Industrial Hemp Fibers: An Overview
Abstract
:1. Introduction
2. Natural Fibers: General Considerations
Hemp Fiber
3. Hemp Fiber-Reinforced Composites
3.1. Thermoplastic and Thermoset Polymeric Matrices
3.1.1. Thermoplastic Matrices
3.1.2. Thermoset Matrices
3.1.3. Recycling of Thermoplastic and Thermoset Polymeric Matrices
4. Hemp Fiber-Reinforced Hybrid Composites
4.1. Synthetic and Hemp Fiber-Reinforced Composites
4.2. Natural and Hemp Fiber-Reinforced Composites
5. Hemp Fiber Surface Modifications
6. Fiber Dispersion, Length, Orientation, and Volume Fraction
7. Industrial Applications
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rashid, B.; Leman, Z.; Jawaid, M.; Ishak, M.R.; Al-Oqla, F.M. Eco-Friendly Composites for Brake Pads from Agro Waste: A Review. Ref. Modul. Mater. Sci. Mater. Eng. 2017, 1–21. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B.F. In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact Behaviour of Hybrid Composites for Structural Applications: A Review. Compos. Part B Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable Composites Based on Lignocellulosic Fibers-An Overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Xia, C.; Wang, K.; Dong, Y.; Zhang, S.; Shi, S.Q.; Cai, L.; Ren, H.; Zhang, H.; Li, J. Dual-Functional Natural-Fiber Reinforced Composites by Incorporating Magnetite. Compos. Part B Eng. 2016, 93, 221–228. [Google Scholar] [CrossRef]
- Khan, T.; Hameed Sultan, M.T.B.; Ariffin, A.H. The Challenges of Natural Fiber in Manufacturing, Material Selection, and Technology Application: A Review. J. Reinf. Plast. Compos. 2018, 37, 770–779. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Mansor, M.R.; Mastura, M.T.; Sapuan, S.M.; Zainudin, A.Z. The Environmental Impact of Natural Fiber Composites through Life Cycle Assessment Analysis; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Brosius, D. Natural Fiber Composites Slowly Take Root. Compos. Technol. 2006, 12, 32–37. [Google Scholar]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent Progress on Natural Fiber Hybrid Composites for Advanced Applications: A Review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Cozzo, G.; Latteri, A.; Recca, A.; Björklund, A.; Parrinello, E.; Cicala, G. Life Cycle Assessment of a Novel Hybrid Glass-Hemp/Thermoset Composite. J. Clean. Prod. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Dittenber, D.B.; Gangarao, H.V.S. Critical Review of Recent Publications on Use of Natural Composites in Infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Akil, H.M.; Santulli, C.; Sarasini, F.; Tirillò, J.; Valente, T. Environmental Effects on the Mechanical Behaviour of Pultruded Jute/Glass Fibre-Reinforced Polyester Hybrid Composites. Compos. Sci. Technol. 2014, 94, 62–70. [Google Scholar] [CrossRef]
- Bledzik, A.; Gassan, J. Composites Reinforced with Cellulose Based Fibers. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Hang, Z.Z. The Use of Hemp Fibres as Reinforcements in Composites. Biofiber Reinf. Compos. Mater. 2015, 86–103. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M. Natural Fiber Reinforced Polymer Composites in Industrial Applications: Feasibility of Date Palm Fibers for Sustainable Automotive Industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Maino, A.; Janszen, G.; Di Landro, L. Glass/Epoxy and Hemp/Bio Based Epoxy Composites: Manufacturing and Structural Performances. Polym. Compos. 2019, 40, E723–E731. [Google Scholar] [CrossRef]
- Koronis, G.; Silva, A.; Fontul, M. Green Composites: A Review of Adequate Materials for Automotive Applications. Compos. Part B Eng. 2013, 44, 120–127. [Google Scholar] [CrossRef]
- Pickering, K.L.; Beckermann, G.W.; Alam, S.N.; Foreman, N.J. Optimising Industrial Hemp Fibre for Composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 461–468. [Google Scholar] [CrossRef]
- Netinger Grubeša, I.; Marković, B.; Gojević, A.; Brdarić, J. Effect of Hemp Fibers on Fire Resistance of Concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Sain, M. Studies on the Water Absorption Properties of Short Hemp-Glass Fiber Hybrid Polypropylene Composites. J. Compos. Mater. 2007, 41, 1871–1883. [Google Scholar] [CrossRef]
- Ranalli, P.; Venturi, G. Hemp as a Raw Material for Industrial Applications. Euphytica 2004, 149, 1–6. [Google Scholar] [CrossRef]
- Thamae, T.; Aghedo, S.; Baillie, C.; Matovic, D. Tensile Properties of Hemp and Agave Americana Fibres. Handb. Tensile Prop. Text. Tech. Fibres 2009, 73–99. [Google Scholar] [CrossRef]
- Salentijn, E.M.J.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New Developments in Fiber Hemp (Cannabis Sativa, L.) Breeding. Ind. Crops Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- Pappu, A.; Pickering, K.L.; Thakur, V.K. Manufacturing and Characterization of Sustainable Hybrid Composites Using Sisal and Hemp Fibres as Reinforcement of Poly (Lactic Acid) Via Injection Moulding. Ind. Crops Prod. 2019, 137, 260–269. [Google Scholar] [CrossRef]
- Sature, P.; Mache, A. Mechanical characterization and water absorption studies on jute/hemp reinforced hybrid composites. Am. J. Mater. Sci. 2015, 5, 133–139. [Google Scholar] [CrossRef]
- Chen, T.; Liu, W.; Qiu, R. Mechanical Properties and Water Absorption of Hemp Fibers-Reinforced Unsaturated Polyester Composites: Effect of Fiber Surface Treatment with a Heterofunctional Monomer. BioResources 2013, 8, 2780–2791. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Tensile Properties of Chemically Treated Hemp Fibres as Reinforcement for Composites. Compos. Part B Eng. 2013, 53, 362–368. [Google Scholar] [CrossRef]
- Pil, L.; Bensadoun, F.; Pariset, J.; Verpoest, I. Why Are Designers Fascinated by Flax and Hemp Fibre Composites? Compos. Part A Appl. Sci. Manuf. 2016, 83, 193–205. [Google Scholar] [CrossRef]
- Horne, M. Bast Fibres: Hemp Cultivation and Production; Woodhead Publishing: Amsterdam, The Netherlands, 2012; Volume 1. [Google Scholar] [CrossRef]
- Kiruthika, A.V. A Review on Physico-Mechanical Properties of Bast Fibre Reinforced Polymer Composites. J. Build. Eng. 2017, 9, 91–99. [Google Scholar] [CrossRef]
- Zheng, G.Y. Numerical Investigation of Characteristic of Anisotropic Thermal Conductivity of Natural Fiber Bundle with Numbered Lumens. Math. Probl. Eng. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Chegdani, F.; Bukkapatnam, S.T.S.; El Mansori, M. Thermo-Mechanical Effects in Mechanical Polishing of Natural Fiber Composites. Procedia Manuf. 2018, 26, 294–304. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Effects of Chemical Treatments on Hemp Fibre Structure. Appl. Surf. Sci. 2013, 276, 13–23. [Google Scholar] [CrossRef]
- Väisänen, T.; Batello, P.; Lappalainen, R.; Tomppo, L. Modification of Hemp Fibers (Cannabis Sativa, L.) for Composite Applications. Ind. Crops Prod. 2018, 111, 422–429. [Google Scholar] [CrossRef]
- Hepworth, D.G.; Hobson, R.N.; Bruce, D.M.; Farrent, J.W. The Use of Unretted Hemp Fibre in Composite Manufacture. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1279–1283. [Google Scholar] [CrossRef]
- Nunes, L. Nonwood Bio-Based Materials; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Teixeira, F.P.; Gomes, O.d.F.M.; Silva, F.d.A. Degradation Mechanisms of Curaua, Hemp, and Sisal Fibers Exposed to Elevated Temperatures. BioResources 2019, 14, 1494–1511. [Google Scholar] [CrossRef]
- Shahzad, A. A Study in Physical and Mechanical Properties of Hemp Fibres. Adv. Mater. Sci. Eng. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, E.; Çallioğlu, H.; Demirel, H. Production of Epoxy Composites Reinforced by Different Natural Fibers and Their Mechanical Properties. Compos. Part B Eng. 2019, 167, 461–466. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Mishra, S.; Sain, M. Long-Term Performance of Natural-Fiber Composites. Prop. Perform. Nat. Compos. 2008, 460–502. [Google Scholar] [CrossRef]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Materials Selection of Thermoplastic Matrices for ’Green’ Natural Fibre Composites for Automotive Anti-Roll Bar with Particular Emphasis on the Environment. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 111–119. [Google Scholar] [CrossRef]
- Manaia, J.P.; Pires, F.A.; de Jesus, A.M.P.; Wu, S. Yield Behaviour of High-Density Polyethylene: Experimental and Numerical Characterization. Eng. Fail. Anal. 2019, 97, 331–353. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp Fiber and Its Composites—A Review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Sain, M.; Suhara, P.; Law, S.; Bouilloux, A. Interface Modification and Mechanical Properties of Natural Fiber-Polyolefin Composite Products. J. Reinf. Plast. Compos. 2005, 24, 121–130. [Google Scholar] [CrossRef]
- Li, H.; Sain, M.M. High Stiffness Natural Fiber-Reinforced Hybrid Polypropylene Composites. Polym. Plast. Technol. Eng. 2003, 42, 853–862. [Google Scholar] [CrossRef]
- Sullins, T.; Pillay, S.; Komus, A.; Ning, H. Hemp Fiber Reinforced Polypropylene Composites: The Effects of Material Treatments. Compos. Part B Eng. 2017, 114, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Keener, T.J.; Stuart, R.K.; Brown, T.K. Maleated Coupling Agents for Natural Fibre Composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 357–362. [Google Scholar] [CrossRef]
- Mutjé, P.; Vallejos, M.E.; Gironès, J.; Vilaseca, F.; López, A.; López, J.P.; Méndez, J.A. Effect of Maleated Polypropylene as Coupling Agent for Polypropylene Composites Reinforced with Hemp Strands. J. Appl. Polym. Sci. 2006, 102, 833–840. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. Thermal Degradation of Flax and Jute Fibers. J. Appl. Polym. Sci. 2001, 82, 1417–1422. [Google Scholar] [CrossRef]
- Ray, S.S.; Bousmina, M. Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World. Prog. Mater. Sci. 2005, 50, 962–1079. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural Fiber Reinforced Polylactic Acid Composites: A Review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Mashouf Roudsari, G.; Mohanty, A.K.; Misra, M. Green Approaches to Engineer Tough Biobased Epoxies: A Review. ACS Sustain. Chem. Eng. 2017, 5, 9528–9541. [Google Scholar] [CrossRef]
- Peng, X.; Fan, M.; Hartley, J.; Al-Zubaidy, M. Properties of Natural Fiber Composites Made by Pultrusion Process. J. Compos. Mater. 2012, 46, 237–246. [Google Scholar] [CrossRef]
- Sèbe, G.; Cetin, N.S.; Hill, C.A.S.; Hughes, M. RTM Hemp Fibre-Reinforced Polyester Composites. Appl. Compos. Mater. 2000, 7, 341–349. [Google Scholar] [CrossRef]
- Steenkamer, D.A.; Sullivan, J.L. On the Recyclability of a Cyclic Thermoplastic Composite Material. Compos. Part B Eng. 1998, 29, 745–752. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling Technologies for Thermoset Composite Materials-Current Status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Peijs, T. Natural Fiber Based Composites. Mater. Technol. 2000, 15, 281–285. [Google Scholar] [CrossRef]
- Dong, J.; Locquet, A.; Declercq, N.F.; Citrin, D.S. Polarization-Resolved Terahertz Imaging of Intra- and Inter-Laminar Damages in Hybrid Fiber-Reinforced Composite Laminate Subject to Low-Velocity Impact. Compos. Part B Eng. 2016, 92, 167–174. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Sain, M. Injection-Molded Short Hemp Fiber/Glass FiberReinforced Polypropylene Hybrid Composites—Mechanical, Water Absorption and Thermal Properties. J. Appl. Polym. Sci. 2007, 103, 2432–2441. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre Hybridisation in Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Song, Y.S.; Lee, J.T.; Ji, D.S.; Kim, M.W.; Lee, S.H.; Youn, J.R. Viscoelastic and Thermal Behavior of Woven Hemp Fiber Reinforced Poly (Lactic Acid) Composites. Compos. Part B Eng. 2012, 43, 856–860. [Google Scholar] [CrossRef]
- Hajiha, H.; Sain, M. High Toughness Hybrid Biocomposite Process Optimization. Compos. Sci. Technol. 2015, 111, 44–49. [Google Scholar] [CrossRef]
- Samanta, S.; Muralidhar, M.; Singh, T.J.; Sarkar, S. Characterization of Mechanical Properties of Hybrid Bamboo/GFRP and Jute/GFRP Composites. Mater. Today Proc. 2015, 2, 1398–1405. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Puglia, D.; Dominici, F.; Santulli, C.; Boimau, K.; Valente, T.; Torre, L. Biodegradable Polycaprolactone-Based Composites Reinforced with Ramie and Borassus Fibres. Compos. Struct. 2017, 167, 20–29. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. Studies on Mechanical and Morphological Characterization of Developed Jute/Hemp/Flax Reinforced Hybrid Composites for Structural Applications. J. Nat. Fibers 2018, 15, 80–97. [Google Scholar] [CrossRef]
- Maslinda, A.B.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Afendi, M.; Gibson, A.G. Effect of Water Absorption on the Mechanical Properties of Hybrid Interwoven Cellulosic-Cellulosic Fibre Reinforced Epoxy Composites. Compos. Struct. 2017, 167, 227–237. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of Chemical Modifications of the Pineapple Leaf Fiber Surfaces on the Interfacial and Mechanical Properties of Laminated Biocomposites. Compos. Interfaces 2008, 15, 169–191. [Google Scholar] [CrossRef]
- Mehta, G.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of Fiber Surface Treatment on the Properties of Biocomposites from Nonwoven Industrial Hemp Fiber Mats and Unsaturated Polyester Resin. J. Appl. Polym. Sci. 2006, 99, 1055–1068. [Google Scholar] [CrossRef]
- Sgriccia, N.; Hawley, M.C.; Misra, M. Characterization of Natural Fiber Surfaces and Natural Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1632–1637. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Salehi, M.; Bashir, T.; Rissanen, M.; Nousiainen, P. Novel Aligned Hemp Fibre Reinforcement for Structural Biocomposites: Porosity, Water Absorption, Mechanical Performances and Viscoelastic Behaviour. Compos. Part A Appl. Sci. Manuf. 2014, 61, 1–12. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Beckermann, G.W.; Pickering, K.L. Engineering and Evaluation of Hemp Fibre Reinforced Polypropylene Composites: Fibre Treatment and Matrix Modification. Compos. Part A Appl. Sci. Manuf. 2008, 39, 979–988. [Google Scholar] [CrossRef]
- Ramesh, M.; Deepa, C.; Arpitha, G.R.; Gopinath, V. Effect of Hybridization on Properties of Hemp-Harbon Fibre-Reinforced Hybrid Polymer Composites Using Experimental and Finite Element Analysis. World J. Eng. 2019, 16, 248–259. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. The Effect of Chemical Treatment on the Properties of Hemp, Sisal, Jute and Kapok for Composite Reinforcement. Die Angew. Makromol. Chem. 2000, 272, 108–116. [Google Scholar] [CrossRef]
- Sawpan, M.A.; Pickering, K.L.; Fernyhough, A. Improvement of Mechanical Performance of Industrial Hemp Fibre Reinforced Polylactide Biocomposites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 310–319. [Google Scholar] [CrossRef]
- Ragoubi, M.; Bienaimé, D.; Molina, S.; George, B.; Merlin, A. Impact of Corona Treated Hemp Fibres onto Mechanical Properties of Polypropylene Composites Made Thereof. Ind. Crops Prod. 2010, 31, 344–349. [Google Scholar] [CrossRef]
- Chinga-Carrasco, G.; Solheim, O.; Lenes, M.; Larsen, Å. A Method for Estimating the Fibre Length in Fibre-PLA Composites. J. Microsc. 2013, 250, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of Alkali Fiber Treatment and Fiber Processingon the Mechanical Properties of Hemp/Epoxy Composites. J. Appl. Polym. Sci. 2011, 119, 3696–3703. [Google Scholar] [CrossRef]
- Brahim, S.B.; Cheikh, R.B. Influence of Fibre Orientation and Volume Fraction on the Tensile Properties of Unidirectional Alfa-Polyester Composite. Compos. Sci. Technol. 2007, 67, 140–147. [Google Scholar] [CrossRef]
- Lu, N.; Oza, S. A Comparative Study of the Mechanical Properties of Hemp Fiber with Virgin and Recycled High Density Polyethylene Matrix. Compos. Part B Eng. 2013, 45, 1651–1656. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Effect of Water Absorption on the Mechanical Properties of Hemp Fibre Reinforced Unsaturated Polyester Composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Hargitai, H.; Rácz, I.; Anandjiwala, R.D. Development of Hemp Fiber Reinforced Polypropylene Composites. J. Thermoplast. Compos. Mater. 2008, 21, 165–174. [Google Scholar] [CrossRef]
- Hu, R.; Lim, J.K. Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites. J. Compos. Mater. 2007, 41, 1655–1669. [Google Scholar] [CrossRef]
- Awwad, E.; Mabsout, M.; Hamad, B.; Farran, M.T.; Khatib, H. Studies on Fiber-Reinforced Concrete Using Industrial Hemp Fibers. Constr. Build. Mater. 2012, 35, 710–717. [Google Scholar] [CrossRef]
- Tran Le, A.D.; Maalouf, C.; Mai, T.H.; Wurtz, E.; Collet, F. Transient Hygrothermal Behaviour of a Hemp Concrete Building Envelope. Energy Build. 2010, 42, 1797–1806. [Google Scholar] [CrossRef]
- Santoni, A.; Bonfiglio, P.; Fausti, P.; Marescotti, C.; Mazzanti, V.; Mollica, F.; Pompoli, F. Improving the Sound Absorption Performance of Sustainable Thermal Insulation Materials: Natural Hemp Fibres. Appl. Acoust. 2019, 150, 279–289. [Google Scholar] [CrossRef]
- Lee, P.W.; Filip, P. Friction and Wear of Cu-Free and Sb-Free Environmental Friendly Automotive Brake Materials. Wear 2013, 302, 1404–1413. [Google Scholar] [CrossRef]
- Verma, D.; Senal, I. Natural Fiber-Reinforced Polymer Composites: A Comprehensive Study on Machining Characteristics of Hemp Fiber-Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. Environ. 2002, 10, 19–26. [Google Scholar] [CrossRef]
- Ahmad, F.; Choi, H.S.; Park, M.K. A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
Fiber | Origin | Cellulose (%) | Lignin (%) | Hemicellulose (%) | Pectin (%) | Wax (%) | Ash (%) | Microfibrillar Angle (°) |
---|---|---|---|---|---|---|---|---|
Hemp | Bast | 70–74 | 3.5–5.7 | 15–20 | 0.8 | 1.2–6.2 | 0.8 | 2–6.2 |
Jute | Bast | 61–72 | 12–13 | 18–22 | 0.2 | 0.5 | 0.5–2 | 8 |
Sisal | Leaf | 78 | 8 | 10 | - | 2 | 1 | - |
Flax | Bast | 64–72 | 2–2.2 | 18–20 | 1.8–2.3 | - | - | 5–10 |
Ramie | Bast | 69–91 | 0.4–0.7 | 5–15 | 1.9 | - | - | 7.5 |
Harakeke | Leaf | 56–64 | 7.8 | 23–31 | - | - | - | - |
Coconut Coir | Fruit | 36–43 | 0.15–0.25 | 41–45 | 3–4 | - | - | 30–49 |
Kenaf | Bast | 45–57 | 22 | 8–13 | 0.6 | 0.8 | 2–5 | 2–6.2 |
Fiber | Length (mm) | Density (g/cm3) | Failure Strain (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Moisture Content (%) | Specific Stiffness (E/ρ) (GPa) |
---|---|---|---|---|---|---|---|
Hemp | 5–55 | 1.4 | 1.6 | 550–1110 | 30–70 | 8 | 21–50 |
Jute | 2–120 | 1.3–1.5 | 1.5–1.8 | 393–800 | 10–55 | 12 | 6–34 |
Sisal | 900 | 1.3–1.5 | 2.0–2.5 | 507–855 | 9.4–28 | 11 | 6–18 |
Flax | 5–900 | 1.5 | 1.2–3.2 | 345–1830 | 27–80 | 7 | 18–53 |
Ramie | 900–1200 | 1.5 | 2.0–3.8 | 400–938 | 44–128 | 12–17 | 29–85 |
E-glass | Continuous | 2.5 | 2.5 | 2000–3000 | 70 | <0.1 | 28 |
Advantages | Disadvantages |
---|---|
Low density, high specific stiffness and strength. | Lower durability when compared with synthetic fiber, but can be improved through chemical and physical treatments. |
Are from a renewable resource, therefore little energy is required for their production. | High moisture absorption, which results in swelling. Dimension instability. |
The production costs of natural fibers are lower than those for synthetic fiber. | Lower strength. |
Low health hazards during the manufacturing processes. | High variability of properties such as growth condition, harvesting methods, and maturity. |
Low emission of toxic fumes when subjected to heat and during incineration at end of life. | Matrix options are limited due to lower processing temperatures. |
Are less abrasive to processing equipment than synthetic fibers. | Poor matrix-fiber interfacial adhesion. |
Good thermal and acoustic properties. | Flammable, sensitive to UV, microbial, and fungus attack. |
Polymer | Price (kg) (USD) | Density (g/cm3) | Failure Strain (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Glass Trans. Temp. (Tg °C) | Melting Temp. (Tm °C) |
---|---|---|---|---|---|---|---|
Thermoplastics | |||||||
PP | 1.65 | 0.89–0.92 | 20–400 | 30–40 | 1.1–1.6 | −10 to −23 | 161–170 |
HDPE | 1.76 | 0.94–0.96 | 2–130 | 14.5–38 | 0.4–1.5 | −100 to −60 | 120–140 |
PS | 2.14 | 1.04–1.06 | 1–2.5 | 25–69 | 4–5 | 100 | 110–135 |
PLA | 2.42 | 1.21–1.25 | 2.5–6 | 21–60 | 0.35–3.5 | 45 to 60 | 150–162 |
Thermosets | |||||||
Epoxy | - | 1.1–1.4 | 1–6 | 35–100 | 3–6 | 60 to 170 | - |
Polyester | - | 1.2–1.5 | 4–7 | 40–90 | 2–4.5 | −47 to 120 | - |
Manufacturer | Model | Application |
---|---|---|
Audi | A2, A3, A4, A4 Avant, A6, A8, Roadster, Coupe | Trunk liner, spare tire lining, side and back door panel, seat back, and hat rack |
BMW | 3, 5, and 7 series | Seat back, headliner panel, trunk liner, door panels, noise insulation panels, and molded footwell linings |
DaimlerChrysler | A, C, E, and S class, EvoBus (exterior) | Pillar cover panel, door panels, car windshield/car dashboard, and business table. |
Fiat | Punto, Brava, Marea, Alfa Romeo 146, 156, 159 | Door panel |
Mercedes Benz | C, S, E, and A classes | Door panels, glove box, instrument panel support, insulation, molding rod/apertures, seat back rest panel, trunk panel and seat surface/backrest |
Trucks | Internal engine cover, engine insulation, sun visor, interior insulation, bumper, wheel box, and roof cover. | |
Volvo | V70, C70 | Seat padding, natural foams, and cargo floor tray |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial Hemp Fibers: An Overview. Fibers 2019, 7, 106. https://doi.org/10.3390/fib7120106
Manaia JP, Manaia AT, Rodriges L. Industrial Hemp Fibers: An Overview. Fibers. 2019; 7(12):106. https://doi.org/10.3390/fib7120106
Chicago/Turabian StyleManaia, João P., Ana T. Manaia, and Lúcia Rodriges. 2019. "Industrial Hemp Fibers: An Overview" Fibers 7, no. 12: 106. https://doi.org/10.3390/fib7120106
APA StyleManaia, J. P., Manaia, A. T., & Rodriges, L. (2019). Industrial Hemp Fibers: An Overview. Fibers, 7(12), 106. https://doi.org/10.3390/fib7120106