Morphological Asymmetries Profile and the Difference between Low- and High-Performing Road Cyclists Using 3D Scanning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Experimental Procedure
2.3.1. The 3D Body Scan Measurements
2.3.2. Experimental Procedure of 3D Scanning
2.4. Competition Performance
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucia, A.; Hoyos, J.; Chicharro, J.L. Physiology of Professional Road Cycling. Sport. Med. 2001, 31, 325–337. [Google Scholar] [CrossRef]
- Padilla, S.; Mujika, I.; Cuesta, G.; Goiriena, J.J. Level ground and uphill cycling ability in professional road cycling. Med. Sci. Sport. Exerc. 1999, 31, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B. Relationship of anthropometric and training characteristics with race performance in endurance and ultra-endurance athletes. Asian J. Sports Med. 2014, 5, 73–90. [Google Scholar]
- Knechtle, B.; Wirth, A.; Rüst, C.A.; Rosemann, T. The relationship between anthropometry and split performance in recreational male ironman triathletes. Asian J. Sports Med. 2011, 2, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Knechtle, P.; Rosemann, T. Upper body skinfold thickness is related to race performance in male ironman triathletes. Int. J. Sports Med. 2011, 32, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurov, I.; Milic, R.; Rauter, S. Do body composition and physiological parameters measured in the laboratory have predictive value for cycling performance? Sport Mont 2020, 18, 87–90. [Google Scholar] [CrossRef]
- Swain, D.P. The influence of body mass in endurance bicycling. Med. Sci. Sports Exerc. 1994, 26, 58–63. [Google Scholar] [CrossRef]
- Foley, J.P.; Bird, S.R.; White, J.A. Anthropometric comparison of cyclists from different events. Br. J. Sports Med. 1989, 23, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Joyos, H.; Chicharro, J.L. Physiological response to professional road cycling: Climbers vs. time trialists. Int. J. Sports Med. 2000, 21, 505–512. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Physiological and Performance Characteristics of Male Professional Road Cyclists. Sport. Med. 2001, 31, 479–487. [Google Scholar] [CrossRef]
- Menaspà, P.; Rampinini, E.; Bosio, A.; Carlomagno, D.; Riggio, M.; Sassi, A. Physiological and anthropometric characteristics of junior cyclists of different specialties and performance levels. Scand. J. Med. Sci. Sports 2012, 22, 392–398. [Google Scholar] [CrossRef]
- van der Zwaard, S.; de Ruiter, C.J.; Jaspers, R.T.; de Koning, J.J. Anthropometric Clusters of Competitive Cyclists and Their Sprint and Endurance Performance. Front. Physiol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, B.; Curby, D.G.; Barbas, I.; Lotfi, N. Anthropometric and physical fitness traits of four-time World Greco-Roman wrestling champion in relation to national norms: A case study. J. Hum. Sport Exerc. 2011, 6, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Rauter, S.; Vodicar, J.; Simenko, J. Body Asymmetries in Young Male Road Cyclists. Int. J. Morphol. 2017, 35, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Zatoń, M.; Dąbrowski, D.; Bugajski, A. Comparison of aerobic capacity and somatic characteristics between competitive youth mountain bikers and road cyclists. Med. Sport. 2014, 18, 64–71. [Google Scholar] [CrossRef]
- Iriberri, J.; Muriel, X.; Larrazabal, I. The Bike Fit of the Road Professional Cyclist Related to Anthropometric Measurements and the Torque of de Crank (P242). In The Engineering of Sport 7: Vol. 2; Springer: Paris, France, 2008; pp. 483–488. ISBN 978-2-287-99056-4. [Google Scholar]
- Tashiro, Y.; Hasegawa, S.; Nishiguchi, S.; Fukutani, N.; Adachi, D.; Hotta, T.; Morino, S.; Shirooka, H.; Nozaki, Y.; Hirata, H.; et al. Body Characteristics of Professional Japanese Keirin Cyclists: Flexibility, Pelvic Tilt, and Muscle Strength. J. Sport. Sci. 2016, 4, 341–345. [Google Scholar] [CrossRef]
- Carpes, F.P.; Rossato, M.; Faria, I.E.; Bolli Mota, C. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial. J. Sports Med. Phys. Fitness 2007, 47, 51–57. [Google Scholar] [CrossRef]
- Bini, R.R.; Jacques, T.C.; Carpes, F.P.; Vaz, M.A. Effectiveness of pedalling retraining in reducing bilateral pedal force asymmetries. J. Sports Sci. 2017, 35, 1336–1341. [Google Scholar] [CrossRef]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling-A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef]
- Bini, R.R.; Hume, P.A. Relationship between pedal force asymmetry and performance in cycling time trial. J. Sports Med. Phys. Fitness 2015, 55, 892–898. [Google Scholar]
- Rannama, I.; Port, K.; Bazanov, B.; Pedak, K. Sprint cycling performance and asymmetry. J. Hum. Sport Exerc. 2015, 10, 4–6. [Google Scholar] [CrossRef]
- Pimentel, R.E.; Baker, B.S.; Soliday, K.; Reiser, R.F. Bone mineral density and lean mass asymmetries are greater in cyclists than non-cyclists. J. Sports Sci. 2019, 37, 2279–2285. [Google Scholar] [CrossRef] [PubMed]
- Barczyk-Pawelec, K.; Bankosz, Z.; Derlich, M.; Bańkosz, Z.; Derlich, M.; Bankosz, Z.; Derlich, M.; Bańkosz, Z.; Derlich, M.; Bankosz, Z.; et al. Body postures and asymmetries in frontal and transverse planes in the trunk area in table tennis players. Biol. Sport 2012, 29, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Stradijot, F.; Pittorru, G.M.; Pinna, M. The functional evaluation of lower limb symmetry in a group of young elite judo and wrestling athletes. Isokinet. Exerc. Sci. 2012, 20, 13–16. [Google Scholar] [CrossRef]
- Sanders, R.H. How Do Asymmetries Affect Swimming Performance? J. Swim. Res. 2013, 21, 1–17. [Google Scholar]
- Trivers, R.; Fink, B.; Russell, M.; McCarty, K.; James, B.; Palestis, B.G. Lower Body Symmetry and Running Performance in Elite Jamaican Track and Field Athletes. PLoS ONE 2014, 9, e113106. [Google Scholar] [CrossRef]
- Manning, J.T.; Pickup, L.J. Symmetry and performance in middle distance runners. Int. J. Sports Med. 1998, 19, 205–209. [Google Scholar] [CrossRef]
- Longman, D.; Stock, J.T.; Wells, J.C.K.K. Fluctuating asymmetry as a predictor for rowing ergometer performance. Int. J. Sports Med. 2011, 32, 606–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the Lower Limb: The Calculation Conundrum in Strength Training and Conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Maloney, S.J. The Relationship between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, Y.O.; Mroz, R.; Mueller, P.; Schmid, A.; Ruecker, G. Success in elite cycling: A prospective and retrospective analysis of race results. J. Sports Sci. 2006, 24, 1149–1156. [Google Scholar] [CrossRef]
- Union Cycliste Internationale Regulations|UCI. Available online: https://www.uci.org/regulations/3MyLDDrwJCJJ0BGGOFzOat (accessed on 17 November 2021).
- Müller, B.; Steiner, T.; Maier, T.; Wehrlin, J.P. No Treadmill-based cycling time trial better predicts seasonal cross-country mountain bike performance than traditional parameters in laboratory tests Title. J. Sci. Cycl. 2014, 3, 85. [Google Scholar]
- Munivrana, G.; Paušić, J.; Kondrič, M. The influence of somatotype on young table tennis players’ competitive success. Kinesiol. Slov. 2011, 17, 42–51. [Google Scholar]
- Barquin, R.R. Contributions from the subdimensional analysis of the personality questionnaire BFQ in the prediction of performance in young competitive judokas. Cuad. Psicol. Deport. 2008, 8, 5–29. [Google Scholar]
- Franchini, E.; Julio, U.F. The Judo World Ranking List and the Performances in the 2012 London Olympics. Asian J. Sports Med. 2015, 6, e24045. [Google Scholar] [CrossRef] [Green Version]
- Šimenko, J.; Bračič, M.; Čoh, M. Povezanost izbranih specialno motoričnih spremenljivk z uspešnostjo v judu. Rev. Šport 2014, 62, 142–147. [Google Scholar]
- Šimenko, J.; Hadžič, V. Bilateral Throw Execution in Young Judokas for a Maximum All Year Round Result. Int. J. Sports Physiol. Perform. 2021, 1–6, published online ahead of print. [Google Scholar] [CrossRef]
- Larsson, P.; Olofsson, P.; Jakobsson, E.; Burlin, L.; Henriksson-Larsén, K. Physiological predictors of performance in cross-country skiing from treadmill tests in male and female subjects. Scand. J. Med. Sci. Sports 2002, 12, 347–353. [Google Scholar] [CrossRef]
- Voracek, M.; Reimer, B.; Ertl, C.; Dressler, S.G. Digit ratio (2D:4D), lateral preferences, and performance in fencing. Percept. Mot. Skills 2006, 103, 427–446. [Google Scholar] [CrossRef]
- Bandalo, M.; Lešnik, B. the Connection Between Selected Anthropometric and Motor Variables and the Competitive Success of Young Competitors in Alpine Skiing. Kinesiol. Slov. 2011, 17, 16–31. [Google Scholar]
- Neumayr, G.; Hoertnagl, H.; Pfister, R.; Koller, A.; Eibl, G.; Raas, E. Physical and physiological factors associated with success in professional alpine skiing. Int. J. Sports Med. 2003, 24, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Banzer, W.; Thiel, C.; Rosenhagen, A.; Vogt, L. Tennis ranking related to exercise capacity. Case Rep. 2009, 2009, bcr0920080965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, K.P.; Istook, C.L. Body measurement techniques: Comparing 3D body-scanning and anthropometric methods for apparel applications. J. Fash. Mark. Manag. 2003, 7, 306–332. [Google Scholar] [CrossRef]
- Simenko, J.; Cuk, I. Reliability and validity of NX-16 3D body scanner. Int. J. Morphol. 2016, 34, 1506–1514. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Dopsaj, M.; Todorov, I.; Vuković, M.; Radovanović, D. Various Morphological Indicators in Elite Judo Athletes Defined By Multi-Frequency Bioelectrical Impedance Analysis. Serbian J. Sport. Sci. 2013, 7, 129–141. [Google Scholar]
- Dopsaj, M.; Markovic, M.; Kasum, G.; Jovanovic, S.; Koropanovski, N.; Vukovic, M.; Mudric, M. Discrimination of Different Body Structure Indexes of Elite Athletes in Combat Sports Measured by Multi Frequency Bioimpedance Method. Int. J. Morphol. 2017, 35, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component-model percentage body fat in Hispanic, black, and white adults. Am. J. Clin. Nutr. 2008, 87, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Esco, M.R.; Snarr, R.L.; Leatherwood, M.D.; Chamberlain, N.A.; Redding, M.L.; Flatt, A.A.; Moon, J.R.; Williford, H.N. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J. Strength Cond. Res. 2015, 29, 918–925. [Google Scholar] [CrossRef]
- Gleadall-Siddall, D.O.; Turpin, R.L.; Douglas, C.C.; Ingle, L.; Garrett, A.T. Test–retest repeatability of the NX-16: A three-dimensional (3D) body scanner in a male cohort. Sport Sci. Health 2020, 16, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Lijewski, M.; Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stachoń, A. Asymmetry of Muscle Mass Distribution and Grip Strength in Professional Handball Players. Int. J. Environ. Res. Public Health 2021, 18, 1913. [Google Scholar] [CrossRef]
- Auerbach, B.M.; Ruff, C.B. Limb bone bilateral asymmetry: Variability and commonality among modern humans. J. Hum. Evol. 2006, 50, 203–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, G.M.; Feinn, R. Using Effect Size—or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Bini, R.R.; Jacques, T.C.; Sperb, C.H.; Lanferdini, F.J.; Vaz, M.A. Pedal force asymmetries and performance during a 20-km cycling time trial. Kinesiology 2016, 48, 193–199. [Google Scholar] [CrossRef]
- Edeline, O.; Polin, D.; Tourny-Chollet, C.; Weber, J. Effect of workload on bilateral pedaling kinematics in non-trained cyclists. J. Hum. Mov. Stud. 2004, 46, 493–517. [Google Scholar]
- McLean, B.D.; Parker, A.W. An anthropometric analysis of elite australian track cyclists. J. Sports Sci. 1989, 7, 247–255. [Google Scholar] [CrossRef] [PubMed]
Group | LPG | HPG | ||||||
---|---|---|---|---|---|---|---|---|
Variable | Mean | SD | 95% CI | Mean | SD | 95% CI | F | Sig. |
Height (cm) | 178.98 | 5.39 | 177–181 | 178.78 | 5.18 | 177–180 | 0.017 | 0.897 |
Weight (kg) | 68.37 | 5.31 | 66–71 | 67.02 | 7.43 | 64–70 | 0.536 | 0.468 |
BMI (kg/m2) | 21.33 | 1.20 | 21–22 | 20.94 | 1.81 | 20–22 | 0.821 | 0.370 |
SMM (kg) | 35.26 | 3.29 | 34–37 | 34.40 | 4.34 | 33–36 | 0.602 | 0.442 |
SMM (%) | 51.52 | 1.40 | 51–52 | 51.27 | 1.71 | 51–52 | 0.292 | 0.591 |
Body Fat (%) | 9.59 | 1.98 | 8.8–10.4 | 9.57 | 2.80 | 8.3–10.8 | 0.000 | 0.983 |
Chest Girth (cm) | 97.17 | 3.46 | 96–98 | 96.07 | 4.39 | 96–98 | 0.938 | 0.338 |
Waist Girth (cm) | 79.17 | 4.22 | 77–81 | 78.28 | 4.39 | 76–80 | 0.508 | 0.480 |
Hip Girth (cm) | 93.53 | 3.19 | 92–95 | 93.10 | 4.04 | 91–95 | 0.174 | 0.679 |
Crotch Height (cm) | 84.69 | 4.04 | 83–86 | 85.35 | 4.50 | 83–87 | 0.284 | 0.596 |
Trunk Lean Mass (kg) | 27.14 | 2.29 | 26–28 | 26.42 | 3.24 | 25–28 | 0.805 | 0.374 |
Torso Volume (L) | 35.80 | 4.20 | 34.1–37.4 | 34.91 | 4.88 | 32.7–37.1 | 0.458 | 0.502 |
Torso Surface Area (m2) | 0.553 | 0.057 | 0.529–0.576 | 0.549 | 0.058 | 0.523–0.575 | 0.063 | 0.803 |
Total Body Volume (L) | 61.41 | 4.87 | 59.4–63.4 | 60.31 | 6.93 | 57.2–63.4 | 0.412 | 0.524 |
Competition success (UCI points) * | 35.08 | 33.72 | 22–49 | 254.41 | 104.57 | 208–301 | 102.2 | 0.000 * |
Pair | Variable | Body Side | Effect Size | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Left | Right | |||||||||
Mean | SD | Mean | SD | df | t | p | ||||
UPPER BODY | 1 | Arm Lean Mass (kg) | 3.45 | 0.39 | 3.48 | 0.38 | 25 | 1.87 | 0.073 | 0.367 |
2 | Upper arm Girth (cm) | 29.67 | 1.71 | 29.90 | 1.85 | 25 | 1.3 | 0.204 | 0.256 | |
3 | Elbow Girth (cm) | 25.45 | 1.04 | 26.00 | 0.92 | 25 | 4.35 | 0.000 * | 0.854 | |
4 | Forearm Girth (cm) | 26.14 | 0.99 | 26.89 | 0.96 | 25 | 6.31 | 0.000 | 1.237 | |
5 | Wrist Girth (cm) | 16.74 | 0.92 | 16.62 | 0.68 | 25 | 1.06 | 0.297 | 0.209 | |
6 | Arm Surface Area (m2) | 0.132 | 0.008 | 0.134 | 0.008 | 25 | 2.54 | 0.018 * | 0.498 | |
7 | Arm Volume (L) | 3.65 | 0.29 | 3.13 | 0.31 | 25 | 2.71 | 0.012 * | 0.531 | |
LOWER BODY | 8 | Leg Lean Mass (kg) | 9.63 | 0.97 | 9.74 | 0.98 | 25 | 5.85 | 0.000 * | 1.147 |
9 | Leg Length (cm) | 104.34 | 4.88 | 104.46 | 4.87 | 25 | 3.04 | 0.005 * | 0.597 | |
10 | Thigh Length (cm) | 34.37 | 4.22 | 34.40 | 4.18 | 25 | 0.54 | 0.594 | 0.106 | |
11 | Thigh Girth (cm) | 61.68 | 5.69 | 62.18 | 5.82 | 25 | 1.02 | 0.319 | 0.199 | |
12 | Knee Girth (cm) | 39.80 | 2.35 | 40.37 | 2.66 | 25 | 4.93 | 0.000 * | 0.968 | |
13 | Shin Length (cm) | 42.83 | 3.88 | 42.85 | 3.89 | 25 | 0.83 | 0.416 | 0.162 | |
14 | Calf Girth (cm) | 37.67 | 1.50 | 38.27 | 1.48 | 25 | 5.25 | 0.000 * | 1.030 | |
15 | Leg Surface Area (m2) | 0.311 | 0.024 | 0.314 | 0.025 | 25 | 4.03 | 0.000 * | 0.790 | |
16 | Leg Volume (L) | 9.63 | 0.92 | 9.85 | 1.02 | 25 | 5.3 | 0.000 * | 1.040 |
Pair | Variable | Body Side | Effect Size | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Left | Right | |||||||||
Mean | SD | Mean | SD | df | t | p | ||||
UPPER BODY | 1 | Arm Lean Mass (kg) | 3.33 | 0.55 | 3.36 | 0.57 | 21 | 1.269 | 0.218 | 0.270 |
2 | Upper arm Girth (cm) | 29.76 | 2.08 | 29.65 | 2.25 | 21 | 0.414 | 0.683 | 0.088 | |
3 | Elbow Girth (cm) | 25.40 | 1.81 | 26.15 | 1.71 | 21 | 4.929 | 0.000 * | 1.051 | |
4 | Forearm Girth (cm) | 25.94 | 17.16 | 26.58 | 1.84 | 21 | 5.122 | 0.000 * | 1.092 | |
5 | Wrist Girth (cm) | 17.01 | 0.98 | 17.00 | 0.76 | 21 | 0.036 | 0.972 | 0.008 | |
6 | Arm Surface Area (m2) | 0.134 | 0.012 | 0.135 | 0.013 | 21 | 1.110 | 0.280 | 0.237 | |
7 | Arm Volume (L) | 3.10 | 0.47 | 3.11 | 0.49 | 21 | 0.310 | 0.760 | 0.066 | |
LOWER BODY | 8 | Leg Lean Mass (kg) | 9.65 | 1.08 | 9.68 | 1.10 | 21 | 1.087 | 0.290 | 0.232 |
9 | Leg Length (cm) | 104.96 | 4.66 | 105.02 | 4.53 | 21 | 1.105 | 0.281 | 0.236 | |
10 | Thigh Length (cm) | 34.43 | 3.73 | 34.46 | 3.69 | 21 | 0.560 | 0.582 | 0.119 | |
11 | Thigh Girth (cm) | 60.51 | 6.49 | 59.78 | 6.14 | 21 | 1.588 | 0.127 | 0.339 | |
12 | Knee Girth (cm) | 40.13 | 2.99 | 40.41 | 3.18 | 21 | 2.033 | 0.055 | 0.433 | |
13 | Shin Length (cm) | 43.35 | 3.70 | 43.40 | 3.75 | 21 | 1.482 | 0.153 | 0.316 | |
14 | Calf Girth (cm) | 37.90 | 2.02 | 38.14 | 2.25 | 21 | 1.804 | 0.086 | 0.385 | |
15 | Leg Surface Area (m2) | 0.310 | 0.029 | 0.311 | 0.031 | 21 | 0.871 | 0.394 | 0.186 | |
16 | Leg Volume (L) | 9.59 | 1.33 | 9.68 | 1.33 | 21 | 1.785 | 0.089 | 0.381 |
Variable | Group | Body Side | |||||||
---|---|---|---|---|---|---|---|---|---|
Left | Right | ||||||||
Mean | SD | F | Sig. | Mean | SD | F | Sig. | ||
Arm Lean Mass (kg) | LPG | 3.45 | 0.39 | 0.671 | 0.417 | 3.48 | 0.38 | 0.755 | 0.390 |
HPG | 3.33 | 0.55 | 3.36 | 0.57 | |||||
Upper Arm Girth (cm) | LPG | 29.66 | 1.71 | 0.038 | 0.847 | 29.90 | 1.85 | 0.173 | 0.679 |
HPG | 29.76 | 2.08 | 29.65 | 2.25 | |||||
Elbow Girth (cm) | LPG | 25.45 | 1.04 | 0.014 | 0.905 | 26.00 | 0.92 | 0.158 | 0.693 |
HPG | 25.40 | 1.81 | 26.15 | 1.71 | |||||
Forearm Girth (cm) | LPG | 26.14 | 0.99 | 0.259 | 0.613 | 26.89 | 0.96 | 0.581 | 0.450 |
HPG | 25.93 | 1.72 | 26.58 | 1.84 | |||||
Wrist Girth (cm) | LPG | 16.74 | 0.92 | 0.912 | 0.345 | 16.62 | 0.68 | 3.242 | 0.078 |
HPG | 17.01 | 0.98 | 17.00 | 0.76 | |||||
Arm Surface Area (m2) | LPG | 0.132 | 0.008 | 0.469 | 0.497 | 0.134 | 0.008 | 0.175 | 0.678 |
HPG | 0.134 | 0.012 | 0.135 | 0.012 | |||||
Arm Volume (L) | LPG | 3.07 | 0.29 | 0.075 | 0.786 | 3.13 | 0.31 | 0.050 | 0.824 |
HPG | 3.10 | 0.47 | 3.11 | 0.49 | |||||
Leg Lean Mass (kg) | LPG | 9.63 | 0.97 | 0.006 | 0.937 | 9.74 | 0.98 | 0.046 | 0.830 |
HPG | 9.65 | 1.08 | 9.68 | 1.10 | |||||
Leg Length (cm) | LPG | 104.34 | 4.88 | 0.204 | 0.653 | 104.62 | 4.87 | 0.166 | 0.686 |
HPG | 104.96 | 4.56 | 105.18 | 4.53 | |||||
Thigh Length (cm) | LPG | 34.37 | 4.22 | 0.003 | 0.958 | 34.40 | 4.18 | 0.003 | 0.958 |
HPG | 34.43 | 3.73 | 34.46 | 3.69 | |||||
Thigh Girth (cm) | LPG | 61.68 | 5.69 | 0.447 | 0.507 | 62.18 | 5.82 | 1.925 | 0.172 |
HPG | 60.51 | 6.49 | 59.78 | 6.14 | |||||
Knee Girth (cm) | LPG | 39.80 | 2.35 | 0.180 | 0.673 | 40.37 | 2.66 | 0.002 | 0.962 |
HPG | 40.13 | 2.99 | 40.41 | 3.18 | |||||
Shin length (cm) | LPG | 42.83 | 3.88 | 0.226 | 0.637 | 42.85 | 3.89 | 0.243 | 0.625 |
HPG | 43.35 | 3.70 | 43.40 | 3.75 | |||||
Calf Girth (cm) | LPG | 37.67 | 1.50 | 0.191 | 0.664 | 38.27 | 1.48 | 0.056 | 0.814 |
HPG | 37.90 | 2.02 | 38.14 | 2.25 | |||||
Leg Surface Area (m2) | LPG | 0.312 | 0.024 | 0.059 | 0.809 | 0.314 | 0.025 | 0.177 | 0.676 |
HPG | 0.310 | 0.029 | 0.311 | 0.031 | |||||
Leg Volume (L) | LPG | 9.63 | 0.92 | 0.016 | 0.901 | 9.85 | 1.02 | 0.272 | 0.605 |
HPG | 9.59 | 1.33 | 9.68 | 1.33 |
Variable | G | Mean | SD | 95% CI | F | Sig. | EF | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
AA Arm Lean mass | LPG | 2.26 | 1.72 | 1.56 | 2.95 | 0.086 | 0.771 | 0.002 |
HPG | 2.42 | 2.05 | 1.51 | 3.32 | ||||
AA Upper Arm Girth | LPG | 2.51 | 1.85 | 1.76 | 3.26 | 2.514 | 0.120 | 0.052 |
HPG | 3.45 | 2.27 | 2.45 | 4.46 | ||||
AA Elbow Girth | LPG | 2.60 | 2.09 | 1.76 | 3.45 | 1.729 | 0.195 | 0.036 |
HPG | 3.43 | 2.26 | 2.43 | 4.43 | ||||
AA Forearm Girth | LPG | 3.03 | 2.07 | 2.19 | 3.86 | 0.173 | 0.680 | 0.004 |
HPG | 2.79 | 1.77 | 2.01 | 3.58 | ||||
AA Wrist Girth | LPG | 2.56 | 2.07 | 1.72 | 3.40 | 0.034 | 0.855 | 0.001 |
HPG | 2.67 | 2.23 | 1.68 | 3.66 | ||||
AA Arm Surface Area | LPG | 2.00 | 1.54 | 1.37 | 2.62 | 0.157 | 0.693 | 0.003 |
HPG | 2.17 | 1.45 | 1.53 | 2.81 | ||||
AA Arm Volume | LPG | 3.10 | 3.21 | 1.80 | 4.39 | 0.212 | 0.647 | 0.005 |
HPG | 3.50 | 2.71 | 2.29 | 4.70 | ||||
AA Leg Lean Mass | LPG | 1.29 | 0.79 | 0.97 | 1.61 | 6.246 | 0.016 * | 0.120 |
HPG | 0.76 | 0.65 | 0.48 | 1.05 | ||||
AA Leg Length | LPG | 0.19 | 0.14 | 0.13 | 0.25 | 0.095 | 0.759 | 0.002 |
HPG | 0.17 | 0.20 | 0.09 | 0.26 | ||||
AA Thigh Length | LPG | 0.65 | 0.61 | 0.41 | 0.90 | 0.409 | 0.526 | 0.009 |
HPG | 0.76 | 0.52 | 0.53 | 0.99 | ||||
AA Thigh Girth | LPG | 2.86 | 2.66 | 1.79 | 3.94 | 0.067 | 0.797 | 0.001 |
HPG | 2.66 | 2.60 | 1.51 | 3.82 | ||||
AA Knee Girth | LPG | 1.67 | 1.08 | 1.24 | 2.11 | 1.508 | 0.226 | 0.032 |
HPG | 1.30 | 1.03 | 0.84 | 1.75 | ||||
AA Shin Length | LPG | 0.12 | 0.31 | 0.00 | 0.24 | 0.525 | 0.472 | 0.011 |
HPG | 0.18 | 0.29 | 0.06 | 0.31 | ||||
AA Calf Girth | LPG | 1.98 | 0.91 | 1.61 | 2.35 | 7.440 | 0.009 * | 0.139 |
HPG | 1.10 | 1.30 | 0.52 | 1.68 | ||||
AA Leg Surface Area | LPG | 1.04 | 0.77 | 0.73 | 1.35 | 2.278 | 0.138 | 0.047 |
HPG | 1.46 | 1.16 | 0.95 | 1.97 | ||||
AA Leg Volume | LPG | 2.34 | 2.038 | 1.51 | 3.16 | 0.938 | 0.338 | 0.20 |
HPG | 1.78 | 1.938 | 0.92 | 2.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauter, S.; Simenko, J. Morphological Asymmetries Profile and the Difference between Low- and High-Performing Road Cyclists Using 3D Scanning. Biology 2021, 10, 1199. https://doi.org/10.3390/biology10111199
Rauter S, Simenko J. Morphological Asymmetries Profile and the Difference between Low- and High-Performing Road Cyclists Using 3D Scanning. Biology. 2021; 10(11):1199. https://doi.org/10.3390/biology10111199
Chicago/Turabian StyleRauter, Samo, and Jozef Simenko. 2021. "Morphological Asymmetries Profile and the Difference between Low- and High-Performing Road Cyclists Using 3D Scanning" Biology 10, no. 11: 1199. https://doi.org/10.3390/biology10111199
APA StyleRauter, S., & Simenko, J. (2021). Morphological Asymmetries Profile and the Difference between Low- and High-Performing Road Cyclists Using 3D Scanning. Biology, 10(11), 1199. https://doi.org/10.3390/biology10111199