ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth
Abstract
:Simple Summary
Abstract
1. Introduction
2. The ERK1/2 Signaling Module
3. Sensing of Extracellular Stimuli That Modulate ERK1/2 Activity in Cardiomyocytes
3.1. Integrins
3.2. G-Protein-Coupled Receptors
3.3. Receptor Tyrosine Kinases
4. Integration of ERK1/2 Signaling for Cardiomyocyte Homeostasis and Stress Responses
4.1. Modulation of ERK Kinase Cascade in Cardiomyocyte
4.2. Scaffolds in Regulation of ERK Signaling in the Heart
4.3. Impact of Cardiac ERK Signal Termination by Phosphatases
4.4. ERK in Heart Failure Onset and Progression
4.5. Cardiac Ramifications of Therapeutic ERK Inhibition
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Münch, J.; Abdelilah-Seyfried, S. Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart. Front. Cell Dev. Biol. 2021, 9, 403. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, M.; Hirsch, E.; Notte, A.; Selvetella, G.; Lembo, G.; Tarone, G. Integrin signalling: The tug-of-war in heart hypertrophy. Cardiovasc. Res. 2006, 70, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Delcourt, N.; Bockaert, J.; Marin, P. GPCR-jacking: From a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol. Sci. 2007, 28, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Mutlak, M.; Schlesinger-Laufer, M.; Haas, T.; Shofti, R.; Ballan, N.; Lewis, Y.E.; Zuler, M.; Zohar, Y.; Caspi, L.H.; Kehat, I. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy. Int. J. Cardiol. 2018, 270, 204–213. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Senger, K.; Pham, V.C.; Varfolomeev, E.; Hackney, J.A.; Corzo, C.A.; Collier, J.; Lau, V.W.C.; Huang, Z.; Hamidzhadeh, K.; Caplazi, P.; et al. The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Sci. Signal. 2017, 10, eaah4273. [Google Scholar] [CrossRef]
- Fritz, A.; Brayer, K.J.; McCormick, N.; Adams, D.G.; Wadzinski, B.E.; Vaillancourt, R.R. Phosphorylation of Serine 526 Is Required for MEKK3 Activity, and Association with 14-3-3 Blocks Dephosphorylation. J. Biol. Chem. 2006, 281, 6236–6245. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 1994, 4, 82–89. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol. Res. 2019, 142, 151–168. [Google Scholar] [CrossRef]
- Li, J.; Tan, Y.; Passariello, C.L.; Martinez, E.C.; Kritzer, M.D.; Li, X.; Li, X.; Li, Y.; Yu, Q.; Ohgi, K.; et al. Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure. Circulation 2020, 142, 2138–2154. [Google Scholar] [CrossRef]
- Kontaridis, M.I.; Yang, W.; Bence, K.K.; Cullen, D.; Wang, B.; Bodyak, N.; Ke, Q.; Hinek, A.; Kang, P.M.; Liao, R.; et al. Deletion of Ptpn11 (Shp2) in Cardiomyocytes Causes Dilated Cardiomyopathy via Effects on the Extracellular Signal–Regulated Kinase/Mitogen-Activated Protein Kinase and RhoA Signaling Pathways. Circulation 2008, 117, 1423–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, A.; Zhou, M.-M. Structure and regulation of MAPK phosphatases. Cell. Signal. 2004, 16, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Buffet, C.; Hecale-Perlemoine, K.; Bricaire, L.; Dumont, F.; Baudry, C.; Tissier, F.; Bertherat, J.; Cochand-Priollet, B.; Raffin-Sanson, M.-L.; Cormier, F.; et al. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS ONE 2017, 12, e0184861. [Google Scholar] [CrossRef] [PubMed]
- Urness, L.D.; Li, C.; Wang, X.; Mansour, S.L. Expression of ERK signaling inhibitorsDusp6, Dusp7, andDusp9 during mouse ear development. Dev. Dyn. 2008, 237, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, B.S.; Nam, H.; Stephens, J.M.; Morrison, R.F. Mitogen-Dependent Regulation of DUSP1 Governs ERK and p38 Signaling During Early 3T3-L1 Adipocyte Differentiation. J. Cell. Physiol. 2016, 231, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Han, Y.M.; Oh, M. DUSP4 regulates neuronal differentiation and calcium homeostasis by modulating ERK1/2 phosphorylation. Stem Cells Dev. 2015, 24, 686–700. [Google Scholar] [CrossRef] [Green Version]
- Fey, D.; Croucher, D.R.; Kolch, W.; Kholodenko, B.N. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades. Front. Physiol. 2012, 3, 355. [Google Scholar] [CrossRef] [Green Version]
- Dinsmore, C.J.; Soriano, P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev. Biol. 2018, 444 (Suppl. 1), S79–S97. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Dong, S.; Fan, M.; Li, J.J. Nuclear factor-kappaB p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells. Mol. Cancer Res. 2006, 4, 945–955. [Google Scholar] [CrossRef] [Green Version]
- Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009, 8, 1168–1175. [Google Scholar] [CrossRef]
- Casar, B.; Pinto, A.; Crespo, P. Essential Role of ERK Dimers in the Activation of Cytoplasmic but Not Nuclear Substrates by ERK-Scaffold Complexes. Mol. Cell 2008, 31, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Tsurumaki, H.; Aoki-Saito, H.; Sato, M.; Yatomi, M.; Takehara, K.; Hisada, T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int. J. Mol. Sci. 2019, 20, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moens, U.; Kostenko, S.; Sveinbjørnsson, B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes 2013, 4, 101–133. [Google Scholar] [CrossRef] [PubMed]
- Ünal, E.B.; Uhlitz, F.; Blüthgen, N. A compendium of ERK targets. FEBS Lett. 2017, 591, 2607–2615. [Google Scholar] [CrossRef] [Green Version]
- Glading, A.; Bodnar, R.J.; Reynolds, I.J.; Shiraha, H.; Satish, L.; Potter, D.A.; Blair, H.C.; Wells, A. Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol. Cell Biol. 2004, 24, 2499–2512. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Chou, J.; Baty, C.J.; Burke, N.A.; Watkins, S.C.; Stolz, D.B.; Wells, A. Spatial Localization of m-Calpain to the Plasma Membrane by Phosphoinositide Biphosphate Binding during Epidermal Growth Factor Receptor-Mediated Activation. Mol. Cell. Biol. 2006, 26, 5481–5496. [Google Scholar] [CrossRef] [Green Version]
- Hornbeck, P.V.; Kornhauser, J.M.; Tkachev, S.; Zhang, B.; Skrzypek, E.; Murray, B.; Latham, V.; Sullivan, M. PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2011, 40, D261–D270. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Jung, H.Y.; Kim, J.; Bae, Y.S. Phosphorylation of serine282 in NADPH oxidase activator 1 by Erk desensitizes EGF-induced ROS generation. Biochem. Biophys. Res. Commun. 2010, 394, 691–696. [Google Scholar] [CrossRef]
- Lin, X.; Nelson, P.J.; Gelman, I.H. SSeCKS, a Major Protein Kinase C Substrate with Tumor Suppressor Activity, Regulates G1→S Progression by Controlling the Expression and Cellular Compartmentalization of Cyclin D. Mol. Cell. Biol. 2000, 20, 7259–7272. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Wang, P.; Cao, P.; Zhu, J.-K.; Tao, W.A. Identification of Extracellular Signal-regulated Kinase 1 (ERK1) Direct Substrates using Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics. Mol. Cell. Proteom. 2014, 13, 3199–3210. [Google Scholar] [CrossRef] [Green Version]
- Stuart, S.A.; Houel, S.; Lee, T.; Wang, N.; Old, W.M.; Ahn, N.G. A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol. Cell Proteom. 2015, 14, 1599–1615. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.M.; Chouinard, C.R.; Labadorf, A.; Lam, C.J.; Schmelzle, K.; Fraenkel, E.; White, F.M. Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3. Sci. Signal. 2011, 4, rs11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigge, P.; Köhler, K.; Vallis, Y.; Doyle, C.A.; Owen, D.; Hunt, S.P.; McMahon, H.T. Amphiphysin Heterodimers: Potential Role in Clathrin-mediated Endocytosis. Mol. Biol. Cell 1997, 8, 2003–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wan, Z.; Huang, C.; Yin, H.; Song, D. AMPH-1 is a tumor suppressor of lung cancer by inhibiting Ras-Raf-MEK-ERK signal pathway. Lasers Med. Sci. 2019, 34, 473–478. [Google Scholar] [CrossRef]
- Seger, R.; Krebs, E.G. The MAPK signaling cascade. FASEB J. 1995, 9, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, T.; Yoshida, H.; Katori, M.; Migita, T.; Muramatsu, Y.; Miyake, M.; Ishikawa, Y.; Saiura, A.; Iemura, S.-I.; Natsume, T.; et al. Tankyrase-Binding Protein TNKS1BP1 Regulates Actin Cytoskeleton Rearrangement and Cancer Cell Invasion. Cancer Res. 2017, 77, 2328–2338. [Google Scholar] [CrossRef] [Green Version]
- Chiang, P.-Y.; Shen, Y.-F.; Su, Y.-L.; Kao, C.-H.; Lin, N.-Y.; Hsu, P.-H.; Tsai, M.-D.; Wang, S.-C.; Chang, G.-D.; Lee, S.-C.; et al. Phosphorylation of mRNA Decapping Protein Dcp1a by the ERK Signaling Pathway during Early Differentiation of 3T3-L1 Preadipocytes. PLoS ONE 2013, 8, e61697. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Lee, J.Y.; Kim, J. Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem. Biophys. Res. Commun. 2005, 333, 110–115. [Google Scholar] [CrossRef]
- Hauge, C.; Frödin, M. RSK and MSK in MAP kinase signalling. J. Cell Sci. 2006, 119, 3021–3023. [Google Scholar] [CrossRef] [Green Version]
- Pitson, S.M.; Moretti, P.A.; Zebol, J.R.; Lynn, H.E.; Xia, P.; Vadas, M.A.; Wattenberg, B.W. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. Embo J. 2003, 22, 5491–5500. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cho, Y.-Y.; Petersen, B.L.; Zhu, F.; Dong, Z. Evidence of STAT1 phosphorylation modulated by MAPKs, MEK1 and MSK1. Carcinogenesis 2004, 25, 1165–1175. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, Y.; Liu, Z.; Lai, R. ERK is a negative feedback regulator for IFN-γ/STAT1 signaling by promoting STAT1 ubiquitination. BMC Cancer 2018, 18, 613. [Google Scholar] [CrossRef] [Green Version]
- Pozo-Guisado, E.; Campbell, D.G.; Deak, M.; Alvarez-Barrientos, A.; Morrice, N.A.; Alvarez, I.S.; Alessi, D.R.; Martín-Romero, F.J. Phosphorylation of STIM1 at ERK1/2 target sites modulates store-operated calcium entry. J. Cell Sci. 2010, 123, 3084–3093. [Google Scholar] [CrossRef] [Green Version]
- Yeh, P.Y.; Chuang, S.-E.; Yeh, K.-H.; Song, Y.C.; Chang, L.L.-Y.; Cheng, A.-L. Phosphorylation of p53 on Thr55 by ERK2 is necessary for doxorubicin-induced p53 activation and cell death. Oncogene 2004, 23, 3580–3588. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.H.; Lim, H.J.; Yoon, S.; Seong, J.K.; Bae, D.S.; Rhee, S.G.; Bae, Y.S. Ahnak Protein Activates Protein Kinase C (PKC) through Dissociation of the PKC-Protein Phosphatase 2A Complex. J. Biol. Chem. 2008, 283, 6312–6320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtivelman, E.; Bishop, J.M. The human gene AHNAK encodes a large phosphoprotein located primarily in the nucleus. J. Cell Biol. 1993, 120, 625–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnad, F.; Doll, S.; Song, K.; Stokes, M.P.; Moffat, J.; Liu, B.; Arnott, D.; Wallin, J.; Friedman, L.S.; Hatzivassiliou, G.; et al. Phosphoproteome analysis of the MAPK pathway reveals previously undetected feedback mechanisms. Proteomics 2016, 16, 1998–2004. [Google Scholar] [CrossRef]
- Kubiniok, P.; Lavoie, H.; Therrien, M.; Thibault, P. Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Mol. Cell. Proteom. 2017, 16, 663–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouwens, D.M.; de Ruiter, N.D.; van der Zon, G.C.; Carter, A.P.; Schouten, J.; van der Burgt, C.; Kooistra, K.; Bos, J.L.; Maassen, J.A.; van Dam, H. Growth factors can activate ATF2 via a two-step mechanism: Phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. Embo J. 2002, 21, 3782–3793. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, M.; Sturgill, T.W.; Sealy, L. ERK2- and p90(Rsk2)-dependent pathways regulate the CCAAT/enhancer-binding protein-beta interaction with serum response factor. J. Biol. Chem. 2001, 276, 38449–38456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, G.J.; Lalli, J.M.; Sussman, M.A.; Sadoshima, J.-I.; Periasamy, M. Phosphorylation of Elk-1 by MEK/ERK Pathway is Necessary for c-fos Gene Activation during Cardiac Myocyte Hypertrophy. J. Mol. Cell. Cardiol. 2000, 32, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Liu, Y.-C.; Lin, C.-H.; Liao, Y.-C. Histone acetyltransferase p300 mediates the upregulation of CTEN induced by the activation of EGFR signaling in cancer cells. Biochem. Biophys. Res. Commun. 2021, 534, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lu, Q.; Zhang, J.; Wang, B.; Liu, X.; An, F.; Qin, W.; Chen, X.; Dong, W.; Zhang, C.; et al. HMGB 1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK /Ets-1 signalling pathway. J. Cell. Mol. Med. 2014, 18, 2311–2320. [Google Scholar] [CrossRef]
- Ichikawa, K.; Kubota, Y.; Nakamura, T.; Weng, J.S.; Tomida, T.; Saito, H.; Takekawa, M. MCRIP1, an ERK Substrate, Mediates ERK-Induced Gene Silencing during Epithelial-Mesenchymal Transition by Regulating the Co-Repressor CtBP. Mol. Cell 2015, 58, 35–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-Y.; Zong, C.S.; Xia, W.; Yamaguchi, H.; Ding, Q.; Xie, X.; Lang, J.-Y.; Lai, C.-C.; Chang, C.-J.; Huang, W.-C.; et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat. Cell Biol. 2008, 10, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krecic, A.M.; Swanson, M.S. hnRNP complexes: Composition, structure, and function. Curr. Opin. Cell Biol. 1999, 11, 363–371. [Google Scholar] [CrossRef]
- Domina, A.M.; Smith, J.H.; Craig, R.W. Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J. Biol. Chem. 2000, 275, 21688–21694. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-Y.; Cho, I.-S.; Bashyal, N.; Naya, F.J.; Tsai, M.-J.; Yoon, J.S.; Choi, J.-M.; Park, C.-H.; Suh-Kim, S.-S.K.A.H.; Suh-Kim, H. ERK Regulates NeuroD1-mediated Neurite Outgrowth via Proteasomal Degradation. Exp. Neurobiol. 2020, 29, 189–206. [Google Scholar] [CrossRef]
- Gyles, S.L.; Burns, C.J.; Whitehouse, B.J.; Sugden, D.; Marsh, P.J.; Persaud, S.J.; Jones, P.M. ERKs Regulate Cyclic AMP-induced Steroid Synthesis through Transcription of the Steroidogenic Acute Regulatory (StAR) Gene. J. Biol. Chem. 2001, 276, 34888–34895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosako, H.; Yamaguchi, N.; Aranami, C.; Ushiyama, M.; Kose, S.; Imamoto, N.; Taniguchi, H.; Nishida, E.; Hattori, S. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat. Struct. Mol. Biol. 2009, 16, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Olsen, J.V.; Daub, H.; Mann, M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Mol. Cell. Proteom. 2009, 8, 2796–2808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, H.; Takahashi, K.; Yamamoto, T.; Iwasaki, M.; Narita, M.; Nakamura, M.; Rand, T.A.; Nakagawa, M.; Watanabe, A.; Yamanaka, S. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 2017, 114, 340–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tan, X.; Tang, Y.; Zhang, C.; Xu, J.; Zhou, J.; Cheng, X.; Hou, N.; Liu, W.; Yang, G.; et al. Dysregulated Tgfbr2/ERK-Smad4/SOX2 Signaling Promotes Lung Squamous Cell Carcinoma Formation. Cancer Res. 2019, 79, 4466–4479. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.T.; Cobb, M.H.; Baer, R. Phosphorylation of the TAL1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1. Mol. Cell. Biol. 1993, 13, 801–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vomastek, T.; Iwanicki, M.P.; Burack, W.R.; Tiwari, D.; Kumar, D.; Parsons, J.T.; Weber, M.J.; Nandicoori, V.K. Extracellular Signal-Regulated Kinase 2 (ERK2) Phosphorylation Sites and Docking Domain on the Nuclear Pore Complex Protein Tpr Cooperatively Regulate ERK2-Tpr Interaction. Mol. Cell. Biol. 2008, 28, 6954–6966. [Google Scholar] [CrossRef] [Green Version]
- West, S.; Gromak, N.; Proudfoot, N.J. Human 5′--> 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004, 432, 522–525. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Kuppuswamy, D. RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells. J. Biol. Chem. 2003, 278, 42214–42224. [Google Scholar] [CrossRef] [Green Version]
- De Acetis, M.; Notte, A.; Accornero, F.; Selvetella, G.; Brancaccio, M.; Vecchione, C.; Sbroggiò, M.; Collino, F.; Pacchioni, B.; Lanfranchi, G.; et al. Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ. Res. 2005, 96, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Häuselmann, S.P.; Rosc-Schlüter, B.I.; Lorenz, V.; Plaisance, I.; Brink, M.; Pfister, O.; Kuster, G.M. β1-Integrin is up-regulated via Rac1-dependent reactive oxygen species as part of the hypertrophic cardiomyocyte response. Free. Radic. Biol. Med. 2011, 51, 609–618. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kita, S.; Tanaka, Y.; Fukuda, S.; Obata, Y.; Okita, T.; Kawachi, Y.; Tsugawa-Shimizu, Y.; Fujishima, Y.; Nishizawa, H.; et al. A disintegrin and metalloproteinase 12 prevents heart failure by regulating cardiac hypertrophy and fibrosis. Am. J. Physiol. Circ. Physiol. 2020, 318, H238–H251. [Google Scholar] [CrossRef]
- Dorn, L.E.; Lawrence, W.R.; Petrosino, J.M.; Xu, X.; Hund, T.J.; Whitson, B.A.; Stratton, M.S.; Janssen, P.M.L.; Mohler, P.J.; Schlosser, A.; et al. Microfibrillar-Associated Protein 4 Regulates Stress-Induced Cardiac Remodeling. Circ. Res. 2021, 128, 723–737. [Google Scholar] [CrossRef]
- Liang, F.; Atakilit, A.; Gardner, D.G. Integrin Dependence of Brain Natriuretic Peptide Gene Promoter Activation by Mechanical Strain. J. Biol. Chem. 2000, 275, 20355–20360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, H.; Verma, S.K.; Smith, M.; Guleria, R.S.; Lu, G.; Foster, D.M.; Dostal, D.E. Stretch-induced MAP kinase activation in cardiac myocytes: Differential regulation through beta1-integrin and focal adhesion kinase. J. Mol. Cell Cardiol. 2007, 43, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, N.L.; Cheng, T.H.; Loh, S.H.; Cheng, P.Y.; Wang, D.L.; Chen, Y.S.; Liu, S.H.; Liew, C.C.; Chen, J.J. Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem. Biophys. Res. Commun. 2001, 283, 143–148. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.-L.; Liu, J.; Zhang, Z.-G.; Fan, D.; Li, L. Crosstalk between angiotensin II and platelet derived growth factor-BB mediated signal pathways in cardiomyocytes. Chin. Med. J. 2008, 121, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Clerk, A.; Pham, F.H.; Fuller, S.J.; Sahai, E.; Aktories, K.; Marais, R.; Marshall, C.; Sugden, P.H. Regulation of Mitogen-Activated Protein Kinases in Cardiac Myocytes through the Small G Protein Rac1. Mol. Cell. Biol. 2001, 21, 1173–1184. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T.; Komuro, I.; Zou, Y.; Yazaki, Y. Hypertrophic responses of cardiomyocytes induced by endothelin-1 through the protein kinase C-dependent but Src and Ras-independent pathways. Hypertens. Res. 1999, 22, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Fukuda, K.; Takahashi, T.; Sano, M.; Kato, T.; Tahara, S.; Hakuno, D.; Sato, T.; Manabe, T.; Konishi, F.; et al. Role of EGF Receptor and Pyk2 in Endothelin-1-induced ERK Activation in Rat Cardiomyocytes. J. Mol. Cell. Cardiol. 2002, 34, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Komuro, I.; Yamazaki, T.; Kudoh, S.; Uozumi, H.; Kadowaki, T.; Yazaki, Y. Both Gs and Gi Proteins Are Critically Involved in Isoproterenol-induced Cardiomyocyte Hypertrophy. J. Biol. Chem. 1999, 274, 9760–9770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilal-Dandan, R.; Means, C.K.; Gustafsson, Å.B.; Morissette, M.R.; Adams, J.W.; Brunton, L.L.; Brown, J.H. Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. J. Mol. Cell. Cardiol. 2004, 36, 481–493. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Zhu, W.; Han, Y.; Han, B.; Xu, R.; Deng, L.; Cai, Y.; Cong, X.; Yang, Y.; et al. Specific LPA receptor subtype mediation of LPA-induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal pathways. J. Cell Biochem. 2008, 103, 1718–1731. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Pimentel, D.R.; Wang, J.; Singh, K.; Colucci, W.S.; Sawyer, D.B. Role of reactive oxygen species and NAD(P)H oxidase in α1-adrenoceptor signaling in adult rat cardiac myocytes. Am. J. Physiol. Physiol. 2002, 282, C926–C934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, W.A.; Thorburn, A. Ras and rho are required for galphaq-induced hypertrophic gene expression in neonatal rat cardiac myocytes. J. Mol. Cell Cardiol. 1998, 30, 485–494. [Google Scholar] [CrossRef]
- Sabri, A.; Wilson, B.A.; Steinberg, S.F. Dual actions of the Galpha(q) agonist Pasteurella multocida toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility. Circ. Res. 2002, 90, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Schmitt, J.P.; Schmitteckert, E.M.; Lohse, M.J. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 2009, 15, 75–83. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Y.-W.; Yang, Y.; Zhang, L.; Wei, L. ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. J. Mol. Cell. Cardiol. 2010, 49, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Vidal, M.; Wieland, T.; Lohse, M.J.; Lorenz, K. β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway. Cardiovasc. Res. 2012, 96, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Nishida, M.; Takagahara, S.; Maruyama, Y.; Sugimoto, Y.; Nagao, T.; Kurose, H. G beta gamma counteracts G alpha(q) signaling upon alpha(1)-adrenergic receptor stimulation. Biochem. Biophys. Res. Commun. 2002, 291, 995–1000. [Google Scholar] [CrossRef]
- Zou, M.-X.; Roy, A.A.; Zhao, Q.; Kirshenbaum, L.A.; Karmazyn, M.; Chidiac, P. RGS2 is upregulated by and attenuates the hypertrophic effect of α1-adrenergic activation in cultured ventricular myocytes. Cell. Signal. 2006, 18, 1655–1663. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.H.; Li, X.H.; Dai, H.; Miao, R.; Cai, J.; Huang, Z.; Chen, A.F.; Xing, X.; Lu, Y.; et al. Regulator of G protein signalling 14 attenuates cardiac remodelling through the MEK-ERK1/2 signalling pathway. Basic Res. Cardiol. 2016, 111, 47. [Google Scholar] [CrossRef] [Green Version]
- Morhenn, K.; Quentin, T.; Wichmann, H.; Steinmetz, M.; Prondzynski, M.; Söhren, K.-D.; Christ, T.; Geertz, B.; Schröder, S.; Schöndube, F.A.; et al. Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy. J. Mol. Cell. Cardiol. 2019, 127, 31–43. [Google Scholar] [CrossRef]
- Anger, T.; Klintworth, N.; Stumpf, C.; Daniel, W.G.; Mende, U.; Garlichs, C.D. RGS protein specificity towards Gq- and Gi/o-mediated ERK 1/2 and Akt activation, in vitro. J. Biochem. Mol. Biol. 2007, 40, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Chidiac, P.; Sobiesiak, A.J.; Lee, K.N.; Gros, R.; Nguyen, C.H. The eIF2B-interacting domain of RGS2 protects against GPCR agonist-induced hypertrophy in neonatal rat cardiomyocytes. Cell. Signal. 2014, 26, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.D.; Chen, Q.; Baye, N.L.; Huang, Y.; Healy, C.L.; Kasinathan, S.; O’Connell, T.D. Nuclear α1-Adrenergic Receptors Signal Activated ERK Localization to Caveolae in Adult Cardiac Myocytes. Circ. Res. 2008, 103, 992–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahl, E.F.; Wu, S.C.; Healy, C.L.; Perry, J.; O’Connell, T.D. ERK mediated survival signaling is dependent on the Gq-G-protein coupled receptor type and subcellular localization in adult cardiac myocytes. J. Mol. Cell. Cardiol. 2019, 127, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev. Biol. 1965, 12, 394–407. [Google Scholar] [CrossRef]
- Kasuga, M.; Zick, Y.; Blithe, D.L.; Crettaz, M.; Kahn, C.R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nat. Cell Biol. 1982, 298, 667–669. [Google Scholar] [CrossRef]
- Ek, B.; Westermark, B.; Wasteson, Å.; Heldin, C.-H. Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor. Nat. Cell Biol. 1982, 295, 419–420. [Google Scholar] [CrossRef]
- Carrasco, L.; Cea, P.; Rocco, P.; Peña-Oyarzún, D.; Rivera-Mejias, P.; Sotomayor-Flores, C.; Quiroga, C.; Criollo, A.; Ibarra, C.; Chiong, M.; et al. Role of Heterotrimeric G Protein and Calcium in Cardiomyocyte Hypertrophy Induced by IGF-1. J. Cell. Biochem. 2014, 115, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Daniels, J.; Glaser, A.E.; Wolf, M.J. Raf-mediated cardiac hypertrophy in adult Drosophila. Dis. Model. Mech. 2013, 6, 964–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebeid, D.E.; Firouzi, F.; Esquer, C.Y.; Navarrete, J.M.; Wang, B.J.; Gude, N.A.; Sussman, M.A. PIM1 Promotes Survival of Cardiomyocytes by Upregulating c-Kit Protein Expression. Cells 2020, 9, 2001. [Google Scholar] [CrossRef]
- Alakoski, T.; Ulvila, J.; Yrjölä, R.; Vainio, L.; Magga, J.; Szabo, Z.; Licht, J.D.; Kerkelä, R. Inhibition of cardiomyocyte Sprouty1 protects from cardiac ischemia–reperfusion injury. Basic Res. Cardiol. 2019, 114, 1–13. [Google Scholar] [CrossRef] [Green Version]
- LaFramboise, W.A.; Petrosko, P.; Krill-Burger, J.M.; Morris, D.R.; McCoy, A.R.; Scalise, D.; Malehorn, D.E.; Guthrie, R.D.; Becich, M.J.; Dhir, R. Proteins secreted by embryonic stem cells activate cardiomyocytes through ligand binding pathways. J. Proteom. 2010, 73, 992–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Zou, Y.; Aikawa, R.; Hayashi, D.; Kudoh, S.; Yamauchi, T.; Uozumi, H.; Zhu, W.; Kadowaki, T.; Yazaki, Y.; et al. Growth hormone signalling and apoptosis in neonatal rat cardiomyocytes. Mol. Cell. Biochem. 2001, 223, 35–46. [Google Scholar] [CrossRef]
- van Berlo, J.H.; Elrod, J.W.; Aronow, B.J.; Pu, W.T.; Molkentin, J.D. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 12331–12336. [Google Scholar] [CrossRef] [Green Version]
- Tenhunen, O.; Sármán, B.; Kerkelä, R.; Szokodi, I.; Papp, L.; Tóth, M.; Ruskoaho, H. Mitogen-activated protein kinases p38 and ERK 1/2 mediate the wall stress-induced activation of GATA-4 binding in adult heart. J. Biol. Chem. 2004, 279, 24852–24860. [Google Scholar] [CrossRef] [Green Version]
- Gallo, S.; Spilinga, M.; Casanova, E.; Bonzano, A.; Boccaccio, C.; Comoglio, P.M.; Crepaldi, T. The Long-Lasting Protective Effect of HGF in Cardiomyoblasts Exposed to Doxorubicin Requires a Positive Feed-Forward Loop Mediated by Erk1,2-Timp1-Stat3. Int. J. Mol. Sci. 2020, 21, 5258. [Google Scholar] [CrossRef]
- Harris, I.S.; Zhang, S.; Treskov, I.; Kovacs, A.; Weinheimer, C.; Muslin, A.J. Raf-1 Kinase Is Required for Cardiac Hypertrophy and Cardiomyocyte Survival in Response to Pressure Overload. Circulation 2004, 110, 718–723. [Google Scholar] [CrossRef]
- Bueno, O.F.; De Windt, L.J.; Tymitz, K.M.; Witt, S.A.; Kimball, T.R.; Klevitsky, R.; Hewett, T.E.; Jones, S.P.; Lefer, D.J.; Peng, C.F.; et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. Embo J. 2000, 19, 6341–6350. [Google Scholar] [CrossRef] [Green Version]
- Lips, D.J.; Bueno, O.F.; Wilkins, B.J.; Purcell, N.H.; Kaiser, R.A.; Lorenz, J.N.; Voisin, L.; Saba-El-Leil, M.K.; Meloche, S.; Pouysségur, J.; et al. MEK1-ERK2 Signaling Pathway Protects Myocardium from Ischemic Injury In Vivo. Circulation 2004, 109, 1938–1941. [Google Scholar] [CrossRef] [Green Version]
- Purcell, N.H.; Wilkins, B.J.; York, A.; Saba-El-Leil, M.K.; Meloche, S.; Robbins, J.; Molkentin, J.D. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 14074–14079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehat, I.; Davis, J.; Tiburcy, M.; Accornero, F.; Saba-El-Leil, M.K.; Maillet, M.; York, A.J.; Lorenz, J.N.; Zimmermann, W.H.; Meloche, S.; et al. Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circ. Res. 2011, 108, 176–183. [Google Scholar] [CrossRef]
- Li, X.-M.; Ma, Y.-T.; Yang, Y.-N.; Liu, F.; Chen, B.-D.; Han, W.; Zhang, J.-F.; Gao, X.-M. Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin. Exp. Pharmacol. Physiol. 2009, 36, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-Binding Proteins. Physiol. Rev. 2001, 81, 153–208. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Chen, M.; Wu, X.; Yang, X.; Xu, T.; Zhuang, Y.; Han, M.; Xu, R. Endothelial SUR-8 acts in an ERK-independent pathway during atrioventricular cushion development. Dev. Dyn. 2010, 239, 2005–2013. [Google Scholar] [CrossRef]
- Hannig, V.; Jeoung, M.; Jang, E.R.; Phillips, J.A., 3rd; Galperin, E. A Novel SHOC2 Variant in Rasopathy. Hum. Mutat. 2014, 35, 1290–1294. [Google Scholar] [PubMed] [Green Version]
- Rachmin, I.; Tshori, S.; Smith, Y.; Oppenheim, A.; Marchetto, S.; Kay, G.; Foo, R.S.-Y.; Dagan, N.; Golomb, E.; Gilon, D.; et al. Erbin is a negative modulator of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 2014, 111, 5902–5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brokat, S.; Thomas, J.; Herda, L.R.; Knosalla, C.; Pregla, R.; Brancaccio, M.; Accornero, F.; Tarone, G.; Hetzer, R.; Regitz-Zagrosek, V. Altered melusin expression in the hearts of aortic stenosis patients. Eur. J. Hear. Fail. 2007, 9, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, M.; Fratta, L.; Notte, A.; Hirsch, E.; Poulet, R.; Guazzone, S.; De Acetis, M.; Vecchione, C.; Marino, G.; Altruda, F.; et al. Melusin, a muscle-specific integrin β1–interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat. Med. 2002, 9, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Sbroggiò, M.; Carnevale, D.; Bertero, A.; Cifelli, G.; de Blasio, E.; Mascio, G.; Hirsch, E.; Bahou, W.F.; Turco, E.; Silengo, L.; et al. IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload. Cardiovasc. Res. 2011, 91, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Sbroggiò, M.; Bertero, A.; Velasco, S.; Fusella, F.; De Blasio, E.; Bahou, W.F.; Silengo, L.; Turco, E.; Brancaccio, M.; Tarone, G. ERK1/2 activation in heart is controlled by melusin, focal adhesion kinase and the scaffold protein IQGAP1. J. Cell Sci. 2011, 124, 3515–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Lin, T.H.; Der, C.J.; Juliano, R.L. Integrin-mediated activation of MEK and mitogen-activated protein kinase is independent of Ras [corrected]. J. Biol. Chem. 1996, 271, 18122–18127. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, D.; Crosby, C.; Xiang, Y. Arrestin Orchestrates Crosstalk Between G Protein-Coupled Receptors to Modulate the Spatiotemporal Activation of ERK MAPK. Circ. Res. 2010, 106, 79–88. [Google Scholar] [CrossRef]
- Noma, T.; Lemaire, A.; Prasad, S.V.N.; Barki-Harrington, L.; Tilley, D.G.; Chen, J.; Le Corvoisier, P.; Violin, J.D.; Wei, H.; Lefkowitz, R.J.; et al. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J. Clin. Investig. 2007, 117, 2445–2458. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Zhao, M.; Hu, M.; Liu, D.; Cao, H.; Qian, L.; Yang, Z.; Hu, Y.; Yu, M.; Yang, S.; et al. β2-AR-induced Her2 transactivation mediated by Erbin confers protection from apoptosis in cardiomyocytes. Int. J. Cardiol. 2013, 167, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.; Raskin, A.; Chu, P.-H.; Lange, S.; Domenighetti, A.A.; Zheng, M.; Liang, X.; Zhang, T.; Yajima, T.; Gu, Y.; et al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J. Clin. Investig. 2008, 118, 3870–3880. [Google Scholar] [CrossRef]
- Zhong, L.; Chiusa, M.; Cadar, A.G.; Lin, A.; Samaras, S.; Davidson, J.M.; Lim, C.C. Targeted inhibition of ANKRD1 disrupts sarcomeric ERK-GATA4 signal transduction and abrogates phenylephrine-induced cardiomyocyte hypertrophy. Cardiovasc. Res. 2015, 106, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, H.; Sonkar, K.; Gage, M.J. The insertion sequence of the N2A region of titin exists in an extended structure with helical characteristics. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2017, 1865, 1–10. [Google Scholar] [CrossRef]
- Radke, M.H.; Peng, J.; Wu, Y.; McNabb, M.; Nelson, O.L.; Granzier, H.; Gotthardt, M. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl. Acad. Sci. USA 2007, 104, 3444–3449. [Google Scholar] [CrossRef] [Green Version]
- Bueno, O.F.; De Windt, L.J.; Lim, H.W.; Tymitz, K.M.; Witt, S.A.; Kimball, T.R.; Molkentin, J.D. The Dual-Specificity Phosphatase MKP-1 Limits the Cardiac Hypertrophic Response In Vitro and In Vivo. Circ. Res. 2001, 88, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, B.S.; Harrison, B.C.; Jeong, M.Y.; Reid, B.G.; Wempe, M.F.; Wagner, F.F.; Holson, E.B.; McKinsey, T.A. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 2013, 110, 9806–9811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; van Berlo, J.H.; York, A.J.; Vagnozzi, R.J.; Maillet, M.; Molkentin, J.D. DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circ. Res. 2016, 119, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Jiang, X.; Liu, J.; Ye, P.; Jiang, L.; Chen, M.; Xia, J. Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1. J. Am. Hear. Assoc. 2021, 10, e014311. [Google Scholar] [CrossRef]
- Ruppert, C.; Deiss, K.; Herrmann, S.; Vidal, M.; Oezkur, M.; Gorski, A.; Weidemann, F.; Lohse, M.J.; Lorenz, K. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 2013, 110, 7440–7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasovic, A.; Brand, T.; Schanbacher, C. Interference with ERK-dimerization at the nucleocytosolic interface targets pathological ERK1/2 signaling without cardiotoxic side-effects. Nat. Commun. 2020, 11, 1733. [Google Scholar] [CrossRef] [Green Version]
- Studer, R.; Reinecke, H.; Müller, B.; Holtz, J.; Just, H.; Drexler, H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J. Clin. Investig. 1994, 94, 301–310. [Google Scholar] [CrossRef]
- Schunkert, H.; Jackson, B.; Tang, S.S.; Schoen, F.J.; Smits, J.F.; Apstein, C.S.; Lorell, B.H. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 1993, 87, 1328–1339. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.; Ball, S. ACE inhibitors in heart failure: An update. Basic Res. Cardiol. 2000, 95 (Suppl. 1), I8–I14. [Google Scholar] [CrossRef]
- Kai, H.; Muraishi, A.; Sugiu, Y.; Nishi, H.; Seki, Y.; Kuwahara, F.; Kimura, A.; Kato, H.; Imaizumi, T. Expression of Proto-oncogenes and Gene Mutation of Sarcomeric Proteins in Patients with Hypertrophic Cardiomyopathy. Circ. Res. 1998, 83, 594–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauen, K.A. The RASopathies. Annu. Rev. Genom. Hum. Genet. 2013, 14, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Simpson, J.C.; Hong, J.H.; Kim, K.-H.; Thavarajah, N.K.; Backx, P.H.; Neel, B.G.; Araki, T. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation. J. Clin. Investig. 2011, 121, 1009–1025. [Google Scholar] [CrossRef] [Green Version]
- Carvajal-Vergara, X.; Sevilla, A.; D’Souza, S.L.; Ang, Y.-S.; Schaniel, C.; Lee, D.-F.; Yang, L.; Kaplan, A.D.; Adler, E.D.; Rozov, R.; et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nat. Cell Biol. 2010, 465, 808–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkozy, A.; Carta, C.; Moretti, S.; Zampino, G.; Digilio, M.C.; Pantaleoni, F.; Scioletti, A.P.; Esposito, G.; Cordeddu, V.; Lepri, F.; et al. GermlineBRAFmutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: Molecular diversity and associated phenotypic spectrum. Hum. Mutat. 2009, 30, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mincu, R.I.; Mahabadi, A.A.; Michel, L.; Mrotzek, S.M.; Schadendorf, D.; Rassaf, T.; Totzeck, M. Cardiovascular Adverse Events Associated with BRAF and MEK Inhibitors: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e198890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronte, E.; Bronte, G.; Novo, G.; Bronte, F.; Bavetta, M.G.; Re, G.L.; Brancatelli, G.; Bazan, V.; Natoli, C.; Novo, S.; et al. What links BRAF to the heart function? new insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget 2015, 6, 35589–35601. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Paraiso, K.H.; Fedorenko, I.V.; Cantini, L.P.; Munko, A.C.; Hall, M.; Sondak, V.K.; Messina, J.L.; Flaherty, K.T.; Smalley, K.S.M. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer 2010, 102, 1724–1730. [Google Scholar] [CrossRef]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Sileni, V.C.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef]
- Ascierto, P.A.; McArthur, G.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; di Giacomo, A.M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): Updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016, 17, 1248–1260. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.; Crespo, P. The RAS-ERK pathway: A route for couples. Sci. Signal. 2018, 11, eaav0917. [Google Scholar] [CrossRef] [PubMed]
- Philips, M.R.; Der, C.J. Seeing is believing: Ras dimers observed in live cells. Proc. Natl. Acad. Sci. USA 2015, 112, 9793–9794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrogio, C.; Köhler, J.; Zhou, Z.-W.; Wang, H.; Paranal, R.; Li, J.; Capelletti, M.; Caffarra, C.; Li, S.; Lv, Q.; et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell 2018, 172, 857–868.e15. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.K.; Ritt, D.A.; Morrison, D.K. The importance of Raf dimerization in cell signaling. Small GTPases 2013, 4, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Catalanotti, F.; Reyes, G.; Jesenberger, V.; Galabova-Kovacs, G.; Simoes, R.D.M.; Carugo, O.; Baccarini, M. A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal. Nat. Struct. Mol. Biol. 2009, 16, 294–303. [Google Scholar] [CrossRef]
- Rajakulendran, T.; Sahmi, M.; Lefrançois, M.; Sicheri, F.; Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nat. Cell Biol. 2009, 461, 542–545. [Google Scholar] [CrossRef]
Localization | Gene Name | Protein Name | Role/Function | References |
---|---|---|---|---|
Plasma Membrane | CAPN2 | Calpain-2 catalytic subunit | Plays a role in epidermal growth factor (EGF)-mediated cell adhesion and motility. | [27,28,29] |
NOXA1 | NADPH oxidase activator 1 | Activates NADPH oxidase NOX1 to produce reactive oxygen species (ROS) that play a role in host defense, hormone biosynthesis, and sensing. | [29,30] | |
Cytoskeleton | AKAP12 | A-kinase anchor protein 12 | Anchors protein kinases A (PKA) and C (PKC) and plays a role in cell cycle regulation. | [29,31,32,33,34] |
AMPH | Amphiphysin | Plays a role in endoyctosis. | [29,35,36,37] | |
MAP1B | Microtubule-associated protein 1B | Plays a role in neurite extension, where phosphorylation may induce microtubule association. | [29,32,33,34] | |
TNKS1BP1 | 182 kDa tankyrase-1-binding protein | Functions in regulating the actin cytoskeleton. | [29,33,34,38] | |
Cytosol | DCP1A | mRNA-decapping enzyme 1A | Modulates gene expression through interaction with decapping enzyme Dcp2. | [29,33,39] |
RPS3 | 40S ribosomal protein S3 | Functions as a member of the ribosomal small subunit; plays a role in DNA repair. | [29,32,33,34,40] | |
RPS6KA1 | Ribosomal protein S6 kinase alpha-1 (RSK1) | Acts downstream of ERK found in both the cytosol and nucleus. | [29,41] | |
RPS6KA3 | Ribosomal protein S6 kinase alpha-3 (RSK2) | Acts downstream of ERK found in both the cytosol and nucleus. | [29,41] | |
RPS6KA2 | Ribosomal protein S6 kinase alpha-2 (RSK3) | Acts downstream of ERK found in both the cytosol and nucleus. | [29,41] | |
SPHK1 | Sphingosine kinase 1 | Activates proteins tied to proliferation and repression of apoptosis following activation through phosphorylation. | [29,42] | |
STAT1 | Signal transducer and activator of transcription 1-alpha/beta | Transduces interferon-, growth factor-, and cytokine-mediated signals. | [29,33,43,44] | |
STIM1 | Stromal interaction molecule 1 | Upon intracellular Ca2+ depletion, translocates from the ER membrane to near the plasma membrane to activate store-operated calcium channels (SOCs). | [29,45] | |
TP53 | Cellular tumor antigen p53 | Functions as a cell cycle regulator and tumor suppressor. | [29,46] | |
Nucleus | AHNAK | Neuroblast differentiation-associated protein AHNAK | May be required for neuronal cell differentiation; has been observed to disrupt PKC-PP2A complex to upregulate ERK signaling in NIH3T3 fibroblasts. | [29,32,34,47,48,49,50] |
ATF2 | Cyclic AMP-dependent transcription factor ATF-2 | Upon phosphorylation, upregulates genes tied to DNA damage response and cell growth. | [29,37,51] | |
CEBPB | CCAAT/enhancer-binding protein beta | Phosphorylation of the CCAAT/enhancer-binding protein-b (C/EBPb) by ERK2 (not ERK1) enhances its interaction with SRF and its transactivation activity. | [29,52] | |
ELK1 | ETS domain-containing protein Elk-1 | Primarily functions to transcribe c-Fos, which plays a role in cell proliferation and differentiation; phosphorylation enhances activity. | [29,37,53] | |
EP300 | Histone acetyltransferase p300 | Regulates transcription via chromatin remodeling. | [29,54] | |
ETS1 | Protein C-ets-1 | Regulates immune cell function. | [29,55] | |
FAM195B | Mapk-regulated corepressor-interacting protein 1 | Regulates co-repressor CtBP to mediate gene silencing during the epithelial-mesenchymal transition. | [29,34,56] | |
FOXO3 | Forkhead box protein O3 | Regulates cellular processes, such as apoptosis and autophagy, where nuclear translocation occurs in response to stress. | [29,57] | |
HNRNPH1 | Heterogeneous nuclear ribonucleoprotein H | Mediates pre-mRNA splicing. | [58] | |
JUN | Transcription factor AP-1 (c-Jun) | Plays an integral role in cell cycle progression. | [29,32,37] | |
MCL1 | Induced myeloid leukemia cell differentiation protein Mcl-1 | Plays a role in regulating apoptosis. | [29,59] | |
NDF1 | Neurogenic differentiation factor 1 | Regulates differentiation of neuronal and endocrine cells. | [29,37,60] | |
NR5A1 | Steroidogenic factor 1 | Plays a role in the development of the primary steroidogenic tissues in both sexes. | [29,61] | |
NUP153 | Nuclear pore complex protein Nup153 | Functions trafficking across the nuclear envelope. | [29,32,33,34,62,63] | |
PRRC2A | Protein PRRC2A (BAT2) | Functions in oligodendrocyte specification; plays a role in pre-mRNA splicing. | [29,33,34,50,64] | |
RPS6KA5 | Ribosomal protein S6 kinase alpha-5 (MSK1) | Upon activations, functions to phosphorylate CREB1 and ATF1 in response to mitogenic or stress signaling. | [29,41] | |
SMAD4 | Mothers against decapentaplegic homolog 4 | Balances atrophy and hypertrophy, where nuclear translocation occurs R-SMAD; Component of nuclear SMAD2/SMAD3-SMAD4 complex. | [29,37,65] | |
TAL1 | T-cell acute lymphocytic leukemia protein 1 | Serves as a positive regulator of erythroid differentiation. | [29,37,66] | |
TPR | Nucleoprotein TPR | Functions trafficking across the nuclear envelope; plays an integral role in cell division. | [29,32,34,50,67] | |
XRN2 | 5’-3’ exoribonuclease 2 | Functions in RNA degradation. | [29,32,34,68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilbert, C.J.; Longenecker, J.Z.; Accornero, F. ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology 2021, 10, 346. https://doi.org/10.3390/biology10040346
Gilbert CJ, Longenecker JZ, Accornero F. ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology. 2021; 10(4):346. https://doi.org/10.3390/biology10040346
Chicago/Turabian StyleGilbert, Christopher J., Jacob Z. Longenecker, and Federica Accornero. 2021. "ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth" Biology 10, no. 4: 346. https://doi.org/10.3390/biology10040346
APA StyleGilbert, C. J., Longenecker, J. Z., & Accornero, F. (2021). ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology, 10(4), 346. https://doi.org/10.3390/biology10040346