Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Core-Shell Copolymer
2.3. Characterization
3. Results and Discussion
3.1. Morphological Characterization (SEM and TEM)
3.2. Thermal Analysis (TGA and DSC)
3.3. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (FT-IR)
3.4. Dynamic Light Scattering (DLS)
3.5. Gel Permeated Chromatography
3.6. Outcome Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramli, R.A.; Laftah, W.A.; Hashim, S. Core–shell polymers: A review. RSC Adv. 2013, 3, 15543. [Google Scholar] [CrossRef]
- Afshar, S.; Rashedi, S.; Nazockdast, H.; Ghazalian, M. Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system. Int. J. Biol. Macromol. 2019, 138, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.M.; Eisa, W.H.; Abouelsayed, A. Solvent-free and large-scale preparation of silver@polypyrrole core@shell nanocomposites; structural properties and terahertz spectroscopic studies. Compos. Part. B Eng. 2019, 176, 107289. [Google Scholar] [CrossRef]
- Balakumar, V.; Kim, H.; Manivannan, R.; Kim, H.; Ryu, J.W.; Heo, G.; Son, Y.A. Ultrasound-assisted method to improve the structure of CeO2@polyprrole core-shell nanosphere and its photocatalytic reduction of hazardous Cr(6). Ultrason. Sonochem. 2019, 59, 104738. [Google Scholar] [CrossRef]
- Anitha, B.; Nithiananthi, P. Oscillator strength and carrier dynamics in type I and inverted type I spherical core/ shell nanostructures under external laser field. Superlattices Microstruct. 2019, 135, 106288. [Google Scholar] [CrossRef]
- Izu, N.; Uchida, T.; Itoh, T.; Shin, W. Decreasing the shell ratio of core-shell type nanoparticles with a ceria core and polymer shell by acid treatment. Solid State Sci. 2018, 85, 32–37. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Y.; Hu, Y.H. Synthesis, structures and applications of single component core-shell structured TiO2: A review. Chem. Eng. J. 2019, 375, 122029. [Google Scholar] [CrossRef]
- Han, J.; Wang, L.; Wang, L.; Li, C.; Mao, Y.; Wang, Y. Fabrication of a core-shell-shell magnetic polymeric microsphere with excellent performance for separation and purification of bromelain. Food Chem. 2019, 283, 1–10. [Google Scholar] [CrossRef]
- Gul, S.; Shah, N.; Arain, M.B.; Rahman, N.; Rehan, T.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Fabrication of magnetic core shell particles coated with phenylalanine imprinted polymer. Polym. Test. 2019, 75, 262–269. [Google Scholar] [CrossRef]
- Farboudi, A.; Nouri, A.; Shirinzad, S.; Sojoudi, P.; Davaran, S.; Akrami, M.; Irani, M. Synthesis of magnetic gold coated poly (epsilon-caprolactonediol) based polyurethane/poly(N-isopropylacrylamide)-grafted-chitosan core-shell nanofibers for controlled release of paclitaxel and 5-FU. Int. J. Biol. Macromol. 2019, 150, 1130–1140. [Google Scholar] [CrossRef]
- Karaxi, E.K.; Kartsonakis, I.A.; Charitidis, C.A. Assessment of Self-Healing Epoxy-Based Coatings Containing Microcapsules Applied on Hot Dipped Galvanized Steel. Front. Mater. 2019, 6, 222. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, T.A.; Ammar, S.H. Core/shell phosphomolybdic acid-supported magnetic silica nanocomposite (Ni@SiO2-PMo): Synthesis, characterization and its application as a recyclable antibacterial agent. Colloid Interface Sci. Commun. 2019, 33, 100214. [Google Scholar] [CrossRef]
- Amagat Molas, J.; Chen, M. Injectable PLCL/gelatin core-shell nanofibers support noninvasive 3D delivery of stem cells. Int. J. Pharm. 2019, 568, 118566. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, A.; Wang, F.; Li, H.; Jin, Q.; Huang, L.; Fu, C.; Zeng, J.; Jin, Z.; Song, X. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chin. Chem. Lett. 2019, 31, 494–500. [Google Scholar] [CrossRef]
- Wang, P.; Ji, Y.; Shao, Q.; Li, Y.; Huang, X. Core@shell structured Au@SnO2 nanoparticles with improved N2 adsorption/activation and electrical conductivity for efficient N2 fixation. Sci. Bull. 2019, 65, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Shabzendedar, S.; Modarresi-Alam, A.R.; Noroozifar, M.; Kerman, K. Core-shell nanocomposite of superparamagnetic Fe3O4 nanoparticles with poly(m-aminobenzenesulfonic acid) for polymer solar cells. Org. Electron. 2019, 77, 105462. [Google Scholar] [CrossRef]
- Pavlenko, M.; Siuzdak, K.; Coy, E.; Załęski, K.; Jancelewicz, M.; Iatsunskyi, I. Enhanced solar-driven water splitting of 1D core-shell Si/TiO2/ZnO nanopillars. Int. J. Hydrogen Energy 2019, 45, 26426–26433. [Google Scholar] [CrossRef]
- Wang, D.; An, Y.; Gao, S. Synthesis and characterization of urchin-like CuO nanorod/TiCu-based metallic glass core-shell powders with surface photovoltage performance. Appl. Surf. Sci. 2019, 506, 144871. [Google Scholar] [CrossRef]
- Kawasaki, D.; Maeno, K.; Yamada, H.; Sueyoshi, K.; Hisamoto, H.; Endo, T. TiN-contained polymer-metal core-shell structured nanocone array: Engineering of sensor performance by controlling plasmonic properties. Sens. Actuators B Chem. 2019, 299, 126932. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; Liu, D.; Lin, G.; Wan, J.; Jiang, H.; Lai, X.; Hao, S.; Liu, X. Lychee-like ZnO/ZnFe2O4 core-shell hollow microsphere for improving acetone gas sensing performance. Ceram. Int. 2019, 46, 5960–5967. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, J.; Yun, Y.; Rui, J.; Zhao, W.; Li, F. A novel core-shell structure reinforced Zr-based metallic glass composite with combined high strength and good tensile ductility. J. Alloy. Compd. 2019, 803, 413–416. [Google Scholar] [CrossRef]
- Jia, E.; Zhao, S.; Shangguan, Y.; Zheng, Q. Toughening mechanism of polypropylene bends with polymer particles in core-shell structure: Equivalent rubber content effect related to core-shell interfacial strength. Polymer 2019, 178, 121602. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Z.; Li, Y.; Li, G.; Wang, Y.; Zhong, W.-H.; Yang, X. Synergistically effects of copolymer and core-shell particles for toughening epoxy. Polymer 2018, 140, 39–46. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Lv, X.; Mao, C.; Zhou, Y.; Wu, W.; Zhang, H.; Huang, Z. Synthesis of polymeric ionic liquids mircrospheres/Pd nanoparticles/CeO2 core-shell structure catalyst for catalytic oxidation of benzyl alcohol. J. Taiwan Inst. Chem. Eng. 2019, 107, 161–170. [Google Scholar] [CrossRef]
- Lynch, D.E.; Fellows, A.C.; Wilcock, R.; Sethi, S.; Armour, S.C.; Conteh, L. The use of poly(1-methylpyrrol-2-ylsquaraine) particles as a sacrificial template for the preparation of core-shell materials. Mater. Chem. Phys. 2019, 227, 163–169. [Google Scholar] [CrossRef]
- Cao-Luu, N.-H.; Pham, Q.-T.; Yao, Z.-H.; Wang, F.-M.; Chern, C.-S. Synthesis and characterization of poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide-co-acrylamide) core—Silica shell nanoparticles by using reactive surfactant polyoxyethylene alkylphenyl ether ammonium sulfate. Eur. Polym. J. 2019, 120, 109263. [Google Scholar] [CrossRef]
- Gasaymeh, S.S.; Almansoori, N.N. Novel Formation Mechanism of Ag/PANI/PVP Core-Shell Nanocomposites. Results Phys. 2019, 16, 102882. [Google Scholar] [CrossRef]
- Park, S. Complex core-shell morphologies of block copolymers revealed beneath the surface. Appl. Surf. Sci. 2019, 494, 309–314. [Google Scholar] [CrossRef]
- Navin, K.; Kurchania, R. Structural, magnetic and electrochemical properties of LSMO-ZnO core-shell nanostructure. Mater. Chem. Phys. 2019, 234, 25–31. [Google Scholar] [CrossRef]
- Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J. Am. Chem Soc. 2007, 129, 1534–1535. [Google Scholar] [CrossRef]
- Wang, Y.; Rong, Z.; Tang, X.; Cao, S.; Chen, X.; Dang, W.; Wu, L. The design of scorodite@FeOOH core-shell materials and its stability treatment for arsenide. Appl. Surf. Sci. 2019, 496, 143719. [Google Scholar] [CrossRef]
- Schroffenegger, M.; Reimhult, E. Thermoresponsive Core-Shell Nanoparticles and Their Potential Applications. Compr. Nanosci. Nanotechnol. 2019, 2, 145–170. [Google Scholar] [CrossRef]
- Balaskas, A.C.; Kartsonakis, I.A.; Kordas, G.; Cabral, A.M.; Morais, P.J. Influence of the doping agent on the corrosion protection properties of polypyrrole grown on aluminium alloy 2024-T3. Prog. Org. Coat. 2011, 71, 181–187. [Google Scholar] [CrossRef]
- Goulis, P.; Kartsonakis, I.; Konstantopoulos, G.; Charitidis, C. Synthesis and Processing of Melt Spun Materials from Esterified Lignin with Lactic Acid. Appl. Sci. 2019, 9, 5361. [Google Scholar] [CrossRef] [Green Version]
- Goulis, P.; Kartsonakis, I.A.; Mpalias, K.; Charitidis, C. Combined effects of multi-walled carbon nanotubes and lignin on polymer fiber-reinforced epoxy composites. Mater. Chem. Phys. 2018, 218, 18–27. [Google Scholar] [CrossRef]
- Goulis, P.; Konstantopoulos, G.; Kartsonakis, I.A.; Mpalias, K.; Anagnou, S.; Dragatogiannis, D.; Charitidis, C. Thermal Treatment of Melt-Spun Fibers Based on High Density PolyEthylene and Lignin. C J. Carbon Res. 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Mao, Z.; Xu, Z.; Xiang, B.; Zhang, J. Synthesis and characterization of size-tunable core-shell structural polyacrylate-graft-poly(acrylonitrile-ran-styrene) (ASA) by pre-emulsion semi-continuous polymerization. Eur. Polym. J. 2019, 120, 109247. [Google Scholar] [CrossRef]
- Weiss, A.V.; Koch, M.; Schneider, M. Combining cryo-TEM and energy-filtered TEM for imaging organic core-shell nanoparticles and defining the polymer distribution. Int. J. Pharm. 2019, 570, 118650. [Google Scholar] [CrossRef]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trac. Trends Anal. Chem. 2019, 114, 202–217. [Google Scholar] [CrossRef]
- Ravindar Reddy, M.; Subrahmanyam, A.R.; Maheshwar Reddy, M.; Siva Kumar, J.; Kamalaker, V.; Jaipal Reddy, M. X-RD, SEM, FT-IR, DSC Studies of Polymer Blend Films of PMMA and PEO. Mater. Today Proc. 2016, 3, 3713–3718. [Google Scholar] [CrossRef]
- Mekuria, T.D.; Zhang, C.; Fouad, D.E. The effect of thermally developed SiC@SiO2 core-shell structured nanoparticles on the mechanical, thermal and UV-shielding properties of polyimide composites. Compos. Part. B Eng. 2019, 173, 106917. [Google Scholar] [CrossRef]
- Tommasini, F.J.; Ferreira, L.d.C.; Tienne, L.G.P.; Aguiar, V.d.O.; Silva, M.H.P.d.; Rocha, L.F.d.M.; Marques, M.d.F.V. Poly (Methyl Methacrylate)-SiC Nanocomposites Prepared Through in Situ Polymerization. Mater. Res. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Yuksel, N.; Baykara, M.; Shirinzade, H.; Suzen, S. Investigation of triacetin effect on indomethacin release from poly(methyl methacrylate) microspheres: Evaluation of interactions using FT-IR and NMR spectroscopies. Int J. Pharm. 2011, 404, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Sivy, G.T.; Coleman, M.M. Fourier transform ir studies of the degradation of polyacrylonitrile copolymers—II. Carbon 1981, 19, 127–131. [Google Scholar] [CrossRef]
- Kartsonakis, I.A.; Danilidis, I.L.; Pappas, G.S.; Kordas, G.C. Encapsulation and release of corrosion inhibitors into titania nanocontainers. J. Nanosci. Nanotechnol. 2010, 10, 5912–5920. [Google Scholar] [CrossRef]
- Eissa, A.S. Effect of SDS on whey protein polymers. Molecular investigation via dilute solution viscometry and dynamic light scattering. Food Hydrocoll. 2019, 87, 97–100. [Google Scholar] [CrossRef]
- Makan, A.C.; Spallek, M.J.; du Toit, M.; Klein, T.; Pasch, H. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering. J. Chromatogr. A 2016, 1442, 94–106. [Google Scholar] [CrossRef]
- Cametti, C.; D’Amato, R.; Furlani, A.; Russo, M.V. Dynamic light scattering and optical absorption study of poly(monosubstituted)acetylene polymers and copolymers. Chem. Phys. Lett. 2003, 370, 602–608. [Google Scholar] [CrossRef]
- Gao, H.; Waechter, A.; Konstantinov, I.A.; Arturo, S.G.; Broadbelt, L.J. Application and comparison of derivative-free optimization algorithms to control and optimize free radical polymerization simulated using the kinetic Monte Carlo method. Comput. Chem. Eng. 2018, 108, 268–275. [Google Scholar] [CrossRef]
- Sankar, K.; Rajendran, V. Ultrasound assisted free radical polymerization of glycidyl methacrylate by a new disite phase-transfer catalyst system: A kinetic study. Ultrason. Sonochem. 2012, 19, 1205–1212. [Google Scholar] [CrossRef]
- Prabha, J.; Susan Jemima, W.; Jayaprada, M.; Umapathy, M.J. Synergistic effect of ultrasonication and phase transfer catalysts in radical polymerization of methyl methacrylate—A kinetic study. Ultrason. Sonochem. 2017, 35, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, E.; Murugesan, V. Influence of ultrasonic condition on phase transfer catalyzed radical polymerization of methyl methacrylate in two phase system—A kinetic study. Ultrason. Sonochem. 2017, 38, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, V.; Loi Nguyen, T.; Moon, J.-Y.; Lee, Y.-C. Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: Challenges and development strategies. Chem. Eng. J. 2019, 368, 88–114. [Google Scholar] [CrossRef]
- Su, H.; Tian, Q.; Hurd Price, C.-A.; Xu, L.; Qian, K.; Liu, J. Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. Nano Today 2020, 31, 100834. [Google Scholar] [CrossRef]
- Peralta, M.E.; Jadhav, S.A.; Magnacca, G.; Scalarone, D.; Martire, D.O.; Parolo, M.E.; Carlos, L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interface Sci. 2019, 544, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bao, Y.; Gao, Z.; Wu, Y.; Wu, L. Synthesis of mesoporous silica-shell/oil-core microspheres for common waterborne polymer coatings with robust superhydrophobicity. Prog. Org. Coat. 2019, 132, 275–282. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, Y.; Jin, X.; Yan, B.; Diao, G.; Piao, Y. Supramolecule-assisted synthesis of cyclodextrin polymer functionalized polyaniline/carbon nanotube with core-shell nanostructure as high-performance supercapacitor material. Electrochim. Acta 2020, 331, 135345. [Google Scholar] [CrossRef]
- Yang, X.; Wan, G.; Ma, S.; Xia, H.; Wang, J.; Liu, J.; Liu, Y.; Chen, G.; Bai, Q. Synthesis and optimization of SiO2@SiO2 core-shell microspheres by an improved polymerization-induced colloid aggregation method for fast separation of small solutes and proteins. Talanta 2020, 207, 120310. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Rahemipoor, S.; Kohestanian, M. Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposite with core-shell structure via RAFT polymerization. Compos. Sci. Technol. 2020, 188, 107951. [Google Scholar] [CrossRef]
- Shevchenko, N.; Pankova, G.; Laishevkina, S.; Iakobson, O.; Koshkin, A.; Shabsels, B. Core-shell polymer particles containing derivatives of 1,3-diphenyl-β-diketonate boron difluoride: Synthesis and spectroscopic investigation of toluene vapor sorption. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 310–320. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, Y.; Wang, L.; Yang, Y.; Liu, S. In situ synthesis of a multifunctional polymer with a stable core-shell structure for effective dewatering. Miner. Eng. 2019, 141, 105858. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Q.; Zhao, W.; Guo, X.; Li, D.; Sun, X. Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Appl. Sci. 2020, 10, 2663. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.C.; Largeau, L.; Morassi, M.; Jegenyes, N.; Mauguin, O.; Travers, L.; Lafosse, X.; Dupuis, C.; Harmand, J.-C.; Tchernycheva, M.; et al. GaN/Ga2O3 Core/Shell Nanowires Growth: Towards High Response Gas Sensors. Appl. Sci. 2019, 9, 3528. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Q.; Wang, D.; Yan, X. NO-CH4-SCR Over Core-Shell MnH-Zeolite Composites. Appl. Sci. 2019, 9, 1773. [Google Scholar] [CrossRef] [Green Version]
- Khatami, M.; Alijani, H.; Nejad, M.; Varma, R. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products. Appl. Sci. 2018, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Obaidat, I.; Nayek, C.; Manna, K. Investigating the Role of Shell Thickness and Field Cooling on Saturation Magnetization and Its Temperature Dependence in Fe3O4/γ-Fe2O3 Core/Shell Nanoparticles. Appl. Sci. 2017, 7, 1269. [Google Scholar] [CrossRef] [Green Version]
- Dell’Era, A.; Scaramuzzo, F.A.; Stoller, M.; Lupi, C.; Rossi, M.; Passeri, D.; Pasquali, M. Spinning Disk Reactor Technique for the Synthesis of Nanometric Sulfur TiO2 Core–Shell Powder for Lithium Batteries. Appl. Sci. 2019, 9, 1913. [Google Scholar] [CrossRef] [Green Version]
Wavenumber (cm−1) | Corresponding Bond |
---|---|
475 | C-C=O in plane deformation vibration |
747, 840 | C-H deformation vibration |
963 | C-O stretching vibration |
1156 | -CH2- wagging and C-O phenol stretch |
1187 | -OCH3 vibration (methyl methacrylate) |
1237, 1384, 1435 | C-H and O-H deformation vibration |
1474 | C-H scissor vibration |
1636 | C=C stretching vibration (EGDMA) |
1716 | -C=O stretch |
2925 | -CH3 stretching |
2996 | -CH2 stretching |
3400 | -O-H stretch (methacrylic acid) |
Retention Time (min) | Evolution Volume (mL) | Mol Wt (Daltons) | Calculated Weight (Daltons) |
---|---|---|---|
28.811 | 28.811 | 900,000 | 872,947 |
29.628 | 29.628 | 520,000 | 547,317 |
30.184 | 30.184 | 410,000 | 408,730 |
30.264 | 30.264 | 390,000 | 392,540 |
32.189 | 32.189 | 170,000 | 164,923 |
35.754 | 35.754 | 50,000 | 47,892 |
36.994 | 36.994 | 30,000 | 32,768 |
40.176 | 40.176 | 12,500 | 11,728 |
43.049 | 43.049 | 3350 | 3569 |
43.821 | 43.821 | 2500 | 2412 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulis, P.; Kartsonakis, I.A.; Charitidis, C.A. Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures. Fibers 2020, 8, 71. https://doi.org/10.3390/fib8110071
Goulis P, Kartsonakis IA, Charitidis CA. Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures. Fibers. 2020; 8(11):71. https://doi.org/10.3390/fib8110071
Chicago/Turabian StyleGoulis, Panagiotis, Ioannis A. Kartsonakis, and Costas A. Charitidis. 2020. "Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures" Fibers 8, no. 11: 71. https://doi.org/10.3390/fib8110071
APA StyleGoulis, P., Kartsonakis, I. A., & Charitidis, C. A. (2020). Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures. Fibers, 8(11), 71. https://doi.org/10.3390/fib8110071