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Abstract: Probiotics have been emerging as a safe and viable alternative to antibiotics for increasing
performance in livestock. Literature was collated via retrieved information from online databases, viz,
PubMed, MEDLINE, ScienceDirect, Scopus, Web of Science and Google Scholar. Besides improved
immunomodulation and nutrient digestibility, in-feed probiotics have shown drastic reductions in
gastrointestinal tract-invading pathogens. However, every novel probiotic strain cannot be assumed
to share historical safety with conventional strains. Any strain not belonging to the wild-type
distributions of relevant antimicrobials, or found to be harbouring virulence determinants, should not
be developed further. Modes of identification and the transmigration potential of the strains across
the gastrointestinal barrier must be scrutinized. Other potential risk factors include the possibility of
promoting deleterious metabolic effects, excessive immune stimulation and genetic stability of the
strains over time. Adverse effects of probiotics could be strain specific, depending on the prevailing
immunological and physiological condition of the host. The most crucial concern is the stability of the
strain. Probiotics stand a good chance of replacing antibiotics in animal husbandry. The possibility of
the probiotics used in animal feed cross-contaminating the human food chain cannot be downplayed.
Thus, the established safety measures in probiotic development must be adhered to for a successful
global campaign on food safety and security.

Keywords: adverse effects; antimicrobial resistance; in-feed probiotics; immunocompromised host;
virulence factors

1. Introduction

Probiotics have been widely studied because of their ability to modulate gut microbiota and
immunological systems in both humans and livestock [1,2], where they serve as prophylaxes and for
therapeutic purposes in clinical and veterinary practices [3–5]. Thus, probiotics are considered as an
emerging, safe and viable alternative to antibiotics, for increasing the performance of farm animals.
The addition of probiotics to animal feed improves growth performance and nutrient digestibility,
reduces serum cholesterol and decreases incidence of diarrhoea in dairy animals [6–8]. Probiotics,
in addition, have also demonstrated improved aerobic conditions in a gastrointestinal environment
through the depletion of oxygen-scavenging compounds such as nitrates. They have shown the ability
to secrete hydrolytic enzymes against bacterial toxins and even to inactivate toxin receptors, thus
limiting the occurrence of toxin-mediated infections in livestock animals [9].

Undoubtedly, animal feed is crucial in livestock farming and thus has attracted several studies
seeking to improve its potency through feed additives. Since the ban of in-feed antibiotics by the
European legislation in 2006, the resultant heavy decline in the use of antibiotics paved the way for
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significant reductions in the prevalence of resistance genes among the gut microflora of pigs from
Europe [10]. Now that the use of antibiotics as a growth enhancer in livestock diets is being faced with
widespread bans across many countries [11], the development of various health functional animal
feeds and fermented food products using probiotics as additives has received unprecedented attention
across the continents [12,13].

Probiotics are live microorganisms that confer health benefits on the host when administered in
adequate dosage. Several species belonging to the genera of Lactobacillus, Streptococcus, Lactococcus
and Bifidobacterium remain the most popular probiotic agents to date [14]. These beneficial microbial
agents are, at a regulatory level, classified as zootechnical additives [15]. It is required of a probiotic
candidate to demonstrate a minimum of one performance feature before being certified for a particular
target animal [16]. The desired characteristics of a candidate probiotic may include modulation of
immune and certain physiological systems of the host, attenuation of virulent markers on a number of
pathogens, treatment and prevention of infectious and inflammatory disease conditions, acting as a
biocontrol agent in preventing spoilage, etc. [2,9,17]. This review, therefore, serves to highlight the
significance of the applications of probiotics in animal husbandry, and the importance of intensive
safety analyses of every probiotic candidate before further development into health functional products
and their release for public consumption.

2. Materials and Methods

Literature was collated via retrieved information from online databases (viz, PubMed, MEDLINE,
ScienceDirect, Scopus, Web of Science and Google Scholar) on scientific reports that investigate the
application of probiotics and probable risk factors to be considered. We searched the key word
“probiotics” and then combined it with “safety”, “in-feed antibiotics”, “adverse event/effect” and “case
report”. All searches were carried out between 2017 and 2019. There was no exclusion of any period
during the search and no language restrictions applied. The abstracts for all retrieved articles were
carefully read to determine eligibility. Articles from 2000 and before were only considered if there
was no later study with closely related content. Studies that assessed the intervention of probiotics in
animal husbandry and veterinary practice were included. Studies on safety protocols for a typical
probiotic candidate and studies on the detrimental impact of in-feed antibiotics on public health were
also included, while case reports on the adverse events/effects of probiotic administration on livestock
were not found.

2.1. Significance of Probiotics in Animal Health

The improvement of growth performance due to probiotics was confirmed through the increased
production of volatile fatty acids, nutrient digestibility, feed conversion rate and the stimulation
of lactic acid-dependent protozoa [11]. Probiotics have been used to increase the efficiency of the
utilisation of feed, to increase milk production and to reduce diarrhoea both in pigs and cattle,
and to control the colonisation of the intestinal tract by Salmonella in chickens [16]. Besides its
improved immunomodulatory potential, the commercially available in-feed probiotic, Lavipan,
drastically reduces the invasion of Campylobacter spp. in the gastrointestinal tract of poultry birds, thus
suppressing pathogenic contaminants and improving hygiene in the poultry environment [18].

Roselli et al. [19] observed that probiotics fed to weaned piglets and sows yielded positive results
by improving gut health through balanced microbiota, improving immunological and physiological
processes, and preventing gastrointestinal disorders. The major responses were observed as prompt
changes in the gastrointestinal microbial ecosystem, through antagonizing the survival of the
neighbouring pathogens coupled with the production of favourable fermentation products. This was
affirmed through a related study by Hanczakowska and colleagues [20], who found that Enterococcus
faecium, fed to piglets as feed supplement, exhibited an inhibitory effect against Clostridium perfringens.
The microflora within the gastrointestinal environment of animals can be considered an active metabolic
organ due to its biodiversity. Therefore, it is important to maintain effective gut microflora in the
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battle against the invasion of pathogens among livestock with high population density [21]. In general,
lactic acid bacteria with probiotic potential secrete organic acids which increase the acidity of the
gastrointestinal tract environment, and therefore lower the risk of pathogen infestation while at the
same time regulating the microbial ecosystem within the gut habitat [22].

A cocktail of probiotic supplements containing strains of Lactobacillus significantly reduces
Salmonella and Shigella in the faecal samples of goats [23]. Likewise, a complex mixture of lactobacilli,
isolated from the guts of piglets, reportedly increased the density of beneficial microbes and reduced
that of enteric pathogens such as Escherichia coli in the gastrointestinal tract [24]. Weaned piglets
fed with lactic acid bacteria supplements in their basal diet showed significant improvements in
terms of growth performance, digestion rate, faecal microbial count, intestinal morphology, diarrhoea
control and maintenance of pH in the gastrointestinal tract [25,26]. Dietary inclusion of lactobacilli has
shown increased egg-laying performance in chickens, and improved body weight on a daily basis in
turkeys [27].

Specifically, Lactobacillus johnsonii FI9785 was reported to have successfully ameliorated necrotic
enteritis due to Clostridium perfringens upon its administration to poultry [28]. Likewise, Lactobacillus
salivarius SMXD51 showed effective prevention of gut colonization by Campylobacter jejuni in broiler
chickens when administered via oral gavage [29]. Lactobacillus plantarum PCA 236, when used as a feed
supplement for goats, repressed their Clostridium gut colonization [30]. Lactobacillus fermentum I5007,
when orally administered to four-day-old piglets as a post-weaning supplement, resulted in improved
intestinal health, increased the height of jejunum villi, increased the concentrations of butyrate and
branched chain fatty acids and reduced potential colon pathogens [31].

Moreover, bifidobacteria constitute an important component in the gut microflora of chickens
and have proven records of positive effects when administered to piglets and other mammals.
A commercial strain of Bifidobacterium bifidum (InstitutRosell Inc. Montreal, QC, Canada) was effective
in the treatment of cellulitis-infected broiler chickens, and B. longum PCB 133 significantly reduced
Campylobacter jejuni concentration in poultry faeces when administered to chickens [32,33]. B. adolescentis
Z25 equally exhibited significant potential in the treatment of blood sugar imbalance, lipid metabolism
disorders, tissue damage and gut microbiota dysbiosis [34]. Several species of Bifidobacterium have
also demonstrated great potential to increase production of the enzyme β-galactosidase, therefore
reducing lactose intolerance. B. longum LC67 and L. plantarum LC27 synergistically remedied
2,4,6-trinitrobenzesulfonic acid-induced colitis and liver injury in mice, via readjustment of the
gut ecosystem imbalance and inhibition of inflammatory responses [35]. The activities of the probiotics
B. adolescentis Z25 and L.plantarum LC27 mentioned above are the output of laboratory research based
on mouse models. This might only be relevant to mammalian livestock.

Several probiotic agents have been traditionally applied as bioprotectors on meat products [3,36].
They have been reportedly secreting exopolysaccharides that are capable of inhibiting biofilm formation
by pathogenic contaminants [37]. Strains of Lactobacillus have also yielded commendable results on
raw chicken meat in protection against Listeria monocytogenes and Salmonella enteriditis [38].

In addition, mycotoxins are often found contaminating animal feed, thereby exposing livestock to
serious health risks, with a tendency to cross-contaminate the human food chain through meat and
other dairy products [39,40]. Ochratoxin A, a nephrotoxic, carcinogenic and immunotoxic mycotoxin,
was detoxified to a greater extent in chickens after the administration of a lactobacilli-based probiotic
preparation [41]. In another study by Chlebicz and Śliżewska [42], monocultures of different strains of
Lactobacillus spp. were tested for detoxification potentials against a number of mycotoxins directly
used to contaminate animal feed. After 6 h of incubation, the concentration of fumonisin B1 and
B2, aflatoxin B1, T-2 toxin and zearalenone were significantly reduced, by 77%, 60%, 61% and 57%,
respectively. Several scientific reports have indicated that lactic acid bacteria are capable of detoxifying
different forms of mycotoxin. When compared to physical and chemical decontamination methods,
biological detoxification is more efficient, specific and environmentally friendly [41,43]. The two main
mechanisms by which mycotoxins are detoxified by probiotics involve adsorption of toxins by the
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microbial cell wall and biotransformation. Additionally, combined use of a consortium of probiotics and
mycotoxin-degrading enzymes is yet another growing strategy for mycotoxin decontamination [44,45].

2.2. Probiotics as a Viable Alternative to In-Feed Antibiotics

Antibiotics have been extensively used over decades as prophylactic and growth-promoting
agents in the livestock sector. This has contributed a great deal to the uncontrollable increase in
the emergence of multidrug-resistant (MDR) pathogens. This has consequently reduced therapeutic
options both in human and veterinary clinics, leading to reduced clinical success on previously curable
infections, and in some cases, can result in a prolonged stay in hospital. The MDR pathogens constitute
a major setback, hampering progress in public health both in humans and farm animals. Concerted
efforts have been made by major stakeholders towards global awareness on the shared consequences
of the indiscriminate and irresponsible use of antibiotics. Despite years of relentless campaigning,
MDR pathogens continue to emerge.

In-feed antimicrobials are the most common route of drug administration in Europe, especially
in pig farming [46]. This form of drug administration predisposes healthy animals to unnecessary
antimicrobials while feeding alongside the infected ones, thus increasing the risk of selecting resistant
bacteria. Increasing trends in the practices that led to the evolution of antimicrobial resistance genes
prompted the United States Animal Agriculture Sector to prohibit the use of subtherapeutic antibiotic
growth promoters (AGPs) in early 2017, through implementation of the Veterinary Feed Directive
(VFD) [47,48]. This highlights an urgent need for more efforts to discover alternative growth promoters.

Moreover, the consumption of antimicrobials by livestock was estimated to be above 240,000
metric tons annually across continents. However, some countries are now experiencing a substantial
decline in the sales of antimicrobials for food-producing animals [49]. Resistance associated with
the use of antibiotics in agricultural practices, and the potential transfer of MDR pathogens from
food-producing animals to humans, is a disturbing health concern [50]. Antibiotics administered to
farm animals are often excreted in urine and egested in faeces into the nearby environment, thus
potentially selecting the microorganisms in such an environment for the development of multiple
resistance genes in a bid for survival [51]. The use of antibiotics in food-producing animals is under
intense scrutiny because of the perceived risk of zoonotic transfer of the resistant pathogens into the
human populace [52].

For instance, β-lactam antibiotics such as penicillin, cephalosporin and carbapenem are no longer
relevant in human clinical therapy [53]. Despite the high degree of effectiveness of colistin against
carbapenemase-producing Enterobacteriaceae, plasmid-mediated mcr-1 reportedly emerged in 2015
and, subsequently, was identified in over fifty different countries, along with additional seven mcr-1
gene variants [54–56]. Colistin has been in use for several years in the livestock industries in China, and
research findings suggest mcr-1 originated from animals before spreading to the human population.
The agricultural usage of colistin as a growth promoter was consequently banned by the Chinese
authorities in 2017 [57].

Furthermore, the emergence of vancomycin-resistant enterococci in European countries was
implicated in the illegal use of glycopeptide antibiotics such as avoparcin in animal feeds [58]. In 2016,
the Animal Health Authority in France passed a decree regulating the use of critically important
antibiotics, such as 3rd- and 4th-generation cephalosporins, fluoroquinolones and macrolides. This
was intended to promote the rational use of antibiotics, and to foster the use of alternatives in the
veterinary clinical system [59]. Additionally, in the United Kingdom, there was a shared desire to
seek an alternative approach to prophylactic measures other than the conventional antimicrobials, and
many farmers showed interest in reducing the use of antibiotics. Hence, the guidelines on promoting
prudent prescriptions, and providing advice on alternative methods to treat and prevent diseases in
pigs, were put together by the Responsible Use of Medicines in Agriculture Alliance (RUMA) in 2013
and the Pig Veterinary Society (PVS) in 2014 [45].
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In a real-world longitudinal study by Burow and colleagues [60] on the assessment of dynamics of
the risk of resistance in Escherichia coli to clinically important antimicrobials in pigs, it was concluded that
reduction in antibiotic resistance in pigs could lead to a lower level of beta-lactam-or macrolide-resistant
E. coli among their progeny. In another study by Wang et al. [54], Pacific white shrimp feed was
supplemented with Ciprofloxacin and Sulfonamide to investigate the microbial community targeting
the V4 region of 16S rRNA genes. Four days into the experiment, a significant increase in the abundance
of the Ciprofloxacin- and Sulfonamide-resistant genes (qnrB, qnrD, qnrS and sul1, sul2, sul3, respectively)
was observed. On a more general note, the clinical preservation and maintenance of treatment options
against infectious diseases require the restriction of antibiotic use to unavoidable cases.

Campaigns for the removal of in-feed antibiotics in animal husbandry are increasingly gaining
momentum across the globe. This has prompted several studies on developing and promoting
alternative additives such as probiotics, prebiotics, plant secondary metabolites, acidifiers, enzymes,
bacteriocins and bacteriophages [61,62]. Combined probiotics and exogenous enzymes, when
used as feed additives, have demonstrated beneficial impacts on growth performance and on the
weight-gains-to-feed ratio in calves [63,64].

The effects of two commercially available feed additives containing lactic acid bacteria, Lactobacillus
fermentation products and plant-sourced enzymes, in comparison to in-feed antibiotics, were
extensively evaluated based on growth performance, carcass characteristics and blood metabolites
of steers by Ran and colleagues [65]. The study established that the supplements improved average
daily weight gains and feed efficiency during the early portion of the growing phase. Additionally,
steers supplemented with these products required fewer therapeutic antimicrobials compared to the
control groups in the experiment, thus confirming probiotic additives as potential alternatives to AGPs
in growing steers.

Moreover, a diet of Astyanax bimaculatus supplemented with Lactobacillus spp. resulted in increased
amounts of leucocytes in the circulatory system, thus conferring greater resistance to gut pathogens
and, consequently, higher survival rates, in addition to improved feed efficiency [66]. In another study
conducted by Vase-Khavari et al. [67], poultry bird feed supplemented with probiotics (superzist)
revealed significant influences on the growth performance of the broilers, with laudable responses on
total cholesterol, triglyceride levels and immunological parameters, and a notable reduction in colon
pathogens. Administration of Lactococcus lactis subspecies lactis 2 probiotic to broilers reduced the
cholesterol level and fat content in the breast and thigh meat more prominently when compared to the
effects of zinc bacitracin antibiotics, which were used as a control [68].

Askelson and colleagues [69] demonstrated the potential of administering a phytate-degrading
probiotic culture, in place of feed enzymes, to improve performance in livestock animals. In their
study, recombinant Lactobacillus gallinarum and L. gasseri were cloned to express Bacillus subtilis phytase
(pTRK882), which improved the weight gain of broiler chickens up to 10-fold and 18-fold, respectively.
This could eventually combine the performance benefits of feed enzymes with that of animal health
and food safety traditionally associated with probiotics. Moreover, a poultry basal diet supplemented
with colonies of Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 led to the maintenance of
intestinal barrier integrity and the adequate expression of barrier functional genes, a reduction in the
level of malondialdehyde in the jejunal mucosa and serum, an increment in the activities of hepatic
glutathione peroxidase, a reduction in the rate of cell proliferation and apoptosis, and a significant
reduction in nitric oxide and in the expression of cyclooxygenase-2 enzyme [70].

Direct feeding with a probiotic culture preparation containing Lactobacillus reuteri, L. salivarius
and Streptococcus salivarius significantly improved the growth performance, blood parameters and
IgG stimulation in weaned piglets [71]. Lactobacillus salivarius LS6 demonstrates promising probiotic
traits for potential use as a feed additive for pigs, through preventing disruption of the epithelial
cells in the small intestine via inhibiting the colonisation by enterotoxigenic Escherichia coli K88 [72].
Oral administration of Lactobacillus delbrueckii to suckling porcine that were denied access to in-feed
antibiotics showed tremendously improved antioxidant capacity and an intestinal immune response
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with long-lasting effects [73]. Tasfaye and Hailu [74] recently compiled several scientific studies
to indicate how directly feeding probiotic to dairy cows significantly improves milk production
and quality.

2.3. Established Risk Assessment Protocol for the Probiotics

Notwithstanding the clinical efficacy of probiotics, the safety of the microorganism involved
must be assured. This suggests that the evaluation of the risk factors of a specific strain must receive
adequate attention. Most probiotic strains have acquired the “Generally Recognized as Safe” (GRAS)
status due to their long history of use as probiotics [74–76]; however, every novel probiotic cannot
be assumed to share historical safety with the conventional strains [77]. Just as in other organisms,
probiotics may possess undesirable properties such as virulence factors, transferable antimicrobial
resistance, haemolytic potential and production of toxic biochemicals [78].

For instance, the potential risk of a horizontal transfer of antimicrobial-resistant genes in a
probiotic strain to other bacteria in the microbiota of the host’s gastrointestinal environment has been
emphasized [76]. This is in addition to rare cases of infectious diseases like endocarditis, bacteraemia,
pneumoniae, meningitis and septic arthritis associated with certain Lactobacillus and Enterococcus
strains which have also been reported mostly in immuno-compromised patients [79].

During the 2006 two-day workshop organised by academic and industrial scientists on biosafety
evaluation of lactic acid bacteria as probiotics, at the University of Antwerp, Belgium, it was
recommended that any potential probiotic strain not belonging to the wild-type distributions of
relevant antimicrobials, or harbouring a known virulence determinants, should be avoided and not
developed as future functional products for human or animal consumption [79]. In a joint report of
the Food and Agriculture Organization/World Health Organization (FAO/WHO) Expert Consultation
in Rome [80], Enterococcus was mentioned as one of the bacteria with a high potential for virulence
features, although from lactic acid bacteria. Participants thus discouraged the use of Enterococcus as a
probiotic, on the grounds that the genus commonly expresses a high level of vancomycin-resistant
genes. Such resistance can be transferred to neighbouring pathogens, which may, in the end, enhance
their pathogenicity. This is coupled with the fact that some strains of vancomycin-resistant enterococci
are frequently associated with nosocomial infections.

Moreover, the assessment of the strain identity, coupled with the mode of identification of the
strains, deserves adequate attention. The transmigration potential of the strain across the gastrointestinal
barrier, which may result in invasive opportunistic infection, should be scrutinized as well [81–83].
Among other potential risk factors to be put under the spotlight are the ability to transfer acquired
antimicrobial resistance, the possibility of promoting deleterious metabolic effects, excessive immune
stimulation, virulence determinants and toxigenicity of the specific strain, level of purity of the product,
and colonisation and genetic stability of the strain over time [79–84].

In addition, the FAO working group report [85] equally recommends that potential probiotic
strains should be screened for undesirable secondary medical effects in end users, virulence in animal
models with compromised immunity and impending adverse effects on end users. Kim et al. [86] also
suggest guidelines for the safety assessment and regulation of probiotics, as endorsed by the European
Union Scientific Committee on Animal Nutrition, as follows: taxonomical definition of the strains,
collection of substantial information revealing data such ashistory of use, industrial applications,
ecological niche, human intervention, exclusion of pathogenicity and description of end users. A chat
summarizing combined established safety assessment protocols for a typical probiotic candidate is
shown in the Figure 1.
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2.4. Adverse Effects Due to Application of Probiotics

The safety of probiotics is best discussed in general as it applies to both human and farm animals.
The peculiar functions of a probiotic are more important than the source of the isolate. It is crucial
that the potential of a probiotic agent remains viable over a considerable period of time at the site
of action. It is very difficult to ascertain the source of a microorganism in the gastrointestinal tract
since the origin of the intestinal microbiota has not been well founded. Moreover, the possibility of
probiotics used in animal feed cross-contaminating the human food chain cannot be downplayed.
Although there is very little available information on the risk to human food due to contamination
from in-feed probiotics [80,87], the adverse effects of probiotics could be strain specific, depending
on the prevailing immunological and physiological condition of the host. In a systematic study on
published data and information on the safety of probiotics, credited to the Agency for Healthcare
Research and Quality under the US Department of Health and Human Services, it was concluded that
there is a lack of assessment and systematic reporting on adverse effects due to probiotic intervention,
and that interventions are poorly documented [88].

3. Conclusions

Considering the detrimental effects of in-feed antibiotics, and irresponsible administration of
antibiotics in veterinary practice, probiotics stand a good chance as a viable alternative prophylactic and
therapeutic agent in animal husbandry. Although the events of probiotics turning into opportunistic
infections are not well documented, a few available case reports reveal that the likelihood is more
pronounced in immunocompromised hosts, and there are few or no reports on affected livestock.
The risk of human food contamination from in-feed probiotics is a possibility, although less investigated.
Several health agencies and academics across continents have established and documented adequate
safety protocols for probiotics development. As tremendous as the benefits of probiotics are, the safety
measures for every strain must be strictly adhered to at all levels in order to make the ongoing global
campaign on food safety and security a reality.
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C.N.A. and O.A.A. revised and proofread the manuscript. All authors have read and agreed to the published
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