A New Approach to Quantifying Bioaccumulation of Elements in Biological Processes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Bioaccumulation Index (BAI)
3. Results
4. Discussion
4.1. Meaning and Limitations of the BAF
4.2. The Concept and Biological Meanings of the BAF and the BAI—Different Approaches to Bioaccumulation
4.3. The Applicability of the BAI for Other Organisms
4.4. Limitations in Using the BAI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katagi, T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organism. Rev. Environ. Contam. Toxicol. 2010, 204, 1–321. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed 2015, 1, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Sundbom, M.; Meili, M.; Andersson, E.; Östlund, M.; Broberg, A. Long-term dynamics of Chernobyl 137Cs in freshwater fish: Quantifying the effect of body size and trophic level. J. Appl. Ecol. 2003, 40, 228–240. [Google Scholar] [CrossRef]
- Leeman, W.R.; Van Den Berg, K.J.; Houben, G.F. Transfer of chemicals from feed to animal products: The use of transfer factors in risk assessment. Food Addit. Contam. 2007, 24, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, A.J.; Malkocs, T.; Piertney, S.B.; Fujii, T.; Zhang, Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 2017, 1, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, M.; Hendriks, H.W.M.; Huijbregts, M.A.J.; Ragas, A.M.J.; Van De Meent, D.; Hendriks, A.J. Parameter uncertainty in modeling bioaccumulation factors of fish. Environ. Toxicol. Chem. 2011, 30, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.; Hopkin, S.P. Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): Implications for predators. Environ. Pollut. 1996, 91, 289–297. [Google Scholar] [CrossRef]
- Cullen, M.C.; Connell, D.W. Pesticide bioaccumulation in cattle. Ecotoxicol. Environ. Saf. 1994, 28, 221–231. [Google Scholar] [CrossRef]
- Paz-Alberto, A.M.; Sigua, G.C. Phytoremediation: A green technology to remove environmental pollutants. Am. J. Clim. Chang. 2013, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Aslam, F.; Yasmin, A.; Sohail, S. Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. Int. Microbiol. 2020, 23, 253–261. [Google Scholar] [CrossRef]
- Mustafa, S.; Bhatti, H.N.; Maqbool, M.; Iqbal, M. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. J. Water Process Eng. 2021, 41, 102009. [Google Scholar] [CrossRef]
- Walker, C.H. Kinetic models to predict bioaccumulation of pollutants. Funct. Ecol. 1990, 4, 295–301. [Google Scholar] [CrossRef]
- Ogle, R.S.; Maier, K.J.; Kiffney, P.; William, M.J.; Brasher, A.; Melton, L.A.; Knight, A.W. Bioaccumulation of selenium in aquatic ecosystems. Lake Reserv. Manag. 1988, 4, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Streit, B. Bioaccumulation processes in ecosystems. Experientia 1992, 48, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.H. Kinetic models for predicting bioaccumulation of pollutants in ecosystems. Environ. Pollut. 1987, 44, 227–240. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Lu, J.; Min, X.; Xu, J.; Yang, L. Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicol. Environ. Saf. 2018, 166, 345–353. [Google Scholar] [CrossRef]
- Qiu, Y.W.; Qiu, H.L.; Zhang, G.; Li, J. Bioaccumulation and cycling of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in three natural mangrove ecosystems of South China. Sci. Total Environ. 2019, 651, 1788–1795. [Google Scholar] [CrossRef]
- Mackay, D.; Celsie, A.K.D.; Powell, D.E.; Parnis, J.M. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: A modelling perspective. Environ. Sci. Process. Impacts 2018, 20, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Valdés, M.E.; Huerta, B.; Wunderlin, D.A.; Bistoni, M.A.; Barceló, D.; Rodriguez-Mozaz, S. Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Sci. Total Environ. 2016, 557–558, 58–67. [Google Scholar] [CrossRef]
- Martín, J.; Hidalgo, F.; García-Corcoles, M.T.; Ibáñez-Yuste, A.J.; Alonso, E.; Vilchez, J.L.; Zafra-Gómez, A. Bioaccumulation of perfluoroalkyl substances in marine echinoderms: Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791. Chemosphere 2019, 215, 261–271. [Google Scholar] [CrossRef]
- Sinche, F.L.; Lotufo, G.R.; Landrum, P.; Lydy, M.J. Can tenax extraction be used as a surrogate exposure metric for laboratory-based bioaccumulation tests using marine sediments? Environ. Toxicol. Chem. 2019, 38, 1188–1197. [Google Scholar] [CrossRef]
- Zaibel, I.; Dagan, G.; Arnon, S.; Schwartsburd, F.; Britzi, M.; Snyder, S.A.; Zilberg, D. Tertiary-treated wastewater as a potential water source for sustainable aquaculture: A laboratory-scale experiment with Cyprinus carpio. Aquaculture 2020, 522, 735161. [Google Scholar] [CrossRef]
- Ewuim, S. Entomoremediation—A novel in-situ bioremediation approach. Anim. Res. Int. 2013, 10, 1681–1684. [Google Scholar] [CrossRef]
- Bulak, P.; Polakowski, C.; Nowak, K.; Waśko, A.; Wiącek, D.; Bieganowski, A. Hermetia illucens as a new and promising species for use in entomoremediation. Sci. Total Environ. 2018, 633, 912–919. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.; Wang, W.; Lei, C.; Zhu, F. Influences of chromium and cadmium on the development of black soldier fly larvae. Environ. Sci. Pollut. Res. 2017, 24, 8637–8644. [Google Scholar] [CrossRef]
- Proc, K.; Bulak, P.; Wiącek, D.; Bieganowski, A. Hermetia illucens exhibits bioaccumulative potential for 15 different elements-implications for feed and food production. Sci. Total Environ. 2020, 723, 8125. [Google Scholar] [CrossRef]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar] [CrossRef]
- Schmitt, E.; Belghit, I.; Johansen, J.; Leushuis, R.; Lock, E.-J.; Melsen, D.; Shanmugam, R.K.R.; Van Loon, J.; Paul, A. Growth and safety assessment of feed streams for aquaculture sludge. Animals 2019, 9, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulak, P.; Walkiewicz, A.; Brzezińska, M. Plant growth regulators-assisted phytoextraction. Biol. Plant. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Asif, N.; Malik, M. A review of on environmental pollution bioindicators. Pollution 2018, 4, 111–118. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Q.; Liao, K.; Jian, Z.; Zhao, C.; Qu, J. Fungal community as a bioindicator to reflect anthropogenic activities in a river ecosystem. Front. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnot, J.A.; Arnot, M.I.; Mackay, D.; Couillard, Y.; MacDonald, D.; Bonnell, M.; Doylek, P. Molecular size cutoff criteria for screening bioaccumulation potential: Fact or fiction? Integr. Environ. Assess. Manag. 2009, 6, 210–224. [Google Scholar] [CrossRef]
- Intamat, S.; Buasriyot, P.; Sriuttha, M.; Tengjaroenkul, B.; Neeratanaphan, L. Bioaccumulation of arsenic in aquatic plants and animals near a municipal landfill. Int. J. Environ. Stud. 2017, 74, 303–314. [Google Scholar] [CrossRef]
- Alexander, D.E. Bioaccumulation, bioconcentration, biomagnification. Environ. Geol. Encycl. Earth Sci. 1999, 14, 43–44. [Google Scholar] [CrossRef]
- Blasco, J.; Chapman, P.; Campana, O.; Hampel, M. Marine Ecotoxicology: Current Knowledge and Future Issues, 1st ed.; Chapter Bioaccumulation and Biomonitoring; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128033715. [Google Scholar]
- Yang, S.; Zhai, S.w.; Shepherd, B.S.; Binkowski, F.P.; Hung, S.S.O.; Sealey, W.M.; Deng, D.F. Determination of optimal feeding rates for juvenile lake sturgeon (Acipenser fulvescens) fed a formulated dry diet. Aquac. Nutr. 2019, 25, 1171–1182. [Google Scholar] [CrossRef]
- Dayars, P.; Bialais, C.; Ouddane, B.; Lee, J.S.; Souissi, S. Effects of different routes of exposure to metals on bioaccumulation and population growth of the cyclopoid copepod Paracyclopina nana. Chemosphere 2020, 248, 5926. [Google Scholar] [CrossRef]
- Scheifer, R.; Gomot-de Vaufleury, A.; Toussaint, M.-L.; Badot, P.-M. Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens. Chemosphere 2002, 48, 571–579. [Google Scholar] [CrossRef]
Element Concentration in Substrates for H. illucens Larvae | Element Concentration in the Larvae | BAF | BAI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element/Variant | Control | Protein Rich | Fiber Rich | Young (Initial) | Control (Final) | Protein Rich (Final) | Fiber Rich (Final) | Control | Protein Rich | Fiber Rich | Control | Protein Rich | Fiber Rich |
P (g·kg−1) | 7.74 | 9.55 | 0.89 | 19.51 | 8.91 | 8.71 | 13.22 | 1.15 | 0.91 | 14.85 | −0.54 | −0.55 | −0.32 |
Mn (g·kg−1) | 0.26 | 0.06 | 0.08 | 0.25 | 0.73 | 0.19 | 0.48 | 2.81 | 3.17 | 6.00 | 1.92 | −0.24 | 0.92 |
Cd (mg·kg−1) | 0.09 | 0.08 | 0.23 | 0.36 | 0.47 | 0.60 | 2.24 | 5.22 | 7.50 | 9.74 | 0.31 | 0.67 | 5.22 |
BAF | BAI | ||
---|---|---|---|
Describes the Ratio of the Final Concentration in the Biomass of Larvae in Relation to… | …the Concentration in the Matrix (e.g., in Sea, Lake, River). | …the Initial Concentration of a Given Element in the Biomass of the Younger Organism. | |
Threshold Values | BAF or BAI > 1 | Bioaccumulation. The concentration of a given element in the biomass of an organism was higher than in the matrix. | Bioaccumulation. The concentration of a given element in the biomass of an organism after the experiment was higher than in the biomass of the same organism before the experiment. The relative concentration of the given element increased during the experiment. |
BAF or BAI = 1 | Bioindication. The concentration of a given element in the biomass of an organism was equal to the concentration in the matrix, and such organisms can be treated as bioindicators of a given element in such environments. | Bioaccumulation. The final concentration of a given element in the biomass of an organism (after the experiment) was exactly equal to twice the initial concentration. There can be no question about bioindication, because the BAI does not refer to a given element concentration in the matrix. | |
0 < BAF or BAI < 1 | No bioaccumulation. The concentration of a given element in the biomass of an organism was lower than in the matrix. | Bioaccumulation. However, the extent of bioaccumulation was lower; the final concentration of a given element in the biomass of the organism was greater than the initial concentration but less than twice the initial concentration. | |
BAF or BAI = 0 | N/A | No bioaccumulation occurred, as the final concentration of a given element in the biomass of the organism was equal to the initial concentration. | |
BAF or BAI < 0 | N/A | The phenomenon of the “dilution” of an element occurred during the experiment. A given element was transferred from the biomass of the organism to the matrix; the final concentration in the organism’s biomass was lower than the initial value. |
Organism | Element | Concentration in the Matrix (µg·g−1) | Initial Concentration in the Organism (µg·g−1) | Variant Names According to Cited Reference | Final Concentration in the Organism (µg·g−1) | BAF | BAF Interpretation | BAI | BAI Interpretation | Reference |
---|---|---|---|---|---|---|---|---|---|---|
P. nana | Cd | 0.26 | 0.02 | Cfood | 0.16 | 0.62 | – | 7.00 | + | [37] |
Cnofood | 0.21 | 0.81 | – | 9.50 | + | |||||
Cu | 2.40 | 226.90 | Mixfood | 98.7 | 41.13 | + | −0.57 | – | ||
Mixnofood | 149.5 | 62.29 | + | −0.34 | – | |||||
H. aspersa | Cd | 0.12 | 0.16 | Control | 0.07 | 0.58 | – | −0.56 | – | [38] |
13.00 | 24.31 | S10 | 38.11 | 2.93 | + | 0.57 | + | |||
54.76 | 99.67 | S50 | 174.61 | 3.19 | + | 0.75 | + | |||
83.20 | 237.91 | S100 | 282.33 | 3.39 | + | 0.19 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proc, K.; Bulak, P.; Kaczor, M.; Bieganowski, A. A New Approach to Quantifying Bioaccumulation of Elements in Biological Processes. Biology 2021, 10, 345. https://doi.org/10.3390/biology10040345
Proc K, Bulak P, Kaczor M, Bieganowski A. A New Approach to Quantifying Bioaccumulation of Elements in Biological Processes. Biology. 2021; 10(4):345. https://doi.org/10.3390/biology10040345
Chicago/Turabian StyleProc, Kinga, Piotr Bulak, Monika Kaczor, and Andrzej Bieganowski. 2021. "A New Approach to Quantifying Bioaccumulation of Elements in Biological Processes" Biology 10, no. 4: 345. https://doi.org/10.3390/biology10040345
APA StyleProc, K., Bulak, P., Kaczor, M., & Bieganowski, A. (2021). A New Approach to Quantifying Bioaccumulation of Elements in Biological Processes. Biology, 10(4), 345. https://doi.org/10.3390/biology10040345