.B.; Liu, Y.; Yu, S.; Wu, S.C.; Leung, A.O.W.; Luo, X.S.; Xu, B.; Li, H.B.; Wong, M.H. Inconsistency and Comprehensiveness of Risk Assessments for Heavy Metals in Urban Surface Sediments. Chemosphere 2011, 85, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razak, H. Heavy metals content from coastal waters of Ujung Wau and Japara. Osea Indones. 1986, 21, 1–20. [Google Scholar]
- Soegiarto, A. Marine and Coastal Environment Problems in Indonesia: An Input for the Assessment of the East Asian Regional Seas.; EAS Task Team on the Health of the Ocean: Bangkok, Thailand, December 1987. [Google Scholar]
- Widianarko, B.; Verweij, R.A.; Van Gestel, C.A.M.; Van Straalen, N.M. Spatial Distribution of Trace Metals in Sediments from Urban Streams of Semarang, Central Java, Indonesia. Ecotoxicol. Environ. Saf. 2000, 46, 95–100. [Google Scholar] [CrossRef]
- Williams, T.M.; Rees, J.G.; Setiapermana, D. Metals and Trace Organic Compounds in Sediments and Waters of Jakarta Bay and the Pulau Seribu Complex, Indonesia. Mar. Pollut. Bull. 2000, 40, 277–285. [Google Scholar] [CrossRef]
- Amin, B. Distribution of heavy metals Pb, Cu and Zn in surface sediments at Telaga Tujuh Karimun, Riau Achipelago. J. Nat. Indones. 2002, 5, 9–16. [Google Scholar]
- Arifin, Z. Fate of heavy metal contaminants and their implication of benthic communities; Final reports of competitive research 2006-2008; Research Center for Oceanography, LIPI: Jakarta, Indonesia, 2008. [Google Scholar]
- Riyadi, A.S.; Ital, T.; Isobe, T.; Ilyas, M.; Sudaryanto, A.; Setiawan, I.E.; Takahashi, S.; Tanabe, S. Spatial Profile of Trace Elements in Marine Sediments from Jakarta Bay, Indonesia. In Interdisciplinary Studies on Environmental Chemistry—Environmental Pollution and Ecotoxicology; Kawaguchi, M., Misaki, K., Sato, H., Yokokawa, T., Itai, T., Nguyen, T.M., Ono, J., Tanabe, S., Eds.; TERRAPUB: Tokyo, Japan, 2012; pp. 141–150. [Google Scholar]
- Rochyatun, E.; Rozak, A. The Distribution of Heavy Metals in Sediment of Jakarta Bay. Mar. Res. Indones. 2008, 33, 101–107. [Google Scholar] [CrossRef]
- Hosono, T.; Su, C.-C.; Delinom, R.; Umezawa, Y.; Toyota, T.; Kaneko, S.; Taniguchi, M. Decline in Heavy Metal Contamination in Marine Sediments in Jakarta Bay, Indonesia Due to Increasing Environmental Regulations. Estuar. Coast. Shelf Sci. 2011, 92, 297–306. [Google Scholar] [CrossRef]
- Sindern, S.; Tremöhlen, M.; Dsikowitzky, L.; Gronen, L.; Schwarzbauer, J.; Siregar, T.H.; Ariyani, F.; Irianto, H.E. Heavy Metals in River and Coast Sediments of the Jakarta Bay Region (Indonesia) - Geogenic versus Anthropogenic Sources. Mar. Pollut. Bull. 2016, 110, 624–633. [Google Scholar] [CrossRef]
- Isworo, S.; Oetari, P.S. Heavy Metal Content on Sediments Seawater around Tanjung Jati Power Plant in Jepara District, Central Java Province, Indonesia. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 3152–3159. [Google Scholar]
- Amin, B.; Nurrachmi, I.; Setyani, R. Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in the North-West Coast of Kundur Island, Kepulauan Riau Province, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 1 September 2018; IOP Science: Bristol, UK, 2018; 216, p. 012015. [Google Scholar]
- Menasveta, P.; Cheevaparanapiwat, V. Heavy Metals, Organochlorine Pesticides and PCBs in Green Mussels, Mullets and Sediments of River Mouths in Thailand. Mar. Pollut. Bull. 1981, 12, 19–25. [Google Scholar] [CrossRef]
- Everaarts, J.M.; Swennen, C. Heavy Metals (Zn, Cu, Cd, Pb) in Some Benthic Invertebrate Species and in Sediment from Three Coastal Areas in Thailand and Malaysia. J. Sci. Soc. Thail. 1987, 13, 189–203. [Google Scholar] [CrossRef]
- Mingkhwan, R.; Worakhunpiset, S. Heavy Metal Contamination Near Industrial Estate Areas in Phra Nakhon Si Ayutthaya Province, Thailand and Human Health Risk Assessment. Int. J. Environ. Res. Public. Health 2018, 15, 1890. [Google Scholar] [CrossRef] [Green Version]
- Everaarts, J.M.; Swennen, C.; Cheewasedtham, W. Heavy Metals (Cu, Zn, Cd and Pb) in Surface Sediment and Organism in a Short Food-Chain, from the Intertidal Zone of Pattany Bay, Thailand––A Preliminary Study. Wallaceana 1994, 72, 17–24. [Google Scholar]
- Qiao, S.; Shi, X.; Fang, X.; Liu, S.; Kornkanitnan, N.; Gao, J.; Zhu, A.; Hu, L.; Yu, Y. Heavy Metal and Clay Mineral Analyses in the Sediments of Upper Gulf of Thailand and Their Implications on Sedimentary Provenance and Dispersion Pattern. J. Asian Earth Sci. 2015, 114, 488–496. [Google Scholar] [CrossRef]
- Potipat, J.; Tangkrock-olan, N.; Helander, H. Distribution of Selected Heavy Metals in Sediment of the River Basin of Coastal Area of Chanthaburi Province, Gulf of Thailand. EnvironmentAsia 2015, 8, 133–143. [Google Scholar] [CrossRef]
- Pradit, S.; Shazili, N.A.M.; Towatana, P.; Saengmanee, W. Trace Metals, Grain Size and Organic Matter in Sediment from a Coastal Area of Thailand and Malaysia. Aquat. Ecosyst. Health Manag. 2016, 19, 345–354. [Google Scholar] [CrossRef]
- Liu, S.; Shi, X.; Yang, G.; Khokiattiwong, S.; Kornkanitnan, N. Concentration Distribution and Assessment of Heavy Metals in the Surface Sediments of the Western Gulf of Thailand. Environ. Earth Sci. 2016, 75, 346. [Google Scholar] [CrossRef]
- Pumijumnong, N.; Danpradit, S. Heavy Metal Accumulation in Sediments and Mangrove Forest Stems from Surat Thani Provice, Thailand. Malays. For. 2016, 79, 212–228. [Google Scholar]
- Wijaya, A.R.; Ohde, S.; Shinjo, R.; Ganmanee, M.; Cohen, M.D. Geochemical Fractions and Modeling Adsorption of Heavy Metals into Contaminated River Sediments in Japan and Thailand Determined by Sequential Leaching Technique Using ICP-MS. Arab. J. Chem. 2019, 12, 780–799. [Google Scholar] [CrossRef]
- Ho, T.L.T.; Egashira, K. Heavy Metal Characterization of River Sediment in Hanoi, Vietnam. Commun. Soil Sci. Plant Anal. 2000, 31, 2901–2916. [Google Scholar] [CrossRef]
- Ho, H.H.; Rudy, S.; Damme, A. Distribution and Contamination Status of Heavy Metals in Estuarine Sediments near CauOng Harbor, Ha Long Bay, Vietnam. Geol. Belg. 2010, 13, 37–47. [Google Scholar]
- Tue, N.T.; Quy, T.D.; Amano, A.; Hamaoka, H.; Tanabe, S.; Nhuan, M.T.; Omori, K. Historical Profiles of Trace Element Concentrations in Mangrove Sediments from the Ba Lat Estuary, Red River, Vietnam. Water. Air. Soil Pollut. 2012, 223, 1315–1330. [Google Scholar] [CrossRef]
- Ho, H.H.; Swennen, R.; Cappuyns, V.; Vassilieva, E.; Neyens, G.; Rajabali, M.; Tran, T.V. Assessment on Pollution by Heavy Metals and Arsenic Based on Surficial and Core Sediments in the Cam River Mouth, Haiphong Province, Vietnam. Soil Sediment Contam. Int. J. 2013, 22, 415–432. [Google Scholar] [CrossRef]
- Ho, H.H.; Swennen, R.; Cappuyns, V.; Vassilieva, E.; Van Gerven, T.; Van Tran, T. Speciation and Mobility of Selected Trace Metals (As, Cu, Mn, Pb and Zn) in Sediment with Depth in Cam River-Mouth, Haiphong, Vietnam. Aquat. Geochem. 2013, 19, 57–75. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Vassilieva, E.; Phung, N.K. Leachability of Arsenic and Heavy Metals from Blasted Copper Slag and Contamination of Marine Sediment and Soil in Ninh Hoa District, South Central of Vietnam. Appl. Geochem. 2014, 44, 80–92. [Google Scholar] [CrossRef]
- Nguyen, H.; Zhang, W.; Li, Z.; Li, J.; Ge, C.; Liu, J.; Bai, X.; Feng, H.; Yu, L. Assessment of Heavy Metal Pollution in Red River Surface Sediments, Vietnam. Mar. Pollut. Bull. 2016, 113, 513–519. [Google Scholar] [CrossRef]
- Hoai, N.D.; Duc, T.T.; Van, H.D.; Son, H.P.; Manh, H.N.; Dinh, L.T.; Xiaoyong, D.; Dac, V.N. Sedimentation Rates and Heavy Metal Concentrations in the Tidal Flats of North Vietnam. Pol. J. Environ. Stud. 2019, 28, 3721–3733. [Google Scholar] [CrossRef]
- Dang Hoai, N.; Nguyen Manh, H.; Tran Duc, T.; Do Cong, T.; Tran Dinh, L.; Johnstone, R.; Nguyen Thi Kim, D. An Assessment of Heavy Metal Contamination in the Surface Sediments of Ha Long Bay, Vietnam. Environ. Earth Sci. 2020, 79, 436. [Google Scholar] [CrossRef]
- Tham, T.T.; Lap, B.Q.; Mai, N.T.; Trung, N.T.; Thao, P.P.; Huong, N.T.L. Ecological Risk Assessment of Heavy Metals in Sediments of Duyen Hai Seaport Area in Tra Vinh Province, Vietnam. Water. Air. Soil Pollut. 2021, 232, 49. [Google Scholar] [CrossRef]
- Kamaruzzaman, B.Y.; Willison, K.Y.S.; Ong, M.C. The Concentration of Manganese, Copper, Zinc, Lead and Thorium in Sediments of Paka Estuary, Terengganu, Malaysia. Pertanika J. Sci. Technol. 2006, 14, 53–61. [Google Scholar]
- Kamaruzzaman, Y.Y.; Ong, M.C. Distribution of Some Geochemical Elements in the Surface Sediment of Kerteh Mangrove Forest, Terengganu, Malaysia. Sains Malays. 2008, 37, 337–340. [Google Scholar]
- Dasar, K.N.; Ahmad, A.; Mushrifah, I.; Shuhaimi-Othman, M. Water Quality and Heavy Metal Concentrations in Sediment of Sungai Kelantan, Kelantan, Malaysia: A Baseline Study. Sains Malays. 2009, 38, 435–442. [Google Scholar]
- Rezaee Ebrahim Saraee, K.; Abdi, M.R.; Naghavi, K.; Saion, E.; Shafaei, M.A.; Soltani, N. Distribution of Heavy Metals in Surface Sediments from the South China Sea Ecosystem, Malaysia. Environ. Monit. Assess. 2011, 183, 545–554. [Google Scholar] [CrossRef]
- Redzwan, G.; Halim, H.; Alias, S.; Rahman, M. Assessment of Heavy Metal Contamination at West and East Coastal Area of Peninsular Malaysia. Malays. J. Sci. 2014, 33, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Ong, M.C.; Joseph, B.; Shazili, N.A.M.; Ghazali, A.; Mohamad, M.N. Heavy Metals Concentration in Surficial Sediments of Bidong Island, South China Sea off the East Coast of Peninsular Malaysia. Asian J. Earth Sci. 2015, 8, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.Z.; Abd Manap, N.R.; Saat, A.; Hamzah, Z.; Abas, M.T. Evaluation of Heavy Metal Contamination Levels of Balok River Sediments in Pahang, Malaysia Based on Geoaccumulation Index and Supported with Enrichment Factor. Malays. J. Anal. Sci. 2015, 19, 707–714. [Google Scholar]
- Wang, A.-J.; Bong, C.W.; Xu, Y.-H.; Hassan, M.H.A.; Ye, X.; Bakar, A.F.A.; Li, Y.-H.; Lai, Z.-K.; Xu, J.; Loh, K.H. Assessment of Heavy Metal Pollution in Surficial Sediments from a Tropical River-Estuary-Shelf System: A Case Study of Kelantan River, Malaysia. Mar. Pollut. Bull. 2017, 125, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, C.A.R.; Shazili, N.A.M. Recent Concentrations of Trace Elements in Coastal Sediment of Terengganu, Malaysia. Sains Malays. 1998, 27, 73–82. [Google Scholar]
- Pooveneswary, N.; Bakar, A.F.B.A.; Wei, B.C.; Weng Lee, C.; Ai Jun, W.; Amir Hassan, M.H.B.; Yunus, R.M.; Pauzi Zakaria, M. Contamination Status and Ecological Risk of Heavy Metals in Surface Sediment of Kelantan River and Its Nearshore Area, Malaysia. Water Sci. Technol. Water Supply 2019, 20, 103–117. [Google Scholar] [CrossRef]
- Praveena, S.; Ahmed, A.; Radojevic, M.; Abdullah, M.; Aris, A.Z. Heavy Metals in Mangrove Surface Sediment of Mengkabong Lagoon, Sabah: Multivariate and Geo-Accumulation Index Approaches. Int. J. Environ. Res. 2007, 2, 139–148. [Google Scholar]
- Nagarajan, R.; Jonathan, M.P.; Roy, P.D.; Wai-Hwa, L.; Prasanna, M.V.; Sarkar, S.K.; Navarrete-López, M. Metal Concentrations in Sediments from Tourist Beaches of Miri City, Sarawak, Malaysia (Borneo Island). Mar. Pollut. Bull. 2013, 73, 369–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aris, A.Z.; Husna, N.; Shafie, N.; Looi, L.J.; Praveena, S.; Ramil, M.F.; Yusoff, M. The Chemometric Approach as a Useful Tool in the Identification of Metal Pollution Sources of Riverine-Mangrove Sediment of Kota Marudu, Sabah, Malaysia. EnvironmentAsia 2014, 7, 70–78. [Google Scholar] [CrossRef]
- Ali, B.N.M.; Lin, C.Y.; Cleophas, F.; Abdullah, M.H.; Musta, B. Assessment of Heavy Metals Contamination in Mamut River Sediments Using Sediment Quality Guidelines and Geochemical Indices. Environ. Monit. Assess. 2014, 187, 4190. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.H.; Tair, R.; Ali, S.A.M.; Talibe, A. Distribution of Heavy Metals in Seawater and Surface Sediment in Coastal Area of Tuaran, Sabah. Trans. Sci. Technol. 2016, 3, 114–122. [Google Scholar]
- Tair, R.; Eduin, S. Heavy Metals In Water And Sediment From Liwagu River And Mansahaban River At Ranau Sabah. Malays. J. Geosci. MJG 2018, 2, 26–32. [Google Scholar] [CrossRef]
- Chai, H.P.; Lee, N.; Grinang, J.; Ling, T.Y.; Sim, S.F. Assessment of Heavy Metals in Water, Fish and Sediments of the Baleh River, Sarawak, Malaysia. Borneo J. Resour. Sci. Technol. 2018, 8, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Asare, E.A.; Assim, Z.B.; Wahi, R.B.; Droepenu, E.K.; Iya, N.I.D. Geochemistry Examination of Surface Sediments from Sadong River, Sarawak, Malaysia: Validation of ICP-OES Assessment of Selected Heavy Metals. Eurasian J. Anal. Chem. 2019, 14, 9–20. [Google Scholar]
- Mat, I.; Maah, M.J.; Yahya, M.S. The Status of Trace Metal Pollution in Inter-Tidal Sediments from the Straits of Tebrau, Malaysia. J. Sains 1994, 2, 221–228. [Google Scholar]
- Wood, A.K.H.; Ahmad, Z.; Shazili, N.A.M.; Yaakob, R.; Carpenter, R. Geochemistry of Sediments in Johor Strait between Malaysia and Singapore. Cont. Shelf Res. 1997, 17, 1207–1228. [Google Scholar] [CrossRef]
- Yap, C.K.; Edward, F.; Tan, S. Heavy Metal Concentrations (Cu, Pb, Ni and Zn) in the Surface Sediments from a Semi-Enclosed Intertidal Water, the Johore Straits: Monitoring Data for Future Reference. J. Sustain. Sci. Manag. 2010, 5, 44–57. [Google Scholar]
- Sivalingam, P.M.; Yoshida, Y.; Kojima, H.; Allapitchay, A. Trace Metals Biodeposition and Its Extent of Pollution in Coastal Molluscs, Sediment and Sea Water Samples from the Island of Penang, Malaysia. Proc Fourth CSK Symp Tokyo 1979, 534–544. [Google Scholar]
- Seng, C.E.; Lira, P.E.; Lira, T.T. Heavy Metal Concentrations in Coastal Seawater and Sediments off Prai Industrial Estate, Penang, Malaysia. Mar. Pollut. Bull. 1987, 18, 611–612. [Google Scholar] [CrossRef]
- Ismail, A. Heavy Metal Concentrations in Sediments off Bintulu, Malaysia. Mar. Pollut. Bull. 1993, 26, 706–707. [Google Scholar] [CrossRef]
- Lim, P.-E.; Kiu, M.-Y. Determination and Speciation of Heavy Metals in Sediments of the Juru River, Penang, Malaysia. Environ. Monit. Assess. 1995, 35, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Asmah, M. Copper, Zinc, Lead and Cadmium in Intertidal Molluscs and Sediment off Seberang Perai Coastline, Malaysia. In Proceedings of the fourth Princess Chulabhorn International Science Congress, Bangkok, Thailand, 28 November–2 December 1999. [Google Scholar]
- Yap, C.K.; Ismail, A.; Tan, S.G.; Omar, H. Concentrations of Cu and Pb in the Offshore and Intertidal Sediments of the West Coast of Peninsular Malaysia. Environ. Int. 2002, 28, 467–479. [Google Scholar] [CrossRef]
- Yap, C.K.; Ismail, A.; Tan, S.G. Cd and Zn Concentrations in the Straits of Malacca and Intertidal Sediments of the West Coast of Peninsular Malaysia. Mar. Pollut. Bull. 2003, 46, 1349–1353. [Google Scholar] [CrossRef]
- Yap, C.K.; Mew, S.C.; Edward, F.B.; Ismail, A.; Tan, S. Comparison of Heavy Metal Concentrations in Surface Sediment of Tanjung Piai Wetland with Other Sites Receiving Anthropogenic Inputs along the Southwestern Coast of Peninsular Malaysia. Wetl. Sci. 2006, 4, 48–57. [Google Scholar]
- Yap, C.K.; Ismail, A.; Pang, B.H.; Yeow, K.L.; Tan, S.G.; Siraj, S.S. Elevated Heavy Metal Concentrations in Surface Sediments Collected from the Drainages of the Sri Serdang Industrial Area, Malaysia. Malays. Appl. Biol. 2006, 35, 35–40. [Google Scholar]
- Yap, C.K.; Bin, H.P.; Supian, M.F.; Yoong, I.H.; Tan, S. Heavy Metal Pollution in Surface Sediments Collected from Drainages Receiving Different Anthropogenic Sources from Peninsular Malaysia. Wetl. Sci. 2007, 5, 97–104. [Google Scholar]
- Yap, C.K.; Fairuz, M.S.; Cheng, W.H. How Elevated Levels of Cd, Cu and Pb in the Surface Sediments Collected from the Drainage Receiving Metal Industrial Effluents? Comparison with Metal Industrial Drainage and Intertidal Sediments in Selangor, Malaysia. Asian J. Microbiol. Biotechnol. Environ. Sci. 2008, 10, 385–391. [Google Scholar]
- Yap, C.K.; Fairuz, M.S.; Cheng, W.H.; Tan, S.G. Distribution of Ni and Zn in the Surface Sediments Collected from Drainages and Intertidal Area in Selangor. Pertanika J. Trop. Agric. Sci. 2008, 31, 79–90. [Google Scholar]
- Yap, C.K.; Tan, S. Heavy Metal Pollution in the Juru River Basin Receiving Industrial Effluents: The Need for Biochemical and Molecular Studies in the Edible Cockles Anadara Granosa. Malays. Appl. Biol 2008, 37, 63–68. [Google Scholar]
- Razi-Idris, W.M.; Rahim, S.A.; Rahman, Z.A.; Lihan, T.; Hashim, A.; Mohd-Yusuf, S.N. Geochemical composition of beach sediment in Langkawi Island, Kedah. Malaysia. Sains Malays. 38, 313–320.
- Yap, C.K.; Edward, F.; Pang, B.H. A Comparative Study of Distribution of Heavy Metal Concentrations in the Pomacea Insularum Collected from Polluted and Unpolluted Sites of the Freshwater Ecosystem in Malaysia. Wetl. Sci. 2009, 7, 75–82. [Google Scholar]
- Yap, C.K.; Ruszaidi, S.; Cheng, H.; Tan, S. Heavy-Metal Concentrations in the Mangrove Snail, Nerita Lineata and Surface Sediments Collected from Klang River Estuary, Selangor, Malaysia. J. Sustain. Sci. Manag. 2010, 5, 1–12. [Google Scholar]
- Yap, C.K.; Khairul, I.M. A Comparative Study of Heavy Metal Concentrations in the Clam Corbicula Javanica and Surface Sediment Collected from Clean and Polluted Sites of Langat River. Malay. Appl. Biol. 2010, 39, 57–61. [Google Scholar]
- Sany, B.T.; Sulaiman, A.H.; Monazami, G.; Salleh, A. Assessment of Sediment Quality According To Heavy Metal Status in the West Port of Malaysia. Int. J. Geol. Environ. Eng. 2011, 5, 111–115. [Google Scholar]
- Nemati, K.; Bakar, N.K.A.; Abas, M.R.; Sobhanzadeh, E. Speciation of Heavy Metals by Modified BCR Sequential Extraction Procedure in Different Depths of Sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. [Google Scholar] [CrossRef]
- Salam, M.A.; Paul, S.C.; Shaari, F.I.; Rak, A.E.; Ahmad, R.B.; Kadir, W.R. Geostatistical Distribution and Contamination Status of Heavy Metals in the Sediment of Perak River, Malaysia. Hydrology 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, U.S.; Zulkifli, S.Z.; Ismail, A. Heavy Metals Bioavailability and Pollution Indices Evaluation in the Mangrove Surface Sediment of Sungai Puloh, Malaysia. Environ. Earth Sci. 2018, 77, 225. [Google Scholar] [CrossRef]
- Wood, A.K.; Muhammad, N.; Mahmood, C.S.; Ahmad, Z.; Shazili, N.A.; Law, A.T.; Yaakob, R. Corer Sampling and the Use of Neutron Activation Analysis in Evaluating Pollution at the Juru Waterway, Penang. J. Sains Nukl. Malays. 1993, 11, 105–128. [Google Scholar]
- Lim, W.Y.; Aris, A.Z.; Ismail, T.H.T. Spatial Geochemical Distribution and Sources of Heavy Metals in the Sediment of Langat River, Western Peninsular Malaysia. Environ. Forensics 2013, 14, 133–145. [Google Scholar] [CrossRef]
- Jamil, T.; Lias, K.; Hanif, H.; Norsila, D.; Aeisyah, A.; Kamaruzzaman, B. The Spatial Variability of Heavy Metals Concentrations and Sedimentary Organic Matter in Estuary Sediment of Sungai Perlis, Perlis, Malaysia. Sci. Postprint 2014, 1, e00016. [Google Scholar] [CrossRef]
- Shafie, N.A.; Aris, A.Z.; Haris, H. Geoaccumulation and Distribution of Heavy Metals in the Urban River Sediment. Int. J. Sediment Res. 2014, 29, 368–377. [Google Scholar] [CrossRef]
- Haris, H.; Aris, A.Z. Distribution of Metals and Quality of Intertidal Surface Sediment near Commercial Ports and Estuaries of Urbanized Rivers in Port Klang, Malaysia. Environ. Earth Sci. 2015, 73, 7205–7218. [Google Scholar] [CrossRef]
- Naji, A.; Ismail, A. Assessment of Metals Contamination in Klang River Surface Sediments by Using Different Indexes. EnvironmentAsia 2011, 4, 30–38. [Google Scholar] [CrossRef]
- Cheng, W.H.; Yap, C.K. Potential Human Health Risks from Toxic Metals via Mangrove Snail Consumption and Their Ecological Risk Assessments in the Habitat Sediment from Peninsular Malaysia. Chemosphere 2015, 135, 156–165. [Google Scholar] [CrossRef]
- Hamzan, N.A.A.; Zaini, F.F.M.; Ibrahim, M.I.; Ariffin, N.A.N. Assessment of Selected Heavy Metals in Seawater and Sediment at Klang Coastal Area Malaysia. Malays. J. Anal. Sci. 2015, 19, 9. [Google Scholar]
- Khodami, S.; Surif, M.; Wo, W.M.; Daryanabard, R. Assessment of Heavy Metal Pollution in Surface Sediments of the Bayan Lepas Area, Penang, Malaysia. Mar. Pollut. Bull. 2017, 114, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.W.; Yap, C.K.; Nulit, R.; Hamzah, M.S.; Chen, S.K.; Cheng, W.H.; Karami, A.; Al-Shami, S.A. Effects of Anthropogenic Activities on the Heavy Metal Levels in the Clams and Sediments in a Tropical River. Environ. Sci. Pollut. Res. 2017, 24, 116–134. [Google Scholar] [CrossRef]
- ELTurk, M.; Abdullah, R.; Zakaria, R.M.; Abu Bakar, N.K. Heavy Metal Contamination in Mangrove Sediments in Klang Estuary, Malaysia: Implication of Risk Assessment. Estuar. Coast. Shelf Sci. 2019, 226, 106266. [Google Scholar] [CrossRef]
- Shaari, H.; Khalik, W.; M Shazili, N.A.; Abdul Razak, N.; Bidai, J. Spatial Distribution of Heavy Metals in Tropical Coastal Sediment of the Northern Malacca Strait, Malaysia. Nat. Environ. Pollut. Technol. 2018, 17, 1115–1123. [Google Scholar]
- Nyangon, L.; Zainal, N.; Mohamad Pazi, A.M.; Gandaseca, S. Heavy Metals in Mangrove Sediments along the Selangor River, Malaysia. For. Soc. 2019, 3, 278. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, F.M.; Peralta, H.M.; Shariff, M.; Safura, S. Partitioning of Heavy Metals in Different Environmental and Biotic Components in the Coastal Waters of the Straits of Malacca, Peninsular Malaysia. J. Environ. Biol. 2020, 41, 1371–1381. [Google Scholar] [CrossRef]
- Vicente-Beckett, V.A.; Pascual, C.B.; Kwan, C.S.; Beckett, R. Levels and Distribution of Trace Metals in Sediments of Laguna Lake (Philippines) and Its Tributary Rivers. Int. J. Environ. Anal. Chem. 1991, 45, 101–116. [Google Scholar] [CrossRef]
- Vicente-Beckett, V.A. Trace Metal Levels and Speciation in Sediments of Some Philippine Natural Waters. Sci. Total Environ. 1992, 125, 345–357. [Google Scholar] [CrossRef]
- Prudente, M.S.; Ichihashi, H.; Tatsukawa, R. Heavy Metal Concentrations in Sediments from Manila Bay, Philippines and Inflowing Rivers. Environ. Pollut. 1994, 86, 83–88. [Google Scholar] [CrossRef]
- David, C.P. Heavy Metal Concentrations in Marine Sediments Impacted by a Mine-Tailings Spill, Marinduque Island, Philippines. Environ. Geol. 2002, 42, 955–965. [Google Scholar] [CrossRef]
- Olivares, R.U.; Maria, E.J.S.; Sombrito, E.Z. Environmental Assessment of Metal Pollution in Manila Bay Surface Sediments. Philipp. J. Sci. 2019, 149, 183–195. [Google Scholar]
- Elvira, M.V.; Faustino-Eslava, D.V.; Fukuyama, M.; de Chavez, E.R.C.; Padrones, J.T. Ecological Risk Assessment of Heavy Metals in the Bottom Sediments of Laguna de Bay, Philippines. Mindanao J. Sci. Technol. 2020, 18. [Google Scholar]
- US EPA. Superfund Public Health Evaluation Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 1986; pp. 1–86.
- Yang, D.; Liu, J.; Wang, Q.; Hong, H.; Zhao, W.; Chen, S.; Yan, C.; Lu, H. Geochemical and Probabilistic Human Health Risk of Chromium in Mangrove Sediments: A Case Study in Fujian, China. Chemosphere 2019, 233, 503–511. [Google Scholar] [CrossRef] [PubMed]
- US EPA. US EPA Human Health Evaluation Manual. In Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, U.S. Environmental Protection Agency: Washington, DC, USA, 1989; 1, ISBN EPA/600/P-95/002F. [Google Scholar]
- US EPA. Exposure Factors Handbook; National Center for Environmental Assessment, US EPA Office of Research and Development: Washington, DC, USA, 1997; ISBN EPA/600/P-95/002F.
- US EPA. Baseline Human Health Risk Assessment Vasquez Boulevard and I-70 Superfund Site Demver, Co; US Environmental Protection Agency: Washington, DC, USA, 2001.
- Chabukdhara, M.; Nema, A.K. Heavy Metals Assessment in Urban Soil around Industrial Clusters in Ghaziabad, India: Probabilistic Health Risk Approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of Heavy Metal Pollution and Human Health Risk in Urban Soils of Steel Industrial City (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Reference Dose (RfD): Description and Use in Health Risk Assessments, Background Document 1A; US Environmental Protection Agency: Washington, DC, USA, 1993.
- Beijing Quality and Technology Supervision Bureau Environmental site assessment guideline; Beijing Quality and Technology Supervision Bureau: Beijing, China, 2009.
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and Risk Assessment of Street Dust in Luanda, Angola: A Tropical Urban Environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and Health Risk of Arsenic, Mercury and Other Metals in Urban Street Dusts from a Mega-City, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Kelepertzis, E. Investigating the Sources and Potential Health Risks of Environmental Contaminants in the Soils and Drinking Waters from the Rural Clusters in Thiva Area (Greece). Ecotoxicol. Environ. Saf. 2014, 100, 258–265. [Google Scholar] [CrossRef]
- Al-Mutairi, K.A.; Yap, C.K. A Review of Heavy Metals in Coastal Surface Sediments from the Red Sea: Health-Ecological Risk Assessments. Int. J. Environ. Res. Public. Health 2021, 18, 2798. [Google Scholar] [CrossRef] [PubMed]
- ATSDR (Agency for Toxic Substances and Disease Registry) Atlanta. Toxicological Profile for Copper; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2004.
- Janjuhah, H.T.; Ishfaque, M.; Mehmood, M.I.; Kontakiotis, G.; Shahzad, S.M.; Zarkogiannis, S.D. Integrated Underground Mining Hazard Assessment, Management, Environmental Monitoring, and Policy Control in Pakistan. Sustainability 2021, 13, 13505. [Google Scholar] [CrossRef]
- Flemming, C.A.; Trevors, J.T. Copper Toxicity and Chemistry in the Environment: A Review. Water. Air. Soil Pollut. 1989, 44, 143–158. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Zinc; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2005.
- Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric Overview of Research Trends on Heavy Metal Health Risks and Impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. [Google Scholar] [CrossRef]
- Goyer, R.A. Lead. In Patty’s toxicology; Bingham, E., Cohrssen, B., Powell, C.H., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; Volume 2, pp. 611–675. [Google Scholar]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Lead; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2020.
- Tong, S.; von Schirnding, Y.E.; Prapamontol, T. Environmental Lead Exposure: A Public Health Problem of Global Dimensions. Bull. World Health Organ. 2000, 78, 1068–1077. [Google Scholar] [PubMed]
- Rossi, E. Low Level Environmental Lead Exposure – A Continuing Challenge. Clin. Biochem. Rev. 2008, 29, 63–70. [Google Scholar] [PubMed]
- Asokbunyarat, V.; Sirivithayapakorn, S. Heavy Metals in Sediments and Water at the Chao Phraya River Mouth, Thailand. Thai Environ. Eng. J. 2020, 34, 33–44. [Google Scholar]
- Censi, P.; Spoto, S.E.; Saiano, F.; Sprovieri, M.; Mazzola, S.; Nardone, G.; Di Geronimo, S.I.; Punturo, R.; Ottonello, D. Heavy Metals in Coastal Water Systems. A Case Study from the Northwestern Gulf of Thailand. Chemosphere 2006, 64, 1167–1176. [Google Scholar] [CrossRef]
- Cheevaporn, V.; Jacinto, G.S.; San Diego-McGlone, M.L. Heavy Metal Fluxes in Bang Pakong River Estuary, Thailand: Sedimentary vs Diffusive Fluxes. Mar. Pollut. Bull. 1995, 31, 290–294. [Google Scholar] [CrossRef]
- Hungspreugs, M.; Yuangthong, C. A History of Metal Pollution in the Upper Gulf of Thailand. Mar. Pollut. Bull. 1983, 14, 465–469. [Google Scholar] [CrossRef]
- Khuntong, S.; Phaophang, C.; Sudprasert, W. Assessment of Radionuclides and Heavy Metals in Marine Sediments along the Upper Gulf of Thailand. J. Phys. Conf. Ser. 2015, 611, 012023. [Google Scholar] [CrossRef]
- Ladachart, R.; Sutthirat, C.; Hisada, K.; Charusiri, P. Soil Erosion and Heavy Metal Contamination in the Middle Part of the Songkhla Lake Coastal Area, Southern Thailand. In Coastal Environments: Focus on Asian Regions; Subramanian, V., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 106–129. ISBN 978-90-481-3002-3. [Google Scholar]
- Pengthamkeerati, P.; Kornkanitnan, N.; Sawangarreruks, S.; Wanichacheva, N.; Wainiphithapong, C.; Sananwai, N. Assessment of Heavy Metals in Sediments of the Don Hoi Lot Area in the Mae Klong Estuary, Thailand. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Polprasert, C. Heavy Metal Pollution in the Chao Phraya River Estuary, Thailand. Water Res. 1982, 16, 775–784. [Google Scholar] [CrossRef]
- Sowana, A.; Shrestha, R.; Parkpian, P.; Pongquan, S. Influence of Coastal Land Use on Soil Heavy-Metal Contamination in Pattani Bay, Thailand. J. Coast. Res. 2011, 27, 252–262. [Google Scholar] [CrossRef]
- Windom, H.L.; Silpipat, S.; Chanpongsang, A.; Smith, R.G.; Hungspreugs, M. Trace Metal Composition of and Accumulation Rates of Sediments in the Upper Gulf of Thailand. Estuar. Coast. Shelf Sci. 1984, 19, 133–142. [Google Scholar] [CrossRef]
- Ta, A.T.; Babel, S. Microplastics Pollution with Heavy Metals in the Aquaculture Zone of the Chao Phraya River Estuary, Thailand. Mar. Pollut. Bull. 2020, 161, 111747. [Google Scholar] [CrossRef] [PubMed]
- Worakhunpiset, S. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand. Int. J. Environ. Res. Public. Health 2018, 15, 810. [Google Scholar] [CrossRef] [Green Version]
- Thongra-ar, W.; Musika, C.; Wongsudawan, W.; Munhapon, A. Heavy Metals Contamination in Sediments along the Eastern Coast of the Gulf of Thailand. EnvironmentAsia 2008, 1, 31–45. [Google Scholar] [CrossRef]
- Lo, C.K.; Fung, Y.S. Heavy Metal Pollution Profiles of Dated Sediment Cores from Hebe Haven, Hong Kong. Water Res. 1992, 26, 1605–1619. [Google Scholar] [CrossRef]
- Costa-Böddeker, S.; Thuyên, L.X.; Hoelzmann, P.; de Stigter, H.C.; van Gaever, P.; Huy, H.Đ.; Smol, J.P.; Schwalb, A. Heavy Metal Pollution in a Reforested Mangrove Ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of Natural and Anthropogenic Stressors over a Thirty-Year History. Sci. Total Environ. 2020, 716, 137035. [Google Scholar] [CrossRef] [PubMed]
- Huy, N.; Luyen, T.; Phe, T.; Mai, N. Toxic Elements and Heavy Metals in Sediments in Tham Luong Canal, Ho Chi Minh City, Vietnam. Environ. Geol. 2003, 43, 836–841. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Volkova, I.V. Assessment of Heavy Metal Pollution in Water and Sediments in the Red River Delta (Vietnam). IOP Conf. Ser. Mater. Sci. Eng. 2018, 451, 012203. [Google Scholar] [CrossRef]
- Nguyen, X.-V.; Tran, M.-H.; Le, T.-D.; Papenbrock, J. An Assessment of Heavy Metal Contamination on the Surface Sediment of Seagrass Beds at the Khanh Hoa Coast, Vietnam. Bull. Environ. Contam. Toxicol. 2017, 99, 728–734. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Do, D.D.; Nguyen, T.X.; Nguyen, V.N.; Phuc Nguyen, D.T.; Nguyen, M.H.; Thi Truong, H.T.; Dong, H.P.; Le, A.H.; Bach, Q.-V. Seasonal, Spatial Variation, and Pollution Sources of Heavy Metals in the Sediment of the Saigon River, Vietnam. Environ. Pollut. 2020, 256, 113412. [Google Scholar] [CrossRef] [PubMed]
- Strady, E.; Dang, V.B.H.; Némery, J.; Guédron, S.; Dinh, Q.T.; Denis, H.; Nguyen, P.D. Baseline Seasonal Investigation of Nutrients and Trace Metals in Surface Waters and Sediments along the Saigon River Basin Impacted by the Megacity of Ho Chi Minh (Vietnam). Environ. Sci. Pollut. Res. 2017, 24, 3226–3243. [Google Scholar] [CrossRef]
- Thanh-Nho, N.; Marchand, C.; Strady, E.; Van Vinh, T.; Taillardat, P.; Cong-Hau, N.; Nhu-Trang, T.-T. Trace Metal Dynamics in a Tropical Mangrove Tidal Creek: Influence of Porewater Seepage (Can Gio, Vietnam). Front. Environ. Sci. 2020, 8, 139. [Google Scholar] [CrossRef]
- Thanh-Nho, N.; Marchand, C.; Strady, E.; Vinh, T.-V.; Nhu-Trang, T.-T. Metals Geochemistry and Ecological Risk Assessment in a Tropical Mangrove (Can Gio, Vietnam). Chemosphere 2019, 219, 365–382. [Google Scholar] [CrossRef]
- Thinh, N.V.; Osanai, Y.; Adachi, T.; Thai, P.K.; Nakano, N.; Ozaki, A.; Kuwahara, Y.; Kato, R.; Makio, M.; Kurosawa, K. Chemical Speciation and Bioavailability Concentration of Arsenic and Heavy Metals in Sediment and Soil Cores in Estuarine Ecosystem, Vietnam. Microchem. J. 2018, 139, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Tu, N.P.C.; Ha, N.N.; Tri, N.N.; Dong, N.V. Distribution of Heavy Metals in Sediment along the Southern Coast of Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2020, 589, 012014. [Google Scholar] [CrossRef]
- Ho, H.H.; Swennen, R.; Cappuyns, V.; Vassilieva, E.; Neyens, G.; Rajabali, M.; Tran, T.V. Geogene Versus Anthropogene Origin of Trace Metals in Sediments in Cua Luc Estuary and Ha Long Bay, Vietnam. Estuaries Coasts 2013, 36, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Thung, D.C.; Thuy, L.T. Status of the Ha Long Heritage Biodiversity.; Publishing House for Science and Technology: Hanoi, Vietnam, 2009; pp. 28–37. [Google Scholar]
- Costa-Böddeker, S.; Thuyên, L.X.; Hoelzmann, P.; de Stigter, H.C.; van Gaever, P.; Huy, H.Đ.; Schwalb, A. The Hidden Threat of Heavy Metal Pollution in High Sedimentation and Highly Dynamic Environment: Assessment of Metal Accumulation Rates in the Thi Vai Estuary, Southern Vietnam. Environ. Pollut. 2018, 242, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Abobakir, A. Determination Of Heavy Metals (Pb, Zn, Cd, Cu) of Coastal Urban Area of Semarang Indonesia. In Proceedings of the E3S Web of Conferences, Semarang, Indonesia, 14–15 August 2018; 73, p. 03017. [Google Scholar] [CrossRef]
- Angel, B.M.; Simpson, S.L.; Jarolimek, C.V.; Jung, R.; Waworuntu, J.; Batterham, G. Trace Metals Associated with Deep-Sea Tailings Placement at the Batu Hijau Copper–Gold Mine, Sumbawa, Indonesia. Mar. Pollut. Bull. 2013, 73, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Armid, A.; Shinjo, R.; Sabarwati, S.H.; Ruslan, R. Pollution Assessment of Various Heavy Metals in the Surface Sediment of Kendari Bay, Indonesia. Nat. Environ. Pollut. Technol. 2017, 16, 8. [Google Scholar]
- Asaf, R.; Athirah, A.; Paena, M.; Mustafa, A. Quality Indicators of Metals Pollution in the Coastal Sediments in Sangihe Islands Regency, North Sulawesi Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 564, 012039. [Google Scholar] [CrossRef]
- Bohari, R.; Palutturi, S. Analysis of Heavy Metal Distribution and Content in Coastal Area of Makassar, Indonesia. Indian J. Public Health Res. Dev. 2018, 9, 210. [Google Scholar] [CrossRef]
- Booij, K.; Hillebrand, M.T.; Nolting, R.F.; van Ooijen, J. Nutrients, Trace Metals, and Organic Contaminants in Banten Bay, Indonesia. Mar. Pollut. Bull. 2001, 42, 1187–1190. [Google Scholar] [CrossRef]
- Dewi, N.N.; Nindarwi, D.D.; Wulansari, P.D.; Rahardja, B.S. Heavy Metals Contamination (Pb, Cd, and Hg) in Bomo Coastal Ecosystem, Banyuwangi, Indonesia. Indian Vet. J. 2020, 97, 31–33. [Google Scholar]
- Edinger, E.N.; Siregar, P.R.; Blackwood, G.M. Heavy Metal Concentrations in Shallow Marine Sediments Affected by Submarine Tailings Disposal and Artisanal Gold Mining, Buyat-Ratototok District, North Sulawesi, Indonesia. Environ. Geol. 2007, 52, 701–714. [Google Scholar] [CrossRef]
- Haeruddin, H.; Supriharyono, S.; Rahman, A.; Ghofar, A.; Iryanthony, S.B. Spatial Distribution and Heavy Metal Pollution Analysis in the Sediments of Garang Watershed, Semarang, Central Java, Indonesia. AACL Bioflux 2020, 13, 2577–2587. [Google Scholar]
- Cordova, M.R. A Preliminary Study on Heavy Metal Pollutants Chrome (Cr), Cadmium (Cd), and Lead (Pb) in Sediments and Beach Morning Glory Vegetation (Ipomoea Pes-Caprae) from Dasun Estuary, Rembang, Indonesia. Mar. Pollut. Bull. 2021, 162, 111819. [Google Scholar] [CrossRef]
- Irzon, R.; Syafri, I.; Hutabarat, J.; Sendjaja, P.; Permanadewi, S. Heavy Metals Content and Pollution in Tin Tailings from Singkep Island, Riau, Indonesia. Sains Malays. 2018, 47, 2609–2616. [Google Scholar] [CrossRef]
- Karina, S.; Suhermi, R.; Alesyah, M.; Octavina, C.; Ulfah, M. Analysis of Heavy Metals in Fluvial Sediments Affected by Coal Spill Waters in Lampuuk Beach, Aceh Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 348, 012085. [Google Scholar] [CrossRef]
- Budiyanto, F.; Hindarti, D. Speciation of Heavy Metals Cu, Ni and Zn by Modified BCR Sequential Extraction Procedure in Sediments from Banten Bay, Banten Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012059. [Google Scholar] [CrossRef]
- Lestari, L.; Budiyanto, F.; Puspitasari, R.; Purbonegoro, T.; Cordova, M.R.; Hindarti, D. Fractionation of Metal in Surface Sediment from Cirebon Coastal Waters, West Java, Indonesia. AIP Conf. Proc. 2018, 2024, 020062. [Google Scholar] [CrossRef]
- Prartono, T.; Sanusi, H.S.; Nurjaya, I.W. Seasonal Distribution and Geochemical Fractionation of Heavy Metals from Surface Sediment in a Tropical Estuary of Jeneberang River, Indonesia. Mar. Pollut. Bull. 2016, 111, 456–462. [Google Scholar] [CrossRef]
- Riani, E.; Cordova, M.R.; Arifin, Z. Heavy Metal Pollution and Its Relation to the Malformation of Green Mussels Cultured in Muara Kamal Waters, Jakarta Bay, Indonesia. Mar. Pollut. Bull. 2018, 133, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Samawi, M.F.; Werorilangi, S.; Isyirini, R. Bioavailability Exchangeable Phase of Heavy Metals in Sediments and Contamination in Shellfish at Estuaries on the West Coast of South Sulawesi, Indonesia. AACL Bioflux 2020, 13, 2365–2374. [Google Scholar]
- Sudarningsih, S.; Aliyah, H.; Fajar, S.J.; Bijaksana, S. Magnetic Characterization and Heavy Metals Pollutions of Sediments in Citarum River, Indonesia. J. Phys. Conf. Ser. 2019, 1204, 012082. [Google Scholar] [CrossRef] [Green Version]
- Syakti, A.D.; Demelas, C.; Hidayati, N.V.; Rakasiwi, G.; Vassalo, L.; Kumar, N.; Prudent, P.; Doumenq, P. Heavy Metal Concentrations in Natural and Human-Impacted Sediments of Segara Anakan Lagoon, Indonesia. Environ. Monit. Assess. 2014, 187, 4079. [Google Scholar] [CrossRef] [PubMed]
- Takarina, N.D.; Browne, D.R.; Risk, M.J. Speciation of Heavy Metals in Coastal Sediments of Semarang, Indonesia. Mar. Pollut. Bull. 2004, 49, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Tanjung, R.H.R.; Hamuna, B.; Yonas, M.N. Assessing Heavy Metal Contamination in Marine Sediments Around the Coastal Waters of Mimika Regency, Papua Province, Indonesia. J. Ecol. Eng. 2019, 20, 35–42. [Google Scholar] [CrossRef]
- Tongggiroh, A.; Imran, A.M.; Haerany, S. Environmental Geochemistry of Heavy Metals and Plagioclase Background Enrichment Factor in Coastal Sediments at Lumpue - Parepare, South Sulawesi, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 370, 012002. [Google Scholar] [CrossRef]
- Yasuda, M.; Syawal, M.S.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Tanaka, S.; Kurasaki, M. Metal Concentrations of River Water and Sediments in West Java, Indonesia. Bull. Environ. Contam. Toxicol. 2011, 87, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Yona, D.; Fuad, M.A.Z.; Hidayati, N. Spatial Distribution of Heavy Metals in the Surface Sediments of the Southern Coast of Pacitan, Indonesia. Indones. J. Chem. 2018, 18, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Yona, D.; Febriana, R.; Handayani, M. The Comparison of Heavy Metals (Pb and Cd) in the Water and Sediment during Spring and Neap Tide Tidal Periods in Popoh Bay, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 137, 012037. [Google Scholar] [CrossRef]
- Arifin, Z.; Puspitasari, R.; Miyazaki, N. Heavy Metal Contamination in Indonesian Coastal Marine Ecosystems: A Historical Perspective. Coast. Mar. Sci. 2012, 35, 227–233. [Google Scholar]
- Amin, B.; Ismail, A.; Yap, C.K. Distribution and Speciation of Zn and Pb in Coastal Sediments of Dumai Sumatera, Indonesia. Toxicol. Environ. Chem. 2008, 90, 609–623. [Google Scholar] [CrossRef]
- Alkarkhi, A.F.M.; Ismail, N.; Ahmed, A.; Easa, A. mat Analysis of Heavy Metal Concentrations in Sediments of Selected Estuaries of Malaysia—a Statistical Assessment. Environ. Monit. Assess. 2008, 153, 179. [Google Scholar] [CrossRef] [PubMed]
- Antonina, A.N.; Azhar, M.S.N.; Lokman, H.M.; Zauyah, D.S.; Kamaruzzaman, Y.; Shamsuddin, A. Heavy Metal Distribution of the South China Sea Continental Shelf Sediments off Sabah and Sarawak Coastlines. Aquat. Ecosyst. Health Manag. 2007, 10, 57–67. [Google Scholar] [CrossRef]
- Ismail, A.; Yap, C.K.; Chan, F.F. Concentrations of Cd, Cu and Zn in Sediments Collected from Urban Lakes at Kelana Jaya, Peninsular Malaysia. Wetl. Sci. 2004, 2, 248–258. [Google Scholar]
- Law, A.T.; Singh, A. Distribution of Manganese, Iron, Copper, Lead and Zinc in Water and Sediment of Kelang Estuary. Pertanika 1986, 9, 209–217. [Google Scholar]
- Lias, L.; Jamil, T.; Aliaa, S.N. A Preliminary Study on Heavy Metal Concentration in the Marine Bivalves Marcia Marmorata Species and Sediments Collected From the Coastal Area of Kuala Perlis, North Of Malaysia. IOSR J. Appl. Chem. 2013, 4, 48–54. [Google Scholar] [CrossRef]
- Mahat, N.A.; Muktar, N.K.; Ismail, R.; Razak, F.I.A.; Wahab, R.A.; Keyon, A.S.A. Toxic Metals in Perna Viridis Mussel and Surface Seawater in Pasir Gudang Coastal Area, Malaysia, and Its Health Implications. Environ. Sci. Pollut. Res. 2018, 25, 30224–30235. [Google Scholar] [CrossRef]
- Mamun, D.A.A.; Musta, B.; Yaccup, R. Distribution of Heavy Metals (Cr, Mn, Fe, Co & Ni) in Marine Sediment Cores at Marudu Bay, Sabah. ASM Sci. J. 2018, 11, 66–73. [Google Scholar]
- Omorinoye, O.; Assim, Z.; Jusoh, I.; Iya, N.I.D.; Asare, E.A. Vertical Profile of Heavy Metals Concentration in Sediments From Sadong River, Sarawak, Malaysia. Indian J. Environ. Prot. 2019, 39, 971–978. [Google Scholar]
- Sarmani, S.B. The Determination of Heavy Metals in Water, Suspended Materials and Sediments from Langat River, Malaysia. Hydrobiologia 1989, 176, 233–238. [Google Scholar] [CrossRef]
- Shazili, N.A.M.; Yunus, K.; Ahmad, A.S.; Abdullah, N.; Rashid, M.K.A. Heavy Metal Pollution Status in the Malaysian Aquatic Environment. Aquat. Ecosyst. Health Manag. 2006, 9, 137–145. [Google Scholar] [CrossRef]
- Sukri, S.; Aspin, S.; Kamarulzaman, N.; Jaafar, N.; Ghazi, R.M.; Ismail, N.; Ya’Acob, S.; Kedri, F.; Zakaria, M. Assessment of Metal Pollution Using Enrichment Factor (EF) and Pollution Load Index (PLI) in Sediments of Selected Terengganu Rivers, Malaysia. Malays. J. Fundam. Appl. Sci. 2018, 14, 235–240. [Google Scholar] [CrossRef]
- Yunus, K.; My, N.; Azhar, N.; Shazili, M.; Chuan, O.; Saad, S. Heavy Metal Concentration in the Surface Sediment of Tanjung Lumpur Mangrove Forest, Kuantan, Malaysia. Sains Malays. 2011, 40, 89–92. [Google Scholar]
- Idriss, A.A.; Ahmad, A.K. Heavy Metal Concentrations (Cu, Cd and Pb) in Sediments in the Jura River, Penang, Malaysia. J. Biol. Sci. 2012, 12, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Baruddin, N.A.; Shazili, N.A.; Pradit, S. Sequential Extraction Analysis of Heavy Metals in Relation to Bioaccumulation in Mangrove, Rhizophora Mucronata from Kelantan Delta, Malaysia. AACL Bioflux 2017, 10, 172–181. [Google Scholar]
- Tan, K.; Denil, D.J.; Ransangan, J. Temporal and Spatial Variability of Heavy Metals in Marudu Bay, Malaysia. Oceanol. Hydrobiol. Stud. 2016, 45, 353–367. [Google Scholar] [CrossRef]
- Yunus, K.; Zuraidah, M.A.; John, A. A Review on the Accumulation of Heavy Metals in Coastal Sediment of Peninsular Malaysia. Ecofeminism Clim. Change 2020, 1, 21–35. [Google Scholar] [CrossRef]
- Elturk, M.; Abdullah, R.; Rozainah, M.Z.; Abu Bakar, N.K. Evaluation of Heavy Metals and Environmental Risk Assessment in the Mangrove Forest of Kuala Selangor Estuary, Malaysia. Mar. Pollut. Bull. 2018, 136, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Monaci, F.; Bargagli, R. Barium and Other Trace Metals as Indicators of Vehicle Emissions. Water. Air. Soil Pollut. 1997, 100, 89–98. [Google Scholar] [CrossRef]
- Machado, W.; Moscatelli, M.; Rezende, L.G.; Lacerda, L.D. Mercury, Zinc, and Copper Accumulation in Mangrove Sediments Surrounding a Large Landfill in Southeast Brazil. Environ. Pollut. 2002, 120, 455–461. [Google Scholar] [CrossRef]
- Guigue, J.; Mathieu, O.; Lévêque, J.; Denimal, S.; Steinmann, M.; Milloux, M.-J.; Grisey, H. Dynamics of Copper and Zinc Sedimentation in a Lagooning System Receiving Landfill Leachate. Waste Manag. 2013, 33, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.K.; Edward, F.B.; Tan, S. Determination of Heavy Metal Distributions in the Green-Lipped Mussel Perna Viridis as Bioindicators of Heavy Metal Contamination in the Johore Straits and Senggarang, Peninsular Malaysia. Trends Appl. Sci. Res. 2007, 2, 284–294. [Google Scholar] [CrossRef]
- Yap, C.K.; Nasir, S.M.; Edward, F.B.; Tan, S.G. Anthropogenic Inputs of Heavy Metals in the East Part of the Johore Straits as Revealed by Their Concentrations in the Different Soft Tissues of Perna Viridis (L.). Pertanika J. Trop. Agric. Sci. 2012, 35, 827–834. [Google Scholar]
- Yap, C.K.; Shahbazi, A.; Zakaria, M.P. Concentrations of Heavy Metals (Cu, Cd, Zn and Ni) and PAHs in Perna Viridis Collected from Seaport and Non-Seaport Waters in the Straits of Johore. Bull. Environ. Contam. Toxicol. 2012, 89, 1205–1210. [Google Scholar] [CrossRef]
- Ng, Y.J.E.; Yap, C.K.; Zakaria, M.P.; Tan, S.G. Assessment of Heavy Metal Pollution in the Straits of Johore by Using Transplanted Caged Mussel, Perna Viridis. Pertanika J. Sci. Technol. 2013, 21, 75–96. [Google Scholar]
- Ng, Y.J.E.; Yap, C.K.; Zakaria, M.P.; Aris, A.Z.; Tan, S.G. Trace Metals in the Shells of Mussels Perna Viridis Transplanted from Polluted to Relatively Unpolluted Sites in the Straits of Johore: Shells as Biomonitoring Materials. Asian J. Microbiol. Biotechnol. Environ. Sci. Pap. 2013, 15, 5–8. [Google Scholar]
- Yap, C.K.; Ismail, A.; Edward, F.B.; Tan, S.G.; Siraj, S.S. Use of Different Soft Tissues of Perna Viridis a s Biomonitors of Bioavailability and Contamination by Heavy Metals (Cd, Cu, Fe, Pb, Ni, and Zn) in a Semi-Enclosed Intertidal Water, the Johore Straits. Toxicol. Environ. Chem. 2006, 88, 683–695. [Google Scholar] [CrossRef]
- Apodaca, D.C.; Ocampo, C.B.; Resubal, G.F.F.; Macalalad, E.M. Trace Metal Speciation in Sediments of Calancan Bay, Sta. Cruz, Marinduque, Philippines, SYLVATROP. Tech. J. Philipp. Ecosyst. Nat. Resour. 2013, 23, 21–52. [Google Scholar]
- Cabuga, C.C.; Rey, Y.C.; Jumawan, J.C. Levels of Heavy Metals in Fish and Sediments from Different Salinity Gradients of Lower Agusan River to Butuan Bay, Caraga, Philippines. EnvironmentAsia 2020, 13, 88–100. [Google Scholar] [CrossRef]
- Decena, S.C.P.; Arguilles, M.S.; Robel, L.L. Assessing Heavy Metal Contamination in Surface Sediments in an Urban River in the Philippines. Pol. J. Environ. Stud. 2018, 27, 1983–1995. [Google Scholar] [CrossRef]
- Nillos, M.G.; Taberna, H.; Sesbreño, R.S.; Pahila, I.; Okamoto, Y.; Añasco, N. Geochemical Speciation of Metals (Cu, Pb, Cd) in Fishpond Sediments in Batan Bay, Aklan, Philippines. Environ. Monit. Assess. 2020, 192, 658. [Google Scholar] [CrossRef]
- Santiago, E.C.; Africa, C.R. Trace Metal Concentrations in the Aquatic Environment of Albay Gulf in the Philippines after a Reported Mine Tailings Spill. Mar. Pollut. Bull. 2008, 56, 1657–1663. [Google Scholar] [CrossRef]
- Sazon, R.R.; Migo, V.P. Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines. J. Health Pollut. 2020, 10, 914. [Google Scholar] [CrossRef]
- Japitana, M.V.; Palconit, E.V.; Demetillo, A.T.; Taboada, E.B.; Burce, M.E.C. Potential Technologies for Monitoring the Fate of Heavy Metals in the Philippines: A Review. 37th Asian Conf. Remote Sens. ACRS 2016, 2, 1622–1632. [Google Scholar]
Inland Area 1 (km2) | Water Area 2 (km2) | Population 3 (Million) | GDP 2010 4 (Billions) | GDP 2021 4 (Billions) | Capture Fisheries Output 5 (Thousand Tons) | Aquaculture Output 5 (Thousand Tons) | |
---|---|---|---|---|---|---|---|
Indonesia | 1,811,569 | 93,000 | 273.5 | 755.3 | 1167.2 | 6103 | 3849 |
Malaysia | 329,613 | 1190 | 32.4 | 258.6 | 380.3 | 1489 | 261 |
Philippines | 298,170 | 1830 | 109.6 | 208.4 | 398.3 | 2335 | 815 |
Thailand | 510,890 | 2230 | 69.8 | 341.1 | 536.8 | 1844 | 1057 |
Vietnam | 310,070 | 21,140 | 97.3 | 143.3 | 369.5 | 2804 | 3207 |
ASEAN-5 | 3,260,312 | 119,390 | 582.6 | 1706.6 | 2852.1 | 14,575 | 9189 |
World | 148,940,000 | 361,132,000 | 7844.3 | 66,140.5 | 91,031.2 | - | - |
Country | No. | Locations | Cu | Zn | Pb | References | |
---|---|---|---|---|---|---|---|
Indonesia (N = 15) | 1 | min | Coast of Pantai Ujung Watu (Central Java) | 2.10 | 0.60 | 1.10 | Razak [41] nS |
2 | max | Coast of Pantai Ujung Watu (Central Java) | 29.6 | 9.30 | 10.9 | Razak [41] nS | |
3 | mean | Jakarta Bay, Indonesia | 82.9 | 79.8 | 438 | Soegiarto [42] nS | |
4 | min | Estuaries of Brantas River and Solo River | 24.0 | 40.0 | 9.00 | Everaarts [18] S | |
5 | max | Estuaries of Brantas River and Solo River | 58.0 | 122 | 23.0 | Everaarts [18] S | |
6 | min | Semarang, Central Java | 12.3 | 53.7 | 5.20 | Widianarko et al. [43] S | |
7 | max | Semarang, Central Java | 448 | 1257 | 2666 | Widianarko et al. [43] S | |
8 | min | Jakarta Bay | 13.0 | 68.0 | 17.0 | Williams et al. [44] S | |
9 | max | Jakarta Bay | 25.0 | 95.0 | 28.0 | Williams et al. [44] S | |
10 | mean | Telaga Tujuh Karimun, Riau Achipelago | 46.3 | 96.8 | 88.2 | Amin [45] nS | |
11 | mean | Berau Delta | 16.5 | 6.10 | 12.2 | Arifin [46] nS | |
12 | min | Dumai coast | 1.61 | 31.5 | 14.6 | Amin et al. [19] S | |
13 | max | Dumai coast | 13.8 | 87.1 | 84.9 | Amin et al. [19] S | |
14 | min | Jakarta Bay 2010 | 10.8 | 85.0 | 13.0 | Riyadi et al. [47] nS | |
15 | max | Jakarta Bay 2010 | 107 | 845 | 106 | Riyadi et al. [47] nS | |
16 | min | Jakarta Bay 2004 | 0.82 | 53.9 | 3.64 | Rochyatun and Rozak [48] nS | |
17 | max | Jakarta Bay 2004 | 74.7 | 498 | 53.0 | Rochyatun and Rozak [48] nS | |
18 | mean | Jakarta Bay | 10.0 | 33.0 | 9.00 | Hosono et al. [49] S | |
19 | mean | Mahakam Delta, East Kalimantan | 27.7 | 187 | 27.6 | Effendi et al. [17] S | |
20 | min | river and coast sediments of the Jakarta Bay | 14.8 | 64.2 | 3.00 | Sindern et al. [50] S | |
21 | max | river and coast sediments of the Jakarta Bay | 355 | 1130 | 210 | Sindern et al. [50] S | |
NonS | 22 | min | Tanjung Jati power plant in Jepara District, Central Java | 6.98 | 271 | 0.33 | Isworo and Oetari [51] nS |
NonS | 23 | max | Tanjung Jati power plant in Jepara District, Central Java | 11.0 | 681 | 3.88 | Isworo and Oetari [51] nS |
24 | mean | North-West Coast of Kundur Island, Kepulauan Riau Province | 1.70 | 11.5 | 292 | Amin et al. [52] S | |
Thailand (N = 11) | 1 | min | The Upper Gulf of Thailand | 3.00 | 35.0 | 20.0 | Menasveta and Cheevaparanapiwat [53] S |
2 | max | The Upper Gulf of Thailand | 37.0 | 95.0 | 283 | Menasveta and Cheevaparanapiwat [53] S | |
3 | max | Ao Ban Don and Pattani Bay | 70.0 | 250 | 424 | Everaarts and Swennen [54] nS | |
4 | mean | River near Uthai District (Phra Nakhon Si Ayutthaya Province) | 20.0 | 60.0 | 22.0 | Mingkhwan and Worakhunpiset [55] S | |
5 | mean | River Bangpa-in District (Phra Nakhon Si Ayutthaya Province) | 100 | 70.0 | 16.0 | Mingkhwan and Worakhunpiset [55] S | |
6 | min | Pattany Bay | 22.5 | 75.0 | 79.4 | Everaarts et al. [56] nS | |
7 | max | Pattany Bay | 26.90 | 90.0 | 97.0 | Everaarts et al. [56] nS | |
8 | min | Upper Gulf of Thailand, rivers of Mae Klong, Tha Chin, Chao Phraya, and Bang Pakong | 6.00 | 18.0 | 13.0 | Qiao et al. [57] S | |
9 | max | Upper Gulf of Thailand, rivers of Mae Klong, Tha Chin, Chao Phraya, and Bang Pakong | 36.0 | 127 | 36.0 | Qiao et al. [57] S | |
10 | mean | Chanthaburi Province | 7.41 | 18.1 | 1.82 | Potipat et al. [58] S | |
11 | mean | Pattani Bay | 3.27 | 9.33 | 9.57 | Pradit et al. [59] S | |
12 | min | Western Gulf of Thailand | 2.20 | 1.63 | 4.13 | Liu et al. [60] S | |
13 | max | Western Gulf of Thailand | 25.3 | 78.9 | 38.7 | Liu et al. [60] S | |
14 | min | mangrove forest stems from Surat Thani Province | 2.90 | 7.50 | 8.15 | Pumijumnong and Danpradit [61] S | |
15 | max | mangrove forest stems from Surat Thani Province | 13.7 | 46.4 | 26.0 | Pumijumnong and Danpradit [61] S | |
16 | min | Mangrove Pattani Bay | 3.30 | 30.4 | 166 | Kaewtubtim et al. [13] S | |
17 | max | Mangrove Pattani Bay | 18.7 | 39.8 | 314 | Kaewtubtim et al. [13] S | |
18 | mean | Chao Phraya River in Bangkok | 214 | 240 | 62.6 | Wijaya et al. [62] S | |
Vietnam (N = 15) | 1 | min | Rivers in Hanoi | 37.0 | 93.0 | 43.0 | Ho and Egashira [63] nS |
2 | max | Rivers in Hanoi | 309 | 4950 | 361 | Ho and Egashira [63] nS | |
3 | mean | Paddy field near Red River Delta | 193 | 381 | 340 | Phuong et al. [28] S | |
4 | mean | Cua Ong Habor, Ha Long Bay | 20.0 | 40.0 | 16.0 | Ho et al. [64] S | |
5 | min | Lang Co, Truong Giang, An Khe, Nuoc Man, Nuoc Ngot, Thi Nai, O Loan, Thuy Trieu and Dam Nai | 6.58 | 31.0 | 17.4 | Romano et al. [15] nS | |
6 | max | Lang Co, Truong Giang, An Khe, Nuoc Man, Nuoc Ngot, Thi Nai, O Loan, Thuy Trieu and Dam Nai | 28.6 | 92.0 | 33.8 | Romano et al. [15] nS | |
7 | min | Cua Ong, Ha Long | 13.0 | 12.0 | 4.00 | Tue et al. [65] S | |
8 | max | Cua Ong, Ha Long | 30.0 | 94.0 | 41.0 | Tue et al. [65] S | |
9 | mean | The Cam River mouth (Haiphong Province), Red River System | 82.0 | 178 | 92.0 | Ho et al. [66] S | |
10 | mean | Cam River-Mouth, Haiphong | 14.0 | 65.0 | 18.0 | Ho et al. [67] S | |
11 | mean | Ninh Hoa district central of Vietnam | 12.0 | 79.0 | 34.0 | Dung et al. [68] S | |
12 | min | Cai River estuary and Nha Trang Bay | 18.1 | 63.8 | 33.0 | Koukina et al. [16] S | |
13 | max | Cai River estuary and Nha Trang Bay | 73.8 | 118 | 86.2 | Koukina et al. [16] S | |
14 | min | Red River | 20.0 | 40.0 | 27.0 | Nguyen et al. [69] S | |
15 | max | Red River | 332 | 287 | 188 | Nguyen et al. [69] S | |
16 | min | Thi Vai Estuary and in the Can Gio Mangrove Forest | 16.5 | 73.0 | 17.0 | Costa-Böddeker et al. [25] S | |
17 | max | Thi Vai Estuary and in the Can Gio Mangrove Forest | 48.5 | 127 | 25.0 | Costa-Böddeker et al. [25] S | |
18 | mean | mangrove forest sediment in Ho Chi Minh City | 26.0 | 113 | 26.0 | Dung et al. [26] S | |
19 | min | Tidal flats in the north of Vietnam from Quang Ninh to Ninh Binh provinces | 0.69 | 3.95 | 5.78 | Hoai et al. [70] S | |
20 | max | Tidal flats in the north of Vietnam from Quang Ninh to Ninh Binh provinces | 94.8 | 492 | 120 | Hoai et al. [70] S | |
21 | min | Ha Long Bay | 3.80 | 6.34 | 10.2 | Dang Hoai et al. [71] S | |
22 | max | Ha Long Bay | 41.7 | 119 | 69.9 | Dang Hoai et al. [71] S | |
23 | min | Duyen Hai Seaport Area in Tra Vinh Province | 3.07 | 82.9 | 65.3 | Tham et al. [72] S | |
24 | max | Duyen Hai Seaport Area in Tra Vinh Province | 9.15 | 212 | 85.2 | Tham et al. [72] S | |
East PM (N = 12) | 1 | mean | Paka Estuary, Terengganu | 29.2 | 72.5 | 54.9 | Kamaruzzaman et al. [73] S |
2 | mean | Mangrove forests of Terengganu | 31.1 | 20.8 | 10.5 | Kamaruzzaman et al. [73] nS | |
3 | mean | Kerteh mangrove Forest, Terengganu | 29.0 | 22.3 | 11.7 | Kamaruzzaman and Ong [74] S | |
4 | mean | Kelantan River, Kelantan | 6.74 | 18.7 | 20.8 | Dasar et al. [75] S | |
5 | mean | East coast PM, South China Sea | 37.4 | 9.30 | 44.3 | Rezaee Ebrahim Saraee et al. [76] S | |
6 | mean | East coast of Pahang | 0.69 | 0.75 | 0.29 | Redzwan et al. [77] S | |
7 | mean | Bidong Island, South China sea Cu | 19.3 | 61.3 | 20.5 | Ong et al. [78] nS | |
8 | mean | Balok River, Pahang | 24.3 | 159 | 29.3 | Mohd Zahari abdullah et al. [79] S | |
9 | mean | Setiu Wetlands, Terengganu | 0.38 | 2.15 | 1.60 | Pradit et al. [59] S | |
10 | min | Kelantan River, Kelantan | 16.0 | 47.6 | 42.2 | Wang et al. [80] S | |
11 | max | Kelantan River, Kelantan | 25.2 | 63.5 | 65.5 | Wang et al. [80] S | |
12 | max | Terengganu coast, Terengganu | 36.6 | 41.1 | 19.8 | Mohamed and Shazili [81] S | |
13 | mean | Kelantan riverine, Kelantan | 11.4 | 32.9 | 22.6 | Pooveneswary et al. [82] S | |
14 | mean | Kelantan nearshore area, Kelantan | 14.1 | 41.0 | 62.2 | Pooveneswary et al. [82] S | |
East Malaysia (N = 8) | 1 | min | Mengkabong lagoon, Sabah | 19.0 | 41.0 | 41.0 | Praveena et al. [83] S |
2 | max | Mengkabong lagoon, Sabah | 28.0 | 57.0 | 52.0 | Praveena et al. [83] S | |
3 | min | Forty-three sediment samples were collected from the beaches of Miri City, Sarawak | 28.8 | 17.9 | 10.5 | Nagarajan et al. [84] S | |
4 | max | Forty-three sediment samples were collected from the beaches of Miri City, Sarawak | 71.3 | 28.3 | 19.7 | Nagarajan et al. [84] S | |
5 | mean | Kota Marudu, Sabah | 248 | 451 | 53.6 | Aris et al. [85] S | |
6 | mean | Mamut River, Sabah | 583 | 61.4 | 23.5 | Muhammad Ali et al. [86] S | |
7 | mean | Tuaran, Sabah | 6.49 | 22.0 | 2.63 | Tan et al. [87] nS | |
8 | min | Liwagu River and Mansahaban River at Ranau Sabah | 8.07 | 16.0 | 4.45 | Tair and Eduin [88] nS | |
9 | max | Liwagu River and Mansahaban River at Ranau Sabah | 391 | 69.3 | 32.60 | Tair and Eduin [88] nS | |
10 | mean | Baleh River, Sarawak | 19.9 | 55.0 | 7.55 | Chai et al. [89] nS | |
11 | max | Sadong River, Sarawak | 0.09 | 6.27 | 0.07 | Asare et al. [90] nS | |
Straits of Johore (N = 4) | 1 | mean | Straits of Johore, Johore | 4.40 | 26.1 | 30.8 | Mat et al. [91] nS |
2 | min | Strait of Johor, Johore | 10.8 | 68.5 | 26.4 | Wood et al. [92] S | |
3 | max | Strait of Johor, Johore | 92.9 | 231 | 69.9 | Wood et al., [92] S | |
4 | mean | Strait of Johor, Johore | 57.8 | 210 | 52.5 | Zulkifli et al. [10] S | |
5 | mean | Eastern part of the Straits of Johore (3 sites; 2004) | 110 | 180 | 33.6 | Yap et al. [93] S | |
6 | mean | The western part of the Straits of Johore (7 sites; 2004) | 28.6 | 137 | 33.7 | Yap et al. [93] S | |
West PM (N = 41) | 1 | min | Penang Island | 1.00 | 8.00 | 6.00 | Sivalingam et al. [94] nS |
2 | max | Penang Island | 26.0 | 76.0 | 35.0 | Sivalingam et al. [94] nS | |
3 | mean | Jeram coast, Perak | 40.0 | 100 | 48.0 | Everaarts and Swennen [54] nS | |
4 | min | Juru, Prai Industrial Estate, Penang | 9.30 | 73.5 | 20.8 | Seng et al. [95] S | |
5 | max | Juru, Prai Industrial Estate, Penang | 13.8 | 110 | 33.0 | Seng et al. [95] S | |
6 | max | West coast of Peninsular Malaysia | 9.99 | 1400 | 45.0 | Ismail et al. [96] S | |
7 | min | Bintulu coast | 7.00 | 39.0 | 11.0 | Ismail [96] S | |
8 | max | Bintulu coast | 13.0 | 91.0 | 36.0 | Ismail [96] S | |
9 | min | Juru River, Penang | 2.00 | 2.00 | 0.10 | Lim and Kiu [97] S | |
10 | max | Juru River, Penang | 144 | 483 | 117 | Lim and Kiu [97] S | |
11 | mean | Sepang Besar River, Selangor | 23.0 | 55.0 | 16.0 | Ismail and Ramli [7] S | |
12 | min | Prai, Industrial Zone, Penang | 9.99 | 30.3 | 22.2 | Ismail and Asmah [98] nS | |
13 | max | Prai, Industrial Zone, Penang | 63.4 | 513 | 45.3 | Ismail and Asmah [98] nS | |
14 | min | Offshore area of the west coast of Peninsular Malaysia 1998–1999 (20 sites) | 0.25 | 4.00 | 3.59 | Yap et al. [99,100] S | |
15 | max | Offshore area of the west coast of Peninsular Malaysia 1998–1999 (20 sites) | 13.8 | 79.1 | 25.4 | Yap et al. [99,100] S | |
16 | min | Intertidal area of the west coast of Peninsular Malaysia 1999–2001 (26 sites) | 0.40 | 3.12 | 0.96 | Yap et al. [99,100] S | |
17 | max | Intertidal area of the west coast of Peninsular Malaysia 1999–2001 (26 sites) | 315 | 306 | 69.8 | Yap et al. [99,100] S | |
18 | min | Southwestern coast of Peninsular Malaysia 2005 (7 sites) | 3.43 | 43.1 | 16.5 | Yap et al. [101] nS | |
19 | max | Southwestern coast of Peninsular Malaysia 2005 (7 sites) | 154 | 324 | 67.8 | Yap et al. [101] nS | |
20 | min | Sri Serdang Industrial area drainage, Selangor | 43.0 | 169 | 56.1 | Yap et al. [102] nS | |
21 | max | Sri Serdang Industrial area drainage, Selangor | 551 | 296 | 404 | Yap et al. [102] nS | |
22 | min | Polluted drainage sediments in the west part of Peninsular Malaysia (6 sites) | 877 | 330 | 57.4 | Yap et al. [103] nS | |
23 | max | Polluted drainage sediments in the west part of Peninsular Malaysia (6 sites) | 1019 | 484 | 1267 | Yap et al. [103] nS | |
24 | min | Six intertidal areas and four urban drainage sites, Selangor | 6.64 | 50.2 | 26.0 | Yap et al. [104,105] S | |
25 | max | Six intertidal areas and four urban drainage sites, Selangor | 123 | 336 | 228 | Yap et al. [104,105] S | |
26 | mean | Juru Estuary, Penang | 32.9 | 317 | 30.2 | Yap and Tan [106] nS | |
27 | mean | Beach sediment in Langkawi Island, Kedah | 6.00 | 34.7 | 63.7 | Razi-Idris et al. [107] S | |
28 | mean | Juru River, Penang | 32.0 | 531 | 60.8 | Yap et al. [108] nS | |
29 | min | Klang River Estuary, Selangor | 5.29 | 46.4 | 30.4 | Yap et al. [109] S | |
30 | max | Klang River Estuary, Selangor | 53.9 | 207 | 62.3 | Yap et al. [109] S | |
31 | min | Langat River, Selangor | 5.20 | 46.9 | 3.06 | Yap and Mohd Khairul [110] nS | |
32 | max | Langat River, Selangor | 12.3 | 77.7 | 8.17 | Yap and Mohd Khairul [110] nS | |
33 | min | West Port, Selangor | 7.40 | 23.0 | 22.3 | Sany et al. [111] nS | |
34 | max | West Port, Selangor | 27.6 | 98.3 | 80.0 | Sany et al. [111] nS | |
35 | min | Northern coastal sediments of Peninsular Malaysia (13 sites, 2005) | 4.79 | 33.6 | 15.9 | Yap and Pang [31,32] S | |
36 | max | Northern coastal sediments of Peninsular Malaysia (13 sites, 2005) | 32.9 | 317 | 61.6 | Yap and Pang [31,32] S | |
37 | min | Northern drainage sediment of Peninsular Malaysia (5 sites, 2005) | 10.2 | 88.7 | 10.2 | Yap and Pang [31,32] S | |
38 | max | Northern drainage sediment of Peninsular Malaysia (5 sites, 2005) | 120 | 484 | 126 | Yap and Pang [31,32] S | |
39 | mean | Sg. Buloh, Selangor | 34.7 | 94.0 | 37.3 | Nemati et al. [112] S | |
40 | max | Upstream Perak River, Perak | 19.1 | 51.3 | 27.0 | Salam et al. [113] S | |
41 | max | Downstream Perak River, Perak | 60.0 | 161 | 60.8 | Salam et al. [113] S | |
42 | max | Sungai Puloh mangrove, Klang, Selangor | 202 | 651 | 225 | Abubakar et al. [114] S | |
43 | max | Juru, Penang | 43.0 | 83.7 | 35.5 | Wood et al. [115] nS | |
44 | mean | Langat River, Selangor | 5.72 | 35.9 | 30.4 | Lim et al. [116] S | |
45 | mean | Klang Straits (West Port, North Port, and South Port), Selangor | 17.4 | 51.1 | 59.5 | Sany et al. [8,29] S | |
46 | min | Perlis River, Perlis | 7.31 | 61.3 | 23.5 | Jamil et al. [117] nS | |
47 | max | Perlis River, Perlis | 35.9 | 121 | 76.7 | Jamil et al. [117] nS | |
48 | mean | Langat River, Selangor | 2.68 | 29.7 | 15.5 | Shafie et al. [118] S | |
49 | mean | West coast of Negeri Sembilan and Melaka | 0.18 | 0.37 | 0.56 | Redzwan et al. [77] S | |
50 | mean | Port Klang, Selangor | 6.80 | 48.1 | 15.6 | Haris and Aris [119] S | |
51 | mean | Sungai Puloh mangrove, Klang, Selangor | 46.9 | 1024 | 78.8 | Udechukwu et al. [9] S | |
52 | max | Klang River, Selangor | 52.9 | 272 | 64.1 | Naji and Ismail [120] S | |
53 | min | West coast mangrove of Peninsular Malaysia 2011 (9 sites) | 5.59 | 29.4 | 25.4 | Cheng and Yap [121] S | |
54 | max | West coast mangrove of Peninsular Malaysia 2011 (9 sites) | 28.7 | 130 | 173 | Cheng and Yap [121] S | |
55 | min | Klang coastal area (Kapar, Sungai Puloh, Sementa and North Port), Selangor | 3.20 | 73.2 | 8.00 | Hamzan et al. [122] S | |
56 | max | Klang Coastal area (Kapar, Sungai Puloh, Sementa and North Port), Selangor | 10.2 | 125 | 25.7 | Hamzan et al. [122] S | |
57 | min | Bayan Lepas Free Industrial Zone of Penang | 1.92 | 8.86 | 7.74 | Khodami et al. [123] S | |
58 | max | Bayan Lepas Free Industrial Zone of Penang | 387 | 103 | 63.2 | Khodami et al. [123] S | |
59 | min | Langat River, Selangor | 10.5 | 55.6 | 48.1 | Wong et al. [124] S | |
60 | max | Langat River, Selangor | 17.4 | 84.7 | 64.3 | Wong et al. [124] S | |
61 | mean | Kuala Selangor estuary, Selangor | 3.55 | 76.6 | 28.8 | ELTurk et al. [125] S | |
62 | min | Northern Malacca Strait | 3.50 | 30.1 | 8.88 | Shaari et al. [126] S | |
63 | max | Northern Malacca Strait | 16.6 | 79.4 | 29.3 | Shaari et al. [126] S | |
64 | min | Mangrove sediments along the Selangor River, Selangor | 1.00 | 215 | 8.83 | Nyangon et al. [127] S | |
65 | max | Mangrove sediments along the Selangor River, Selangor | 10.6 | 259 | 28.6 | Nyangon et al. [127] S | |
66 | mean | Mangrove sediment in the Klang estuary, Selangor | 9.38 | 22.5 | 37.40 | ELTurk et al. [125] S | |
67 | min | Juru estuary, Penang | 9.56 | 72.1 | 15.1 | Yusoff et al. [128] S | |
68 | max | Juru estuary, Penang | 64.9 | 304 | 59.5 | Yusoff et al. [128] S | |
Philippines (N = 7) | 1 | mean | Laguna Lake(Laguna de Bay) | 100 | 114 | 10.4 | Vicente-Beckett [129,130] S |
2 | min | Manila Bay | 32.0 | 60.0 | 6.00 | Prudente et al. [131] S | |
3 | max | Manila Bay | 118 | 329 | 95.0 | Prudente et al. [131] S | |
4 | min | a mine-tailings spill, Marinduque Island | 706 | 13.0 | 43.0 | David [132] S | |
5 | max | a mine-tailings spill, Marinduque Island | 3080 | 276 | 56.0 | David [132] S | |
6 | min | Manila Bay (core sediments) | 22.9 | 50.0 | 7.30 | Hosono et al. [14] S | |
7 | max | Manila Bay (core sediments) | 38.6 | 96.0 | 19.0 | Hosono et al. [14] S | |
8 | min | Manila Bay (core sediments) | 56.7 | 74.6 | 8.69 | Olivares et al. [133] S | |
9 | max | Manila Bay (core sediments) | 90.3 | 122 | 26.6 | Olivares et al. [133] S | |
10 | min | Laguna de Bay | 66.8 | 112 | 20.4 | Elvira et al. [134] S | |
11 | max | Laguna de Bay | 147 | 251 | 64.9 | Elvira et al. [134] S |
Factor | Definition | Unit | Children | Adults | References |
---|---|---|---|---|---|
ABF | Dermal absorption factor | unitless | 0.001 | 0.001 | Chabukdhara and Nema [140] |
AF | Skin adherence factor | mg/cm day | 0.2 | 0.7 | US EPA [142] |
AT | Average time | days | 365 × ED | 365 × ED | US EPA [137] |
BW | Body weight of the exposed individual | kg | 15 | 55.9 | Beijing Quality and Technology Supervision Bureau [143] |
ED | Exposure duration | years | 6 | 24 | USEPA [139] |
EF | Exposure frequency | days/year | 350 | 350 | Beijing Quality and Technology Supervision Bureau [143] |
IngR | Ingestion rate of soil | mg/day | 200 | 100 | USEPA [139] |
PEF | Particle emission factor | m3/kg | 1.36 × 109 | 1.36 × 109 | USEPA [139] |
SA | Exposed skin surface area | cm2 | 1600 | 4350 | Beijing Quality and Technology Supervision Bureau (2009) |
Indonesia (N = 24) | Cu | Zn | Pb | Cu Cf | Zn Cf | Pb Cf | Cu ER | Zn ER | Pb ER | PERI |
Minimum | 0.82 | 0.60 | 0.33 | 0.06 | 0.01 | 0.02 | 0.29 | 0.01 | 0.10 | 1.07 |
Maximum | 448 | 1257 | 2666 | 31.3 | 24.2 | 157 | 157 | 24.2 | 784 | 965 |
Mean | 58.1 | 242 | 172 | 4.06 | 4.65 | 10.1 | 20.3 | 4.65 | 50.5 | 75.4 |
Median | 15.7 | 82.4 | 15.8 | 1.09 | 1.58 | 0.93 | 5.47 | 1.58 | 4.65 | 15.9 |
SD | 110 | 364 | 541 | 7.71 | 7.01 | 31.9 | 38.5 | 7.01 | 159 | 196 |
SE | 22.5 | 74.4 | 110 | 1.57 | 1.43 | 6.51 | 7.87 | 1.43 | 32.53 | 40.1 |
Skewness | 2.78 | 1.78 | 4.32 | 2.78 | 1.78 | 4.32 | 2.78 | 1.78 | 4.32 | 4.12 |
Kurtosis | 6.52 | 1.83 | 17.4 | 6.52 | 1.83 | 17.4 | 6.52 | 1.83 | 17.4 | 16.2 |
Thailand (N = 18) | Cu | Zn | Pb | Cu Cf | Zn Cf | Pb Cf | Cu ER | Zn ER | Pb ER | PERI |
Minimum | 2.20 | 1.63 | 1.82 | 0.15 | 0.03 | 0.11 | 0.77 | 0.03 | 0.54 | 2.02 |
Maximum | 214 | 250 | 424 | 15.0 | 4.81 | 24.9 | 74.8 | 4.81 | 125 | 154 |
Mean | 34.0 | 71.8 | 90.1 | 2.38 | 1.38 | 5.30 | 11.9 | 1.38 | 26.5 | 39.8 |
Median | 19.4 | 53.2 | 31.0 | 1.36 | 1.02 | 1.82 | 6.76 | 1.02 | 9.12 | 23.7 |
SD | 51.7 | 71.8 | 125 | 3.62 | 1.38 | 7.34 | 18.1 | 1.38 | 36.7 | 44.0 |
SE | 12.2 | 16.9 | 29.4 | 0.85 | 0.33 | 1.73 | 4.26 | 0.33 | 8.65 | 10.4 |
Skewness | 2.61 | 1.52 | 1.61 | 2.61 | 1.52 | 1.61 | 2.61 | 1.52 | 1.61 | 1.27 |
Kurtosis | 6.36 | 1.45 | 1.30 | 6.37 | 1.45 | 1.30 | 6.36 | 1.45 | 1.30 | 0.60 |
Vietnam (N = 24) | Cu | Zn | Pb | Cu Cf | Zn Cf | Pb Cf | Cu ER | Zn ER | Pb ER | PERI |
Minimum | 0.69 | 3.95 | 4.00 | 0.05 | 0.08 | 0.24 | 0.24 | 0.08 | 1.18 | 2.02 |
Maximum | 332 | 4950 | 361 | 23.2 | 95.2 | 21.2 | 116 | 95.2 | 106 | 309 |
Mean | 59.7 | 323 | 73.3 | 4.18 | 6.21 | 4.31 | 20.9 | 6.21 | 21.6 | 48.7 |
Median | 23.0 | 92.5 | 33.9 | 1.61 | 1.78 | 2.00 | 8.04 | 1.78 | 9.97 | 21.8 |
SD | 90.5 | 992 | 95.4 | 6.33 | 19.1 | 5.61 | 31.7 | 19.1 | 28.1 | 72.3 |
SE | 18.5 | 203 | 19.5 | 1.29 | 3.90 | 1.15 | 6.46 | 3.90 | 5.73 | 14.8 |
Skewness | 2.19 | 4.49 | 2.16 | 2.19 | 4.49 | 2.16 | 2.19 | 4.49 | 2.16 | 2.49 |
Kurtosis | 3.59 | 18.4 | 3.69 | 3.59 | 18.4 | 3.69 | 3.59 | 18.4 | 3.69 | 5.57 |
Malaysia (N = 99) | Cu | Zn | Pb | Cu Cf | Zn Cf | Pb Cf | Cu ER | Zn ER | Pb ER | PERI |
Minimum | 0.09 | 0.37 | 0.07 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 | 0.02 | 0.17 |
Maximum | 1019 | 1400 | 1267 | 71.3 | 26.9 | 74.5 | 356 | 26.9 | 373 | 738 |
Mean | 70.0 | 145 | 55.7 | 4.89 | 2.78 | 3.28 | 24.47 | 2.78 | 16.4 | 43.6 |
Median | 17.4 | 69.3 | 30.4 | 1.22 | 1.33 | 1.79 | 6.09 | 1.33 | 8.94 | 17.1 |
SD | 164 | 210 | 134 | 11.4 | 4.04 | 7.89 | 57.2 | 4.04 | 39.5 | 90.2 |
SE | 16.4 | 21.1 | 13.5 | 1.15 | 0.41 | 0.79 | 5.75 | 0.41 | 3.97 | 9.06 |
Skewness | 3.99 | 3.33 | 7.76 | 3.99 | 3.33 | 7.76 | 3.99 | 3.33 | 7.76 | 5.41 |
Kurtosis | 16.9 | 14.2 | 66.0 | 16.9 | 14.2 | 66.0 | 16.9 | 14.2 | 66.0 | 35.4 |
Philippines (N = 11) | Cu | Zn | Pb | Cu Cf | Zn Cf | Pb Cf | Cu ER | Zn ER | Pb ER | PERI |
Minimum | 22.9 | 50.0 | 6.00 | 1.60 | 0.96 | 0.35 | 8.01 | 0.96 | 1.76 | 11.1 |
Maximum | 3080 | 329 | 95.0 | 215 | 6.33 | 5.59 | 1077 | 6.33 | 27.9 | 1099 |
Mean | 405 | 147 | 32.5 | 28.3 | 2.82 | 1.91 | 142 | 2.82 | 9.55 | 154 |
Median | 90.3 | 114 | 20.4 | 6.31 | 2.19 | 1.20 | 31.57 | 2.19 | 6.00 | 40.2 |
SD | 908 | 94.1 | 28.9 | 63.5 | 1.81 | 1.70 | 317 | 1.81 | 8.51 | 321 |
SE | 274 | 28.4 | 8.73 | 19.1 | 0.55 | 0.51 | 95.7 | 0.55 | 2.57 | 96.8 |
Skewness | 2.64 | 0.90 | 0.99 | 2.64 | 0.90 | 0.99 | 2.64 | 0.90 | 0.99 | 2.62 |
Kurtosis | 5.31 | −0.65 | −0.14 | 5.31 | −0.65 | −0.14 | 5.31 | −0.65 | −0.14 | 5.25 |
ASEAN-5 (N = 176) | Cu | Zn | Pb | Cu Cf | Zn Cf | Pb Cf | Cu ER | Zn ER | Pb ER | PERI |
Minimum | 0.09 | 0.37 | 0.07 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 | 0.02 | 0.17 |
Maximum | 3080 | 4950 | 2666 | 215 | 95.2 | 157 | 1077 | 95.2 | 784 | 1099 |
Mean | 84.2 | 175 | 76.0 | 5.89 | 3.37 | 4.47 | 29.5 | 3.37 | 22.4 | 55.2 |
Median | 20.0 | 74.8 | 29.0 | 1.40 | 1.44 | 1.71 | 6.99 | 1.44 | 8.54 | 19.5 |
SD | 268 | 422 | 230 | 18.8 | 8.11 | 13.6 | 93.9 | 8.11 | 67.8 | 131 |
SE | 20.2 | 31.8 | 17.4 | 1.41 | 0.61 | 1.02 | 7.07 | 0.61 | 5.11 | 9.88 |
Skewness | 8.53 | 8.70 | 9.03 | 8.53 | 8.70 | 9.03 | 8.53 | 8.70 | 9.03 | 5.81 |
Kurtosis | 87.8 | 92.3 | 93.1 | 87.81 | 92.3 | 93.1 | 87.8 | 92.3 | 93.1 | 38.1 |
Cu | Children HQing | Children HQdermal | Children HI | Adult HQing | Adult HQdermal | Adult HI |
Minimum | 2.95 × 10−5 | 1.57 × 10−7 | 2.97 × 10−5 | 3.96 × 10−6 | 4.02 × 10−7 | 4.36 × 10−6 |
Maximum | 1.01 | 5.38 × 10−3 | 1.01 | 1.35 × 10−1 | 1.37 × 10−2 | 1.49 × 10−1 |
Mean | 2.76 × 10−2 | 1.47 × 10−4 | 2.77 × 10−2 | 3.70 × 10−3 | 3.76 × 10−4 | 4.08 × 10−3 |
Median | 6.55 × 10−3 | 3.50 × 10−5 | 6.59 × 10−3 | 8.79 × 10−4 | 8.93 × 10−5 | 9.69 × 10−4 |
SD | 8.80 × 10−2 | 4.69 × 10−4 | 8.81 × 10−2 | 1.18 × 10−2 | 1.19 × 10−3 | 1.30 × 10−2 |
SE | 6.63 × 10−3 | 3.53 × 10−5 | 6.64 × 10−3 | 8.88 × 10−4 | 9.01 × 10−5 | 9.79 × 10−4 |
Skewness | 8.54 | 8.54 | 8.50 | 8.51 | 8.52 | 8.52 |
Kurtosis | 8.79 × 10 | 8.78 × 10 | 8.73 × 10 | 8.75 × 10 | 8.75 × 10 | 8.76 × 10 |
Pb | Children HQing | Children HQdermal | Children HI | Adult HQing | Adult HQdermal | Adult HI |
Minimum | 2.59 × 10−4 | 2.80 × 10−6 | 2.62 × 10−4 | 3.48 × 10−5 | 7.14 × 10−6 | 4.19 × 10−5 |
Maximum | 9.87 | 1.07 × 10−1 | 9.98 | 1.32 | 2.72 × 10−1 | 1.60 |
Mean | 2.81 × 10−1 | 3.04 × 10−3 | 2.84 × 10−1 | 3.77 × 10−2 | 7.75 × 10−3 | 4.55 × 10−2 |
Median | 1.08 × 10−1 | 1.16 × 10−3 | 1.09 × 10−1 | 1.44 × 10−2 | 2.97 × 10−3 | 1.74 × 10−2 |
SD | 8.53 × 10−1 | 9.23 × 10−3 | 8.62 × 10−1 | 1.14 × 10−1 | 2.35 × 10−2 | 1.38 × 10−1 |
SE | 6.43 × 10−2 | 6.96 × 10−4 | 6.50 × 10−2 | 8.60E-03 | 1.77 × 10−3 | 1.04 × 10−2 |
Skewness | 9.03 | 9.05 | 9.03 | 9.01 | 9.03 | 9.04 |
Kurtosis | 9.31 × 10 | 9.36 × 10 | 9.31 × 10 | 9.28 × 10 | 9.32 × 10 | 9.33 × 10 |
Zn | Children HQing | Children HQdermal | Children HI | Adult HQing | Adult HQdermal | Adult HI |
Minimum | 1.62 × 10−5 | 1.29 × 10−7 | 1.63 × 10−5 | 2.17 × 10−6 | 3.30 × 10−7 | 2.50 × 10−6 |
Maximum | 2.16 × 10−1 | 1.73 × 10−3 | 2.18 × 10−1 | 2.90 × 10−2 | 4.42 × 10−3 | 3.34 × 10−2 |
Mean | 7.65 × 10−3 | 6.12E × 10−5 | 7.71 × 10−3 | 1.03 × 10−3 | 1.56 × 10−4 | 1.18 × 10−3 |
Median | 3.27 × 10−3 | 2.62 × 10−5 | 3.29 × 10−3 | 4.39 × 10−4 | 6.67 × 10−5 | 5.06 × 10−4 |
SD | 1.84 × 10−2 | 1.47 × 10−4 | 1.86 × 10−2 | 2.47 × 10−3 | 3.77 × 10−4 | 2.85 × 10−3 |
SE | 1.39 × 10−3 | 1.11 × 10−5 | 1.40 × 10−3 | 1.86 × 10−4 | 2.84 × 10−5 | 2.15 × 10−4 |
Skewness | 8.70 | 8.71 | 8.70 | 8.70 | 8.71 | 8.70 |
Kurtosis | 9.22 × 10 | 9.24 × 10 | 9.23 × 10 | 9.23 × 10 | 9.24 × 10 | 9.22 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yap, C.K.; Al-Mutairi, K.A. Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis. Biology 2022, 11, 7. https://doi.org/10.3390/biology11010007
Yap CK, Al-Mutairi KA. Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis. Biology. 2022; 11(1):7. https://doi.org/10.3390/biology11010007
Chicago/Turabian StyleYap, Chee Kong, and Khalid Awadh Al-Mutairi. 2022. "Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis" Biology 11, no. 1: 7. https://doi.org/10.3390/biology11010007
APA StyleYap, C. K., & Al-Mutairi, K. A. (2022). Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis. Biology, 11(1), 7. https://doi.org/10.3390/biology11010007