Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Fertility Trial
2.3. Collection and Examination of Semen
2.4. Assessment of Sperm Variables
2.5. Computerized Kinematics Analysis
2.6. Statistical Analysis
2.6.1. Multivariate Procedures
2.6.2. GLMM Model on Sow Fertility Parameters
2.6.3. ROC Analysis
3. Results
3.1. Descriptive Analysis of Semen Evaluation
3.2. Analysis of the Ejaculate Cluster Structure
3.3. Relationship between Kinematics Cluster and Fertility
3.4. Fertility Variables by Dam and Sire Genetic Line
3.5. Predictive Capacity of Fertility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waberski, D.; Petrunkina, A.M.; Töpfer-Petersen, E. Can external quality control improve pig AI efficiency? Theriogenology 2008, 70, 1346–1351. [Google Scholar] [CrossRef]
- Maes, D.; López Rodríguez, A.; Rijsselaere, T.; Vyt, P.; Van Soom, A. Artificial Insemination in Pigs. In Artificial Insemination in Farm Animals; Manafi, E., Ed.; In Tech: Rijeka, Croatia, 2011; pp. 79–94. [Google Scholar]
- Bonet, S.; Casas, I.; Holt, W.; Yeste, M. Boar reproduction: Fundamentals and new biotechnological trends. In Boar Reproduction; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; p. 632. ISBN 9783642436260. [Google Scholar]
- Myromslien, F.D.; Tremoen, N.H.; Andersen-Ranberg, I.; Fransplass, R.; Stenseth, E.B.; Zeremichael, T.T.; van Son, M.; Grindflek, E.; Gaustad, A.H. Sperm DNA integrity in Landrace and Duroc boar semen and its relationship to litter size. Reprod. Domest. Anim. 2019, 54, 160–166. [Google Scholar] [CrossRef]
- Irgang, R.; Fávero, J.A.; Kennedy, B.W. Genetic parameters for litter size of different parities in Duroc, Landrace, and large white sows. J. Anim. Sci. 1994, 72, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.; Soede, N.M. Consequences of variation in interval from insemination to ovulation on fertilization in pigs. J. Reprod. Fertil. Suppl. 1997, 52, 79–89. [Google Scholar] [CrossRef]
- Knox, R. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef]
- Barranco, I.; Padilla, L.; Tvarijonaviciute, A.; Parrilla, I.; Martínez, E.A.; Rodriguez-Martinez, H.; Yeste, M.; Roca, J. Levels of activity of superoxide dismutase in seminal plasma do not predict fertility of pig AI-semen doses. Theriogenology 2019, 140, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M.C. Storage of boar semen. Anim. Reprod. Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef]
- Morrell, J.M. Artificial Insemination: Current and Future Trends. In Artificial Insemination in Farm Animals; Manafi, M., Ed.; INTECH: London, UK, 2011; ISBN 978-953-307-312-5. [Google Scholar]
- Roca, J.; Parrilla, I.; Bolarin, A.; Martinez, E.A.; Rodriguez-Martinez, H. Will AI in pigs become more efficient? Theriogenology 2016, 86, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Rodriguez, A.; Soom, A.V.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, W.L. Selection for boar fertility and semen quality--the way ahead. Soc. Reprod. Fertil. Suppl. 2009, 66, 67–78. [Google Scholar] [PubMed]
- Amann, R.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.C.; Huang, Y.F.; Lü, N.Q. Computer-aided sperm analysis: Past, present and future. Andrologia 2014, 46, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Madrigal-Valverde, M. Sistemas de análisis computadorizado de semen en la reproducción animal. Agron. Mesoam. 2018, 29, 449. [Google Scholar] [CrossRef]
- Katz, D.F.; Dott, H.M. Methods of measuring swimming speed of spermatozoa. J. Reprod. Fertil. 1975, 45, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, S.T. CASA-Practical aspects. J. Androl. 2000, 21, 515–524. [Google Scholar]
- Valverde, A.; Madrigal-Valverde, M.; Castro-Morales, O.; Gadea-Rivas, A.; Johnston, S.; Soler, C. Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus). Anim. Reprod. Sci. 2019, 207, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Spencer, N.H. Essentials of Multivariate Mata Mnalysis; Chapman and Hall/CRC: New York, NY, USA, 2013; ISBN 9781466584792. [Google Scholar]
- Amann, R.; Katz, D.F. Andrology Lab Corner: Reflections on CASA After 25 Years. J. Androl. 2004, 25, 317–325. [Google Scholar] [CrossRef]
- Valverde, A.; Madrigal-Valverde, M. Evaluación de cámaras de recuento sobre parámetros espermáticos de verracos analizados con un sistema CASA-Mot. Agron. Mesoam. 2019, 30, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Valverde, A.; Madrigal-Valverde, M.; Lotz, J.; Bompart, D.; Soler, C. Effect of video capture time on sperm kinematic parameters in breeding boars. Livest. Sci. 2019, 220, 52–56. [Google Scholar] [CrossRef]
- Bompart, D.; Vázquez, R.F.; Gómez, R.; Valverde, A.; Roldán, E.R.S.; García-Molina, A.; Soler, C. Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Anim. Reprod. Sci. 2019, 209, 106169. [Google Scholar] [CrossRef]
- Caldeira, C.; Hernández-Ibáñez, S.; Valverde, A.; Martin, P.; Herranz-Jusdado, J.G.; Gallego, V.; Asturiano, J.F.; Dzyuba, B.; Pšenička, M.; Soler, C. Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture 2019, 502, 223–231. [Google Scholar] [CrossRef]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 2011, 76, 1473–1486. [Google Scholar] [CrossRef]
- Saravia, F.; Núñez-Martínez, I.; Morán, J.; Soler, C.; Muriel, A.; Rodríguez-Martínez, H.; Peña, F. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology 2007, 68, 196–203. [Google Scholar] [CrossRef]
- Valverde, A.; Madrigal, M.; Caldeira, C.; Bompart, D.; de Murga, J.N.; Arnau, S.; Soler, C. Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reprod. Domest. Anim. 2019, 54, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Dal Bosco, A.; Ruggeri, S.; Collodel, G. What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil. Steril. 2011, 96, 24–27. [Google Scholar] [CrossRef]
- Hirai, M.; Boersma, A.; Hoeflich, A.; Wolf, E.; Foll, J.; Aumüller, T.R.; Braun, J. Objectively measured sperm motility and sperm head morphometry in boars (Sus scrofa): relation to fertility and seminal plasma growth factors. J. Androl. 2001, 22, 104–110. [Google Scholar] [PubMed]
- Thurston, L.; Watson, P.; Mileham, A.; Holt, W. Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J. Androl. 2001, 22, 382–394. [Google Scholar]
- Flores, E.; Taberner, E.; Rivera, M.M.; Peña, A.; Rigau, T.; Miró, J.; Rodríguez-Gil, J.E. Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates. Theriogenology 2008, 70, 936–945. [Google Scholar] [CrossRef]
- Ramió, L.; Rivera, M.M.; Ramírez, A.; Concha, I.I.; Peña, A.; Rigau, T.; Rodríguez-Gil, J.E. Dynamics of motile-sperm subpopulation structure in boar ejaculates subjected to “in vitro” capacitation and further “in vitro” acrosome reaction. Theriogenology 2008, 69, 501–512. [Google Scholar] [CrossRef]
- Soler, C.; Contell, J.; Bori, L.; Sancho, M.; García-Molina, A.; Valverde, A.; Segarvall, J. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus). Asian J. Androl. 2017, 19, 154–159. [Google Scholar] [CrossRef]
- Gallego, V.; Vílchez, M.C.; Peñaranda, D.S.; Pérez, L.; Herráez, M.P.; Asturiano, J.F.; Martínez-Pastor, F. Subpopulation pattern of eel spermatozoa is affected by post-activation time, hormonal treatment and the thermal regimen. Reprod. Fertil. Dev. 2015, 27, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Valverde, A.; Arenán, H.; Sancho, M.; Contell, J.; Yániz, J.; Fernández, A.; Soler, C. Morphometry and subpopulation structure of Holstein bull spermatozoa: Variations in ejaculates and cryopreservation straws. Asian J. Androl. 2016, 18, 851–857. [Google Scholar] [CrossRef]
- Yániz, J.; Palacín, I.; Caycho, K.; Soler, C.; Silvestre, M.; Santolaria, P. Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique. Reprod. Fertil. Dev. 2018, 30, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, F.; Soler, C.; Camps, P.; Valverde, A.; García-Molina, A. Spermiogram and sperm head morphometry assessed by multivariate cluster analysis results during adolescence (12-18 years) and the effect of varicocele. Asian J. Androl. 2016, 18, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Gomendio, M.; Roldan, E.R.S. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 2008, 52, 439–447. [Google Scholar] [CrossRef]
- Ibanescu, I.; Siuda, M.; Bollwein, H. Motile sperm subpopulations in bull semen using different clustering approaches – Associations with flow cytometric sperm characteristics and fertility. Anim. Reprod. Sci. 2020, 215, 106329. [Google Scholar] [CrossRef]
- Víquez, L.; Barquero, V.; Soler, C.; Roldan, E.R.S.; Valverde, A. Kinematic Sub-Populations in Bull Spermatozoa: A Comparison of Classical and Bayesian Approaches. Biology 2020, 9, 138. [Google Scholar] [CrossRef]
- Tremoen, N.H.; Gaustad, A.H.; Andersen-Ranberg, I.; van Son, M.; Zeremichael, T.T.; Frydenlund, K.; Grindflek, E.; Våge, D.I.; Myromslien, F.D. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim. Reprod. Sci. 2018, 193, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Funahashi, H. Effect of the addition of beta-mercaptoethanol to a thawing solution supplemented with caffeine on the function of frozen-thawed boar sperm and on the fertility of sows after artificial insemination. Theriogenology 2012, 77, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Fair, S.; Romero-Aguirregomezcorta, J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology 2019, 137, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.; Esparza-Harris, K.C.; Johnston, M.E.; Webel, S.K. Effect of numbers of sperm and timing of a single, post-cervical insemination on the fertility of weaned sows treated with OvuGel®. Theriogenology 2017, 92, 197–203. [Google Scholar] [CrossRef]
- De Rensis, F.; Kirkwood, R.N. Control of estrus and ovulation: Fertility to timed insemination of gilts and sows. Theriogenology 2016, 86, 1460–1466. [Google Scholar] [CrossRef]
- Holt, C.; Holt, W.V.; Moore, H.D.M.; Reed, H.C.B.; Curnock, R.M. Objectivily measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: Results of two fertility trials. J. Androl. 1997, 18, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Ruediger, K.; Mueller, K.; Jung, M.; Well, C.; Reissmann, M. Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim. Reprod. Sci. 2013, 140, 70–76. [Google Scholar] [CrossRef]
- Winters, R.A.; Hamilton, D.N.; Bhatnagar, A.S.; Fitzgerald, R.; Bovin, N.; Miller, D.J. Porcine sperm binding to oviduct cells and glycans as supplements to traditional laboratory semen analysis. J. Anim. Sci. 2018, 96, 5265–5275. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine; National Academies Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Hancock, J.; Hovell, G. The collection of boar semen. Vet. Rec. 1959, 71, 664–665. [Google Scholar]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241547789. [Google Scholar]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis. Biometrics 1991, 47, 788. [Google Scholar] [CrossRef]
- Statistical Analysis Systems, SAS. The SAS system for Windows, Release 9.4; Statistical Analysis Systems Institute: Cary, NC, USA, 2013; p. 556. [Google Scholar]
- Merks, J.; Ducro-Steverink, D.; Feitsma, H. Management and genetic factors affecting fertility in sows. Reprod. Domest. Anim. 2000, 35, 261–266. [Google Scholar] [CrossRef]
- Morrell, J.M. Effect of colloid centrifugation on boar sperm quality during storage and function in in vitro fertilization. Theriogenology 2019, 137, 122–126. [Google Scholar] [CrossRef]
- García-Herreros, M.; Aparicio, I.M.; Barón, F.J.; García-Marín, L.J.; Gil, M.C. Standardization of sample preparation, staining and sampling methods for automated sperm head morphometry analysis of boar spermatozoa. Int. J. Androl. 2006, 29, 553–563. [Google Scholar] [CrossRef]
- Soler, C.; Cooper, T.; Valverde, A.; Yániz, J. Afterword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian J. Androl. 2016, 18, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Amann, R. Seminal Can Sample the Fertility Be Predicted Potential of a Accurately? J. Androl. 1989, 10, 89–98. [Google Scholar] [CrossRef]
- Sutkeviciene, N.; Riskeviciene, V.; Januskauskas, A.; Zilinskas, H.; Andersson, M. Assessment of sperm quality traits in relation to fertility in boar semen. Acta Vet. Scand. 2009, 51, 53. [Google Scholar] [CrossRef] [Green Version]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A. Relationship between sperm quality traits and field-fertility of porcine semen. J. Vet. Sci. 2010, 11, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadea, J. Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 2005, 63, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Flowers, W.L. Management of boars for efficient semen production. J. Reprod. Fertil. Suppl. 1997, 52, 67–78. [Google Scholar]
- Xu, X.; Pommier, S.; Arbov, T.; Hatchings, B.; Sotto, W.; Foxcroft, G.R. In Vitro Maturation and Fertilization Techniques for Assessment of Semen Quality and Boar Fertility. J. Anim. Sci. 1998, 76, 3079–3089. [Google Scholar] [CrossRef]
- Flowers, W.L. Genetic and phenotypic variation in reproductive traits of AI boars. Theriogenology 2008, 70, 1297–1303. [Google Scholar] [CrossRef]
- Ramón, M.; Jiménez-Rabadán, P.; García-Álvarez, O.; Maroto-Morales, A.; Soler, A.; Fernández-Santos, M.; Pérez-Guzmán, M.; Garde, J. Understanding Sperm Heterogeneity: Biological and Practical Implications. Reprod. Domest. Anim. 2014, 49, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.; Capistrós, S.; Vicente-Fiel, S.; Hidalgo, C.; Santolaria, P. A comparative study of the morphometry of sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescence method. Asian J. Androl. 2016, 18, 840–843. [Google Scholar] [CrossRef]
- Jodar, M.; Soler-Ventura, A.; Oliva, R. Semen proteomics and male infertility. J. Proteomics 2017, 162, 125–134. [Google Scholar] [CrossRef]
- De Rensis, F.; Ziecik, A.J.; Kirkwood, R.N. Seasonal infertility in gilts and sows: Aetiology, clinical implications and treatments. Theriogenology 2017, 96, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.; Kirkwood, R.N.; Zanella, A.J.; Tempelman, R.J. Influence of gestation housing on sow behavior and fertility. J. Swine Heal. Prod. 2007, 15, 132–136. [Google Scholar]
- Oliviero, C.; Kothe, S.; Heinonen, M.; Valros, A.; Peltoniemi, O. Prolonged duration of farrowing is associated with subsequent decreased fertility in sows. Theriogenology 2013, 79, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.; Foxcroft, G. Gilt management for fertility and longevity. Animals 2019, 9, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canario, L.; Bidanel, J.P.; Rydhmer, L. Genetic trends in maternal and neonatal behaviors and their association with perinatal survival in french large white swine. Front. Genet. 2014, 5, 410. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Jeon, J.; Kwon, K.; Choi, H.; Kim, J.; Lee, J. Effect of different parities on reproductive performance, birth intervals, and tail behavior in sows. J. Anim. Sci. Technol. 2019, 61, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Wientjes, J.G.M.; Soede, N.M.; Knol, E.F.; van den Brand, H.; Kemp, B. Piglet birth weight and litter uniformity: Effects of weaning-to-pregnancy interval and body condition changes in sows of different parities and crossbred lines. J. Anim. Sci. 2013, 91, 2099–2107. [Google Scholar] [CrossRef]
- Safranski, T.J. Genetic selection of boars. Theriogenology 2008, 70, 1310–1316. [Google Scholar] [CrossRef]
- Chang, H.-L.; Lai, Y.-Y.; Wu, M.-C.; Sasaki, O. Genetic correlations between male reproductive traits and growth traits in growth performance tested Duroc, Landrace and Yorkshire breed boars. Anim. Sci. J. 2017, 88, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Strathe, A.B.; Jensen, J.; Mark, T.; Kadarmideen, H.N. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds1. J. Anim. Sci. 2013, 91, 4069–4079. [Google Scholar] [CrossRef] [PubMed]
- Cassady, J.P.; Young, L.D.; Leymaster, K.A. Heterosis and recombination effects on pig reproductive traits. J. Anim. Sci. 2002, 80, 2303–2315. [Google Scholar] [CrossRef]
- Knol, E.F.; Leenhouwers, J.I.; Van der Lende, T. Genetic aspects of piglet survival. Livest. Prod. Sci. 2002, 78, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Peltoniemi, O.A.T.; Björkman, S.; Oliviero, C. Parturition effects on reproductive health in the gilt and sow. Reprod. Domest. Anim. 2016, 51, 36–47. [Google Scholar] [CrossRef] [Green Version]
Variable | PF1 | PF2 |
---|---|---|
LIN | 0.99 | |
STR | 0.92 | |
WOB | 0.89 | |
VSL | 0.75 | 0.60 |
VCL | 0.98 | |
ALH | 0.91 | |
VAP | 0.86 | |
BCF | ||
Var Exp (%) | 53.1 | 44.9 |
Variable | EC1 | EC2 | EC3 | EC4 |
---|---|---|---|---|
VCL | 92.08 ± 5.12 a | 75.19 ± 4.54 b | 65.48 ± 6.07 c | 68.57 ± 9.98 b,c |
VSL | 38.09 ± 6.52 a | 42.91 ± 2.76 a | 31.69 ± 3.48 b | 24.00 ± 4.68 c |
VAP | 51.79 ± 3.28 a | 50.16 ± 3.43 a | 41.30 ± 3.43 b | 37.21 ± 5.56 b |
LIN | 42.23 ± 6.68 c | 57.17 ± 3.59 a | 49.53 ± 4.49 b | 37.26 ± 5.37 c |
STR | 71.44 ± 7.51 b,c | 82.34 ± 1.50 a | 75.72 ± 5.58 b | 65.48 ± 6.66 c |
WOB | 57.49 ± 4.54 b | 67.35 ± 3.61 a | 63.72 ± 2.86 a | 55.45 ± 3.75 b |
ALH | 3.46 ± 0.23 a | 2.73 ± 0.17 b | 2.47 ± 0.20 b | 2.70 ± 0.35 b |
BCF | 8.93 ± 0.59 | 8.36 ± 0.43 | 8.73 ± 0.52 | 8.44 ± 0.87 |
Sire Line | ||
---|---|---|
Variable | Pietrain | Duroc × Pietrain |
VCL | 71.10 ± 0.18 a | 76.15 ± 0.06 b |
VSL | 39.32 ± 0.11 a | 32.25 ± 0.04 b |
VAP | 47.51 ± 0.11 a | 43.70 ± 0.04 b |
LIN | 55.34 ± 0.14 a | 43.68 ± 0.05 b |
STR | 80.03 ± 0.12 a | 72.02 ± 0.04 b |
WOB | 67.58 ± 0.08 a | 58.57 ± 0.03 b |
ALH | 2.61 ± 0.01 a | 2.93 ± 0.02 b |
BCF | 8.16 ± 0.01 a | 8.63 ± 0.02 b |
Cluster of Ejaculates | Total Born per Litter | Piglets Born Alive | Stillbirth | Number of Mummies | Litter Weight at Birth (kg) |
---|---|---|---|---|---|
EC1 | 9.22 ± 1.21 a,b | 8.91 ± 1.25 a | 0.17 ± 0.09 a | 0.08 ± 0.07 a | 15.00 ± 1.88 a,b |
EC2 | 10.37 ± 1.28 a,b | 9.55 ± 1.28 a | 1.33 ± 0.50 b | 0.18 ± 0.09 a | 15.72 ± 1.78 a,b |
EC3 | 11.50 ± 1.37 a | 10.25 ± 1.32 a | 1.50 ± 0.61 b | 0.32 ± 0.17 a | 18.83 ± 1.71 a |
EC4 | 7.64 ± 1.13 b | 7.22 ± 1.14 a | 0.12 ± 0.07 a | 0.19 ± 0.14 a | 11.47 ± 2.03 b |
Sire Line | Total Born per Litter | Piglets Born Alive | Stillbirth | Number of Mummies | Litter Weight at Birth (kg) |
---|---|---|---|---|---|
Pietrain | 8.93 ± 0.93 | 8.74 ± 0.97 | 0.28 ± 0.11 b | 0.13 ± 0.09 | 13.88 ± 1.45 |
Duroc × Pietrain | 10.27 ± 0.65 (115.01%) | 9.08 ± 0.61 (103.89%) | 0.74 ± 0.16 a (264.29%) | 0.24 ± 0.07 (184.61%) | 15.58 ± 0.90 (112.2%) |
Variable | Cut-Off Value | Sensitivity (%) | Specificity (%) | Area ROC | p-Value |
---|---|---|---|---|---|
Total Born per Litter | |||||
VCL | 71.30 | 56.38 | 52.58 | 0.56 | 0.06 |
ALH | 2.64 | 50.00 | 53.33 | 0.57 | 0.04 |
BCF | 8.56 | 55.32 | 51.55 | 0.55 | 0.12 |
Piglets Born Alive | |||||
VCL | 71.50 | 53.19 | 55.67 | 0.56 | 0.06 |
ALH | 2.64 | 53.57 | 50.47 | 0.58 | 0.03 |
Number of Mummies | |||||
VCL | 70.70 | 56.38 | 52.58 | 0.57 | 0.08 |
VAP | 42.40 | 54.35 | 50.51 | 0.57 | 0.09 |
ALH | 2.59 | 50.00 | 53.33 | 0.57 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barquero, V.; Roldan, E.R.S.; Soler, C.; Vargas-Leitón, B.; Sevilla, F.; Camacho, M.; Valverde, A. Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates. Biology 2021, 10, 595. https://doi.org/10.3390/biology10070595
Barquero V, Roldan ERS, Soler C, Vargas-Leitón B, Sevilla F, Camacho M, Valverde A. Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates. Biology. 2021; 10(7):595. https://doi.org/10.3390/biology10070595
Chicago/Turabian StyleBarquero, Vinicio, Eduardo R. S. Roldan, Carles Soler, Bernardo Vargas-Leitón, Francisco Sevilla, Marlen Camacho, and Anthony Valverde. 2021. "Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates" Biology 10, no. 7: 595. https://doi.org/10.3390/biology10070595
APA StyleBarquero, V., Roldan, E. R. S., Soler, C., Vargas-Leitón, B., Sevilla, F., Camacho, M., & Valverde, A. (2021). Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates. Biology, 10(7), 595. https://doi.org/10.3390/biology10070595