Increasing the Yield and Cryosurvival of Spermatozoa from Rhinoceros Ejaculates Using the Enzyme Papain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Ethics Statement
2.3. Experimental Design
2.4. Animals and Semen Collection
2.5. Assessment of Initial Ejaculate and Sperm Membrane Characteristics
2.6. Treatment of Viscous Fractions with Papain and E-64
2.7. Dilution and Cryopreservation of Rhinoceros Spermatozoa
2.8. Thawing and Advanced In Vitro Semen Assessment
2.8.1. Computer-Assisted Sperm Analysis (CASA)
2.8.2. Flow Cytometric Analysis
2.9. Statistical Analysis
3. Results
3.1. Initial Ejaculate Characteristics Collected in Experiment 1 and 2 Prior to Freezing
3.2. Papain Improves the Quality of Spermatozoa Originating from Viscous, Low Sperm Fractions Both Prior to and after Cryopreservation
3.3. Papain Does Not Influence the Viability, Acrosome Integrity, Membrane Lipid Disorder, Intracellular ROS Production or DNA Integrity of Frozen-Thawed Rhinoceros Spermatozoa Assessed Using Flow Cytometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN 2021. The IUCN Red List of Threatened Species Version 2021-2. Available online: https://www.iucnredlist.org (accessed on 4 November 2021).
- Hermes, R.; Hildebrandt, T. Rhinoceros Theriogenology. In Fowler’s Zoo and Wildlife Medicine Current Therapy; Miller, R., Fowler, M., Eds.; Elsevier Saunders: Amsterdam, The Netherlands, 2012; Volume 7, pp. 546–561. [Google Scholar]
- Stoops, M.A.; Campbell, M.K.; DeChant, C.J.; Hauser, J.; Kottwitz, J.; Pairan, R.D.; Shaffstall, W.; Volle, K.; Roth, T.L. Enhancing captive Indian rhinoceros genetics via artificial insemination of cryopreserved sperm. Anim. Reprod. Sci. 2016, 172, 60–75. [Google Scholar] [CrossRef]
- Hildebrandt, T.B.; Hermes, R.; Goeritz, F.; Appeltant, R.; Colleoni, S.; de Mori, B.; Diecke, S.; Drukker, M.; Galli, C.; Hayashi, K.; et al. The ART of bringing extinction to a freeze-History and future of species conservation, exemplified by rhinos. Theriogenology 2021, 169, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Platz, C.C., Jr.; Seager, S.W.; Bush, M. Collection and analysis of semen from a black rhinoceros. J. Am. Vet. Med. Assoc. 1979, 175, 1002–1004. [Google Scholar] [PubMed]
- Hermes, R.; Goritz, F.; Saragusty, J.; SÛs, E.; Molnar, V.; Reid, C.E.; Schwarzenberger, F.; Hildebrandt, T.B. First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology 2009, 71, 393–399. [Google Scholar] [CrossRef]
- Portas, T.; Johnston, S.D.; Hermes, R.; Arroyo, F.; López-Fernadez, C.; Bryant, B.; Hildebrandt, T.B.; Göritz, F.; Gosalvez, J. Frozen-thawed rhinoceros sperm exhibit DNA damage shortly after thawing when assessed by the sperm chromatin dispersion assay. Theriogenology 2009, 72, 711–720. [Google Scholar] [CrossRef]
- Stoops, M.A.; Atkinson, M.W.; Blumer, E.S.; Campbell, M.K.; Roth, T.L. Semen cryopreservation in the Indian rhinoceros (Rhinoceros unicornis). Theriogenology 2010, 73, 1104–1115. [Google Scholar] [CrossRef]
- Reid, C.E.; Hermes, R.; Blottner, S.; Goeritz, F.; Wibbelt, G.; Walzer, C.; Bryant, B.R.; Portas, T.J.; Streich, W.J.; Hildebrandt, T.B. Split-sample comparison of directional and liquid nitrogen vapour freezing method on post-thaw semen quality in white rhinoceroses (Ceratotherium simum simum and Ceratotherium simum cottoni). Theriogenology 2009, 71, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Pennington, P.M.; Durrant, B.S. Assisted reproductive technologies in captive rhinoceroses. Mammal Rev. 2019, 49, 1–15. [Google Scholar] [CrossRef]
- Hermes, R.; Hildebrandt, T.B.; Göritz, F. Cryopreservation in rhinoceros—Setting a new benchmark for sperm cryosurvival. PLoS ONE 2018, 13, e0200154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, T.L.; Stoops, M.A.; Atkinson, M.W.; Blumer, E.S.; Campbell, M.K.; Cameron, K.N.; Citino, S.B.; Maas, A.K. Semen collection in rhinoceroses (Rhinoceros unicornis, Diceros bicornis, Ceratotherium simum) by electroejaculation with a uniquely designed probe. J. Zoo Wildl. Med. 2005, 36, 617–627. [Google Scholar] [CrossRef]
- Schaffer, N.; Bryant, W.; Agnew, D.; Meehan, T.; Beehler, B. Ultrasonographic monitoring of artificially stimulated ejaculation in three rhinoceros species (Ceratotherium simum, Diceros bicornis, Rhinoceros unicornus). J. Zoo Wildl. Med. 1998, 29, 386–393. [Google Scholar]
- Portas, T. A review of drugs and techniques used for sedation and anaesthesia in captive rhinoceros species. Aust. Vet. J. 2004, 82, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Behr, B.; Rath, D.; Mueller, P.; Hildebrandt, T.B.; Goeritz, F.; Braun, B.C.; Leahy, T.; de Graaf, S.P.; Maxwell, W.M.C.; Hermes, R. Feasibility of sex-sorting sperm from the white and the black rhinoceros (Ceratotherium simum, Diceros bicornis). Theriogenology 2009, 72, 353–364. [Google Scholar] [CrossRef]
- Schaffer, N.E.; Foley, G.L.; Gill, S.; Earl Pope, C. Clinical Implications of rhinoceros reproductive tract anatomy and histology. J. Zoo Wildl. Med. 2001, 32, 31–46. [Google Scholar]
- Hermes, R.; Hildebrandt, T.B.; Blottner, S.; Walzer, C.; Silinski, S.; Patton, M.L.; Wibbelt, G.; Schwarzenberger, F.; Göritz, F. Reproductive soundness of captive southern and northern white rhinoceroses (Ceratotherium simum simum, C.s. cottoni): Evaluation of male genital tract morphology and semen quality before and after cryopreservation. Theriogenology 2005, 63, 219–238. [Google Scholar] [CrossRef]
- Hermes, R.; Saragusty, J.; Göritz, F.; Bartels, P.; Potier, R.; Baker, B.; Streich, W.J.; Hildebrandt, T.B. Freezing African Elephant Semen as a New Population Management Tool. PLoS ONE 2013, 8, e57616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saragusty, J.; Hildebrandt, T.B.; Bouts, T.; Göritz, F.; Hermes, R. Collection and preservation of pygmy hippopotamus (Choeropsis liberiensis) semen. Theriogenology 2010, 74, 652–657. [Google Scholar] [CrossRef]
- Tarmizi, R.; Keng Chee, Y.; Sipangkui, S.; Zainuddin, Z.Z.; Fitri, W.-N. The Comparison of Semen Collection in Electroejaculation, Rectal Massage and Combination of Both Methods in the Critically Endangered Malayan Pangolin, Manis javanica. Animals 2020, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Dixson, A.F.; Anderson, M.J. Sexual selection, seminal coagulation and copulatory plug formation in primates. Folia Primatol. 2002, 73, 63–69. [Google Scholar] [CrossRef]
- Kingan, S.B.; Tatar, M.; Rand, D.M. Reduced polymorphism in the chimpanzee semen coagulating protein, semenogelin I. J. Mol. Evol. 2003, 57, 159–169. [Google Scholar] [CrossRef]
- Kershaw-Young, C.M.; Stuart, C.; Evans, G.; Maxwell, W.M.C. The effect of glycosaminoglycan enzymes and proteases on the viscosity of alpaca seminal plasma and sperm function. Anim. Reprod. Sci. 2013, 138, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Kershaw-Young, C.; Maxwell, W. Seminal Plasma Components in Camelids and Comparisons with Other Species. Reprod. Domest. Anim. 2012, 47, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Rodger, J.C.; White, I.G. The collection, handling and some properties of marsupial semen. Symp. Zool. Soc. Lond. 1978, 43, 289–301. [Google Scholar]
- Paris, D.B.B.P.; Taggart, D.A.; Shaw, G.; Temple-Smith, P.D.; Renfree, M.B. Changes in semen quality and morphology of the reproductive tract of the male tammar wallaby parallel seasonal breeding activity in the female. Reproduction 2005, 130, 367–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrandt, T.B.; Hermes, R.; Jewgenow, K.; Göritz, F. Ultrasonography as an important tool for the development and application of reproductive technologies in non-domestic species. Theriogenology 2000, 53, 73–84. [Google Scholar] [CrossRef]
- Bravo, P.W.; Ccallo, M.; Garnica, J. The effect of enzymes on semen viscosity in Llamas and Alpacas. Small Rumin. Res. 2000, 38, 91–95. [Google Scholar] [CrossRef]
- Giuliano, S.; Carretero, M.; Gambarotta, M.; Neild, D.; Trasorras, V.; Pinto, M.; Miragaya, M. Improvement of llama (Lama glama) seminal characteristics using collagenase. Anim. Reprod. Sci. 2010, 118, 98–102. [Google Scholar] [CrossRef]
- Kershaw, C.M.; Evans, G.; Rodney, R.; Maxwell, W.M.C. Papain and its inhibitor E-64 reduce camelid semen viscosity without impairing sperm function and improve post-thaw motility rates. Reprod. Fertil. Dev. 2017, 29, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Stuart, C.C.; Vaughan, J.L.; Kershaw, C.M.; de Graaf, S.P.; Bathgate, R. Effect of diluent type, cryoprotectant concentration, storage method and freeze/thaw rates on the post-thaw quality and fertility of cryopreserved alpaca spermatozoa. Sci. Rep. 2019, 9, 12826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emslie, R. Ceratotherium simum. The IUCN Red List of Threatened Species 2020. e.T4185A45813880. Available online: http://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T4185A16980466.en (accessed on 18 September 2021).
- Evans, G.; Maxwell, W.M.C. Salamons’ Artificial Insemination of Sheep and Goats; Butterworths: Sydney, Australia, 1987. [Google Scholar]
- Saragusty, J.; Hildebrandt, T.B.; Behr, B.; Knieriem, A.; Kruse, J.; Hermes, R. Successful cryopreservation of Asian elephant (Elephas maximus) spermatozoa. Anim. Reprod. Sci. 2009, 115, 255–266. [Google Scholar] [CrossRef]
- Susko-Parrish, J.; Parrish, J.J.; Winer, M.A.; First, N.L. Capacitation of Bovine Sperm by Heparin1. Biol. Reprod. 1988, 38, 1171–1180. [Google Scholar] [CrossRef]
- Rijnders, S.; Bolscher, J.G.; McDonnell, J.; Vermeiden, J.P. Filling time of a lamellar capillary-filling semen analysis chamber is a rapid, precise, and accurate method to assess viscosity of seminal plasma. J. Androl. 2007, 28, 461–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.A.; Spidlen, J.; Boyce, K.; Cai, J.; Crosbie, N.; Dalphin, M.; Furlong, J.; Gasparetto, M.; Goldberg, M.; Goralczyk, E.M.; et al. MIFlowCyt: The minimum information about a flow cytometry experiment. Cytom. Part A 2008, 73A, 926–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pool, K.; Rickard, J.; de Graaf, S. Melatonin improves the motility and DNA integrity of frozen-thawed ram spermatozoa likely via suppression of mitochondrial superoxide production. Domest. Anim. Endocrinol. 2020, 74, 106516. [Google Scholar] [CrossRef]
- O’Brien, J.K.; Roth, T.L. Post-coital sperm recovery and cryopreservation in the Sumatran rhinoceros (Dicerorhinus sumatrensis) and application to gamete rescue in the African black rhinoceros (Diceros bicornis). J. Reprod. Fertil. 2000, 118, 263–271. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.K.; Roth, T.L.; Stoops, M.A.; Ball, R.L.; Steinman, K.J.; Montano, G.A.; Love, C.C.; Robeck, T.R. Sperm sex-sorting and preservation for managing the sex ratio and genetic diversity of the southern white rhinoceros (Ceratotherium simum simum). Anim. Reprod. Sci. 2015, 152, 137–153. [Google Scholar] [CrossRef]
- Rickard, J.; Schmidt, R.; Maddison, J.; Bathgate, R.; Lynch, G.; Druart, X.; De Graaf, S. Variation in seminal plasma alters the ability of ram spermatozoa to survive cryopreservation. Reprod. Fertil. Dev. 2016, 28, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.I.; Squires, E.L.; Graham, J.K. Effect of seminal plasma on the cryopreservation of equine spermatozoa. Theriogenology 2005, 63, 2372–2381. [Google Scholar] [CrossRef]
- Aurich, J.E.; Kühne, A.; Hoppe, H.; Aurich, C. Seminal plasma affects membrane integrity and motility of equine spermatozoa after cryopreservation. Theriogenology 1996, 46, 791–797. [Google Scholar] [CrossRef]
- Bhaskar, R.; Kanaparthi, P.; Sakthivel, R. DNA barcode approaches to reveal interspecies genetic variation of Indian ungulates. Mitochondrial DNA Part B-Resour. 2020, 5, 938–944. [Google Scholar] [CrossRef] [Green Version]
- Druart, X.; Rickard, J.P.; Tsikis, G.; de Graaf, S.P. Seminal plasma proteins as markers of sperm fertility. Theriogenology 2019, 137, 30–35. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Kvist, U.; Saravia, F.; Wallgren, M.; Johannisson, A.; Sanz, L.; Pena, F.J.; Martinez, E.A.; Roca, J.; Vazquez, J.M.; et al. The physiological roles of the boar ejaculate. Soc. Reprod. Fertil. Suppl. 2009, 66, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Apichela, S.A.; Argañaraz, M.E.; Giuliano, S.; Zampini, R.; Carretero, I.; Miragaya, M.; Miceli, D.C. Llama oviductal sperm reservoirs: Involvement of bulbourethral glands. Andrologia 2014, 46, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Emslie, R. Diceros bicornis. The IUCN Red List of Threatened Species 2020. e.T6557A152728945. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T6557A152728945.en (accessed on 21 September 2021).
- Ellis, S.; Talukdar, B. Dicerorhinus sumatrensis. The IUCN Red List of Threatened Species 2020. e.T6553A18493355. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T6553A18493355.en (accessed on 21 September 2021.).
- Ellis, S.; Talukdar, B. Rhinoceros sondaicus. The IUCN Red List of Threatened Species 2020. e.T19495A18493900. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T19495A18493900.en (accessed on 21 September 2021).
- Ellis, S.; Talukdar, B. Rhinoceros unicornis. The IUCN Red List of Threatened Species 2019. e.T19496A18494149. Available online: https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T19496A18494149.en (accessed on 21 September 2021).
- Fiúza, A. The Sabah Rhino Breeding Programme: Reproductive Management of the Critically Endangered Sumatran Rhinoceros of Borneo (Dicerorhinus sumatrensis harrissoni) as Conducted by the IZW-Berlin between 2005 and 2015; Universidade de Lisboa: Lisboa, Portugal, 2017. [Google Scholar]
- Tamai, M.; Hanada, K.; Adachi, T.; Oguma, K.; Kashiwagi, K.; Omura, S.; Ohzeki, M. Papain Inhibitions by Optically Active E-64 Analogs. J. Biochem. 1981, 90, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.J.; Kembhavi, A.A.; Hanada, K. E-64 [L-trans-epoxysuccinyl-leucyl-amido(4-guanidino)butane] and related epoxides as inhibitors of cysteine proteinases. Acta Biol. Med. Ger. 1981, 40, 1513–1517. [Google Scholar]
- Bernecic, N.C.; de Graaf, S.P.; Leahy, T.; Gadella, B.M. HDL mediates reverse cholesterol transport from ram spermatozoa and induces hyperactivated motility. Biol. Reprod. 2021, 104, 1271–1281. [Google Scholar] [CrossRef]
- Gadella, B.M.; Luna, C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology 2014, 81, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.L.; Blodeau, J.; Cormier, N. Semen Cryopreservation in Domestic Animals: A Damaging and Capacitating Phenomenon Minireview. J. Androl. 2000, 21, 1–7. [Google Scholar] [CrossRef]
- Sanocka, D.; Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2004, 2, 12. [Google Scholar] [CrossRef] [Green Version]
Parameter | Ejaculate Fraction | |
---|---|---|
Sperm-Rich | Viscous, Low Sperm | |
Number of ejaculate fractions collected | 10 | 11 |
Volume (ml) | 2.6 ± 0.58 a | 15.1 ± 2.4 b |
Concentration (×106 spermatozoa/mL) | 863.3 ± 116.99 a | 236.0 ± 46.61 b |
Total sperm number per ejaculate (×109 spermatozoa) | 2.7 ± 0.93 | 3.4 ± 0.71 |
Time | Sperm Parameters | Viscous, Low Sperm Fraction | |
---|---|---|---|
Non-Treated Control | Papain-Treated | ||
Pre-freeze | Subjective motility (%) | 78.8 ± 2.39 a | 88.3 ± 1.7 b |
Post-thaw | TM (%) | 37.5 ± 10.56 a | 84.9 ± 1.60 b |
PM (%) | 25.4 ± 9.32 a | 56.6 ± 5.72 b | |
VAP | 43.8 ± 1.92 a | 74.4 ± 5.48 b | |
VCL | 77.1 ± 3.16 a | 115.8 ± 8.30 b | |
VSL | 34.7 ± 4.58 a | 57.6 ± 3.51 b | |
ALH | 3.7 ± 0.40 a | 4.5 ± 0.18 b | |
BCF | 39.6 ± 2.81 | 41.2 ± 0.23 | |
LIN | 50.8 ± 6.02 | 52.0 ± 1.86 | |
STR | 80.9 ± 5.92 | 78.3 ± 2.87 | |
Percent viable (%) Percent acrosome intact (%) Percent normal morphology (%) | 71.5 ± 3.66 a | 86.3 ± 3.33 b | |
68 ± 6.48 | 80.0 ± 3.70 | ||
70.8 ± 4.37 | 80.5 ± 2.72 |
Time Point | In Vitro Sperm Parameters | Sperm-Rich Control | Viscous Low Sperm Papain-Treated |
---|---|---|---|
Pre-freeze | Subjective motility (%) | 78.4 ± 6.66 | 76.6 ± 5.22 |
Percent viable (%) | 92.0 ± 1.10 | 93.2 ± 0.92 | |
Percent acrosome intact (%) | 88.2 ± 2.48 | 89.2 ± 1.86 | |
Percent normal morphology (%) | 82.2 ± 4.59 | 78.0 ± 5.10 | |
Post-thaw | TM (%) | 38.0 ± 5.50 a | 54.2 ± 6.13 b |
PM (%) | 21.8 ± 3.99 a | 40.9 ± 5.20 b | |
VAP (µm/s) | 48.3 ± 4.41 a | 68.8 ± 6.04 b | |
VCL (µm/s) | 78.0 ± 8.19 a | 101.2 ± 9.45 b | |
VSL (µm/s) | 37.9 ± 3.38 a | 58.9 ± 4.60 b | |
LIN (%) | 9.0 ± 2.33 a | 8.15 ± 1.98 b | |
STR (%) | 81.0 ± 2.04 a | 87.4 ± 1.79 b | |
BCF (%) | 39.0 ± 1.30 | 40.2 ± 0.96 | |
ALH (%) | 3.66 ± 0.31 | 3.57 ± 0.29 | |
Viable acrosome intact (%) | 40.2 ± 3.89 | 39.3 ± 1.90 | |
Membrane lipid disorder (median M540 fluor.) | 2966.4 ± 357.26 | 13,993.6 ± 4901.47 | |
Level of ROS (median H2DCFDA fluor.) | 17,278.9 ± 3923.57 | 9073.0 ± 2103.47 | |
DNA integrity (%) | 11.0 ± 0.71 | 8.51 ± 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rickard, J.P.; Pool, K.; de Graaf, S.P.; Portas, T.; Rourke, N.; Wiesner, M.; Hildebrandt, T.B.; Göritz, F.; Hermes, R. Increasing the Yield and Cryosurvival of Spermatozoa from Rhinoceros Ejaculates Using the Enzyme Papain. Biology 2022, 11, 154. https://doi.org/10.3390/biology11020154
Rickard JP, Pool K, de Graaf SP, Portas T, Rourke N, Wiesner M, Hildebrandt TB, Göritz F, Hermes R. Increasing the Yield and Cryosurvival of Spermatozoa from Rhinoceros Ejaculates Using the Enzyme Papain. Biology. 2022; 11(2):154. https://doi.org/10.3390/biology11020154
Chicago/Turabian StyleRickard, Jessica P., Kelsey Pool, Simon P. de Graaf, Timothy Portas, Natalie Rourke, Miriam Wiesner, Thomas B. Hildebrandt, Frank Göritz, and Robert Hermes. 2022. "Increasing the Yield and Cryosurvival of Spermatozoa from Rhinoceros Ejaculates Using the Enzyme Papain" Biology 11, no. 2: 154. https://doi.org/10.3390/biology11020154
APA StyleRickard, J. P., Pool, K., de Graaf, S. P., Portas, T., Rourke, N., Wiesner, M., Hildebrandt, T. B., Göritz, F., & Hermes, R. (2022). Increasing the Yield and Cryosurvival of Spermatozoa from Rhinoceros Ejaculates Using the Enzyme Papain. Biology, 11(2), 154. https://doi.org/10.3390/biology11020154