Performance Profile among Age Categories in Young Cyclists
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luciá, A.; Hoyos, J.; Carvajal, A.; Chicharro, J.L. Heart rate response to professional road cycling: The Tour de France. Int. J. Sports Med. 1999, 20, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Joyos, H.; Chicharro, J.L. Physiological response to professional road cycling: Climbers vs. time trialists. Int. J. Sports Med. 2000, 21, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Sallet, P.; Mathieu, R.; Fenech, G.; Baverel, G. Physiological differences of elite and professional road cyclists related to competition level and rider specialization. J. Sports Med. Phys. Fit. 2006, 46, 361–365. [Google Scholar]
- Lucia, A.; Hoyos, J.; Chicharro, J.L. Physiology of professional road cycling. Sports Med. 2001, 31, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Padilla, S.; Mujika, I.; Cuesta, G.; Goiriena, J.J. Level ground and uphill cycling ability in professional road cycling. Med. Sci. Sports Exerc. 1999, 31, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Jeffries, O.; Simmons, R.; Patterson, S.D.; Waldron, M. Functional threshold power is not equivalent to lactate parameters in trained cyclists. J. Strength Cond. Res. 2019, 35, 2790–2794. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.T.; Black, M.I. Road cycle TT performance: Relationship to the power-duration model and association with FTP. J. Sports Sci. 2019, 37, 902–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, A.; Aune, T.K.; Rangul, V.; Dalen, T. The validity of functional threshold power and maximal oxygen uptake for cycling performance in moderately trained cyclists. Sports 2019, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Allen, H.; Coggan, A. Training and Racing with Power Meter, 2nd ed.; Boulder: Velopress, CO, USA, 2010. [Google Scholar]
- Spindler, D.J.; Allen, M.S.; Vella, S.A.; Swann, C. The psychology of elite cycling: A systematic review. J. Sports Sci. 2018, 36, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Priego Quesada, J.I.; Kerr, Z.Y.; Bertucci, W.M. The categorization of amateur cyclists as research participants: Findings from an observational study. J. Sports Sci. 2018, 36, 2018–2024. [Google Scholar] [CrossRef]
- Pinot, J.; Grappe, F. A six-year monitoring case study of a top-10 cycling Grand Tour finisher. J. Sports Sci. 2015, 33, 907–914. [Google Scholar] [CrossRef]
- De Pauw, K.; Roelands, B.; Cheung, S.S.; de Geus, B.; Rietjens, G.; Meeusen, R. Guidelines to classify subject groups in sport-science research. Int. J. Sports Physiol. Perform. 2013, 8, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Landaluce, J.; Fernández-García, B.; Rodríguez-Alonso, M.; García-Herrero, F.; García-Zapico, P.; Patterson, A.M.; García-Herrero, F. Physiological differences and rating of perceived exertion (RPE) in professional, amateur and young cyclists. J. Sports Med. Phys. Fit. 2002, 42, 389–395. [Google Scholar]
- Padilla, S.; Mujika, I.; Orbañanos, J.; Angulo, F. Exercise intensity during competition time trials in professional road cycling. Med. Sci. Sports Exerc. 2000, 32, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Hopker, J.; Jobson, S. Performance Cycling—The Science of Succes; Boomsbury: London, UK, 2012. [Google Scholar]
- Moseley, L.; Achten, J.; Martin, J.C.; Jeukendrup, A.E. No differences in cycling efficiency between world-class and recreational cyclists. Int. J. Sports Med. 2004, 25, 374–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauter, S.; Vodicar, J.; Simenko, J. Body asymmetries in young male road cyclists. Int. J. Morphol. 2017, 35, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Marroyo, J.A.; Pernía, R.; Cejuela, R.; García-López, J.; Llopis, J.; Villa, J.G. Exercise intensity and load during different races in youth and junior cyclists. J. Strength Cond. Res. 2011, 25, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fell, J.; Haseler, L.; Gaffney, P.; Reaburn, P.; Harrison, G. Performance during consecutive days of laboratory time-trials in young and veteran cyclists. J. Sports Med. Phys. Fit. 2006, 46, 395–402. [Google Scholar]
- Cuddy, J.S.; Slivka, D.R.; Hailes, W.S.; Dumke, C.L.; Ruby, B.C. Metabolic profile of the Ironman World Championships: A case study. Int. J. Sports Physiol. Perform. 2010, 5, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sports Med. 2017, 38, 975–982. [Google Scholar] [CrossRef] [Green Version]
- Achten, J.; Venables, M.C.; Jeukendrup, A.E. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metab. Clin. Exp. 2003, 52, 747–752. [Google Scholar] [CrossRef]
- Chenevière, X.; Malatesta, D.; Gojanovic, B.; Borrani, F. Differences in whole-body fat oxidation kinetics between cycling and running. Eur. J. Appl. Physiol. 2010, 109, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Lundby, C. The effect of exercise training on the energetic cost of cycling. Sports Med. 2015, 45, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Rønnestad, B.R.; Hansen, J.; Hollan, I.; Ellefsen, S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand. J. Med. Sci. Sports 2015, 25, e89–e98. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L.; Bennekou, M.; Larsson, B.; Olesen, J.L.; Crameri, R.; Magnusson, S.P.; Kjaer, M. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand. J. Med. Sci. Sports 2011, 21, 298–307. [Google Scholar] [CrossRef]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Prev. Cardiol. 2008, 15, 726–734. [Google Scholar] [CrossRef]
- Larson, R.; Cantrell, G.; Ade, C.; Farrell Iii, J.; Lantis, D.; Barton, M.; Laron, D. Physiologic responses to two distinct maximal cardiorespiratory exercise protocols. Int. J. Sports Exerc. Med. 2015, 1, 3. [Google Scholar] [CrossRef]
- Zuniga, J.M.; Housh, T.J.; Camic, C.L.; Bergstrom, H.C.; Traylor, D.A.; Schmidt, R.J.; Johnson, G.O. Metabolic parameters for ramp versus step incremental cycle ergometer tests. Appl. Physiol. Nutr. Metab. 2012, 37, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K.; Beaver, W.L.; Whipp, B.J. Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 1990, 81 (Suppl. S1), 14–30. [Google Scholar]
- Millet, G. Physiological differences between cycling and running. Rev. Med. Suisse 2009, 5, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denham, J.; Scott-Hamilton, J.; Hagstrom, A.D.; Gray, A.J. Cycling power outputs predict functional threshold power and maximum oxygen uptake. J. Strength Cond. Res. 2017, 34, 3489–3497. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 1988. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, I.E.; Faria, E.W.; Roberts, S.; Yoshimura, D. Comparison of physical and physiological characteristics in elite young and mature cyclists. Res. Q. Exerc. Sport 1989, 60, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Klitzke Borszcz, F.; Tramontin, A.F.; Costa, V.P. Reliability of the functional threshold power in competitive cyclists. Int. J. Sports Med. 2020, 41, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.S.; Hawley, J.A.; Dennis, S.C.; Noakes, T.D. Heart rate responses during a 4-d cycle stage race. Med. Sci. Sports Exerc. 1994, 26, 1278–1283. [Google Scholar] [CrossRef]
UCI Category | Age Range (Years) | Weight (Kg) | Height (cm) | BMI (Kg/m2) | |||
---|---|---|---|---|---|---|---|
Range | Mean | SD | Mean | SD | Mean | SD | |
Youth (n = 24) | 15–16 | 61.2 | 7.4 | 173.2 | 6.4 | 20.4 | 2.3 |
Junior (n = 22) | 17–18 | 66.5 | 7.4 | 178.2 | 5.9 | 20.9 | 2.3 |
U-23 (n = 15) | 19–22 | 64.1 | 4.3 | 176.7 | 5.7 | 20.5 | 0.9 |
Zone | Variable | Youth | Junior | U-23 | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
VT1 | HR (bpm) | 149.5 | 12.2 | 149.7 | 13.2 | 139.7 *,† | 11.8 |
HRmax (%) | 76.1 | 5.6 | 74.9 | 5.9 | 72.6 | 5.4 | |
VO2 (L·min−1) | 2.1 | 0.3 | 2.4 * | 0.3 | 2.3 | 0.2 | |
VO2R (mL·Kg−1·min−1) | 35.4 | 3.2 | 37.0 | 5.1 | 35.7 | 4.1 | |
%VO2max (%) | 56.8 | 4.3 | 54.9 | 5.4 | 52.2 * | 5.2 | |
Load (W) | 152.7 | 20.8 | 179.2 * | 22.3 | 181.3 * | 22.0 | |
Load/BW (W·Kg−1) | 2.51 | 0.26 | 2.72 * | 0.40 | 2.84 * | 0.37 | |
VT2 | HR (bpm) | 183.8 | 10.2 | 185.1 | 9.1 | 179.2 † | 6.1 |
HRmax (%) | 93.5 | 2.6 | 93.0 | 2.9 | 93.2 | 2.0 | |
VO2 (L·min−1) | 3.3 | 0.4 | 3.9 * | 0.4 | 3.8 * | 0.4 | |
VO2R (mL·Kg−1·min−1) | 54.2 | 4.3 | 58.6 * | 7.7 | 59.3 * | 6.9 | |
%VO2max (%) | 87.1 | 5.0 | 86.6 | 4.6 | 86.7 | 5.6 | |
Load (W) | 252.8 | 35.2 | 303.4 * | 30.3 | 317.9 * | 36.0 | |
Load/BW (W·Kg−1) | 4.16 | 0.55 | 4.60 * | 0.57 | 4.98 * | 0.61 |
Variable | Youth | Junior | U-23 | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
HR (bpm) | 196.5 | 8.8 | 199.0 | 6.6 | 192.5 † | 8.5 |
VO2 (L·min−1) | 3.8 | 0.5 | 4.4 * | 0.3 | 4.4 * | 0.5 |
VO2R (mL·Kg−1·min−1) | 63.3 | 4.5 | 68.5 * | 6.5 | 69.7 * | 7.5 |
RER | 1.14 | 0.04 | 1.17 | 0.05 | 1.15 | 0.04 |
Load (W) | 343.2 | 45.6 | 407.5 * | 37.6 | 428.3 * | 37.7 |
Load/BW (W·Kg−1) | 5.63 | 0.55 | 6.17 * | 0.64 | 6.70 *,† | 0.57 |
Time to exhaustion (second) | 1107.2 | 124.7 | 1311.8 * | 115.4 | 1323.7 * | 125.5 |
Lactate (mmol·L−1) | 12.6 | 2.8 | 15.6 * | 4.0 | 14.6 | 2.8 |
Variable | Youth | Junior | U-23 | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
HR (bpm) | 137.9 | 16.1 | 131.8 | 19.2 | 136.6 | 11.0 |
HRmax (%) | 70.4 | 6.6 | 66.6 | 9.5 | 70.9 | 4.3 |
VO2 (L·min−1) | 1.9 | 0.3 | 2.1 | 0.4 | 2.2 * | 0.4 |
VO2R (mL·Kg−1·min−1) | 31.7 | 4.6 | 32.2 | 5.8 | 35.1 | 5.4 |
%VO2max (%) | 51.2 | 9.0 | 48.9 | 8.5 | 51.2 | 5.4 |
Load (W) | 147.7 | 30.1 | 163.9 | 35.1 | 181.6 * | 37.6 |
Load/BW (W·Kg−1) | 2.47 | 0.55 | 2.51 | 0.51 | 2.84 | 0.58 |
RER | 0.88 | 0.03 | 0.87 | 0.03 | 0.89 | 0.03 |
MFO (g·h−1) | 19.7 | 6.7 | 23.3 | 9.3 | 22.6 | 7.9 |
Variable | Youth | Junior | U-23 | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
FTP (W) | 240.4 | 39.5 | 296.0 * | 32.5 | 314.0 * | 32.6 |
FTP (% Pmax) | 69.7 | 2.4 | 72.5 * | 1.3 | 73.2 * | 1.2 |
FTP/BW (W·Kg−1) | 3.93 | 0.46 | 4.48 * | 0.51 | 4.91 *,† | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Pagán, C.; Dufour, S.; Freitas, T.T.; Alcaraz, P.E. Performance Profile among Age Categories in Young Cyclists. Biology 2021, 10, 1196. https://doi.org/10.3390/biology10111196
Marín-Pagán C, Dufour S, Freitas TT, Alcaraz PE. Performance Profile among Age Categories in Young Cyclists. Biology. 2021; 10(11):1196. https://doi.org/10.3390/biology10111196
Chicago/Turabian StyleMarín-Pagán, Cristian, Stéphane Dufour, Tomás T. Freitas, and Pedro E. Alcaraz. 2021. "Performance Profile among Age Categories in Young Cyclists" Biology 10, no. 11: 1196. https://doi.org/10.3390/biology10111196
APA StyleMarín-Pagán, C., Dufour, S., Freitas, T. T., & Alcaraz, P. E. (2021). Performance Profile among Age Categories in Young Cyclists. Biology, 10(11), 1196. https://doi.org/10.3390/biology10111196