Thermoplastic Starch Films Added with Dry Nopal (Opuntia Ficus Indica) Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fibers
2.2. Films Preparation
- Composite A: contains an amount of fibers equal to 16 wt % of the total starch + glycerol content. In this case, the stirring lasted for 1 h.
- Composite B: contains an amount of fibers equal to 16 wt % of the total starch + glycerol content. In this case, the stirring lasted for 5 h to increase homogeneity.
- Composite C: produced as composite A, but with an amount of fibers equal to 8 wt % of the total starch + glycerol content.
2.3. Films Preparation
- Optical microscopy and scanning electron microscopy (SEM) of the films as received, to evaluate their morphology and after tensile tests, to study the fracture surfaces. The SEM apparatus used is a Zeiss EVO MA15. Using SEM, qualitative analyses of the elements present on the surface were also carried out by EDS (energy-dispersive X-ray spectrometry).
- Tensile tests were performed using a Testometric model MICRO350 5 kN system, with a 50 N load cell. Tests were carried out in displacement control mode at a cross-head velocity equal to 2 mm/minute. The dimensions of the samples are shown in Figure 2.
- Differential scanning calorimetry (DSC) to evaluate the evolution of films and composites behavior with temperature by heating at a rate of 10 °C/min, from 25 to 180 °C, using a Mettler Toledo HPDSC system.
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sáenz, C.; Sepúlveda, E.; Matsuhiro, B. Opuntia spp mucilage’s: A functional component with industrial perspectives. J. Arid Environ. 2004, 57, 275–290. [Google Scholar]
- Ayadi, M.A.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Ind. Crop. Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Curvelo, A.A.S.; de Carvalho, A.J.F.; Agnelli, J.A.M. Thermoplastic starch-cellulosic fibers composites: Preliminary results. Carbohydr. Polym. 2001, 45, 183–188. [Google Scholar] [CrossRef]
- Malainine, M.E.; Mahrouz, M.; Dufresne, A. Thermoplastic nanocomposites based on cellulose microfibrils from opuntia ficus-indica parenchyma cell. Compos. Sci. Technol. 2005, 65, 1520–1526. [Google Scholar] [CrossRef]
- Greco, A.; Gennaro, R.; Timo, A.; Bonfantini, F.; Maffezzoli, A. A comparative study between bio-composites obtained with opuntia ficus indica cladodes and flax fibers. J. Polym. Environ. 2013, 21, 910–916. [Google Scholar] [CrossRef]
- Scognamiglio, F.; Santulli, C.; Roselli, G. Extraction of cellulose nanocrystals (NCC) from cotton waste and morphology of NCC obtained with different alkali neutralization. Curr. J. Appl. Sci. Technol. 2019, 36, 1–8. [Google Scholar] [CrossRef]
- Rodríguez-Garcia, M.E.; de Lira, C.; Hernández-Becerra, E.; Cornejo-Villegas, M.A.; Palacios-Fonseca, A.J.; Rojas-Molina, I.; Reynoso, R.; Quintero, L.C.; Del-Real, A.; Zepeda, T.A.; et al. Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation. Plant Foods Hum. Nutr. 2007, 62, 107–112. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, I.M.; Iannoni, A.; Kenny, J.M.; Puglia, D.; Santulli, C.; Sarasini, F.; Terenzi, A. Poly(lactic acid)/phormium tenax composites: Morphology and thermo-mechanical behavior. Polym. Compos. 2011, 32, 1362–1368. [Google Scholar] [CrossRef]
- Troiano, M.; Santulli, C.; Roselli, G.; Di Girolami, G.; Cinaglia, P.; Gkrilla, A. DIY bioplastics from peanut hulls waste in a starch-milk based matrix. FME Trans. 2018, 46, 503–512. [Google Scholar] [CrossRef]
- Caliendo, C.; Langella, C.; Santulli, C.; Bove, A. Hand orthosis designed and produced in DIY biocomposites from agrowaste. Des. Health 2018, 2, 211–235. [Google Scholar] [CrossRef]
- Santulli, C. Natural Fiber-Reinforced Composites, chapter 12. In Biomass, Biopolymer-Based Materials, and Bioenergy; Verma, D., Fortunati, E., Jain, S., Zhang, X., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 225–238. [Google Scholar]
- Sarasini, F.; Fiore, V. A systematic literature review on less common natural fibres and their biocomposites. J. Clean. Prod. 2018, 195, 240–267. [Google Scholar] [CrossRef]
- Navya Geethika, V.; Durga Prasada Rao, V.; Mahaboob Ali, S.K.R.S.; Saqheeb Ali, S.K.M.Z.M. Study of tensile and flexural strengths of cocoa and Opuntia fibre reinforced hybrid composites. ASSRG Int. J. Mech. Eng. (SSRG-IJME) 2017, Special Issue May 2017. 291–295. [Google Scholar]
- Scaffaro, R.; Maio, A.; Gulino, E.F.; Megna, B. Structure-property relationship of PLA-Opuntia Ficus Indica biocomposites. Composites 2019, 167 Pt B, 199–206. [Google Scholar] [CrossRef]
- Forssell, P.M.; Mikkilä, J.M.; Moates, G.K.; Parker, R. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr. Polym. 1997, 34, 275–282. [Google Scholar] [CrossRef]
- Averous, L.; Moro, L.; Dole, P.; Fringant, C. Properties of thermoplastic blends: Starch—Polycaprolactone. Polymer 2000, 41, 4157–4167. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Composites 2016, 101 Pt B, 31–45. [Google Scholar] [CrossRef]
- Pushpadass, H.A.; Hanna, M.A. Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Ind. Eng. Chem. Res. 2009, 48, 8457–8463. [Google Scholar] [CrossRef]
- Hernández-Urbiola, M.I.; Contreras-Padilla, M.; Pérez-Torrero, E.; Hernández-Quevedo, G.; Rojas-Molina, J.I.; Cortes, M.E.; Rodríguez-García, M.E. Study of nutritional composition of nopal (Opuntia ficus indica cv. Redonda) at different maturity stages. Open Nutr. J. 2010, 4, 11–16. [Google Scholar] [CrossRef] [Green Version]
Material | Thickness (mm) |
---|---|
TPS | 0.125 ± 0.015 |
TPS + FIBERS A | 0.157 ± 0.013 |
TPS + FIBERS B | 0.438 ± 0.035 |
TPS + FIBERS C | 0.156 ± 0.008 |
Material | Max. Stress (MPa) | Max. Strain (%) |
---|---|---|
TPS | 3.75 ±1.16 | 23.4 ± 8.3 |
TPS-A | 1.06 ± 0.17 | 9.2 ± 1.8 |
TPS-B | 1.52 ± 0.35 | 14 ± 1.6 |
TPS-C | 1.45 ± 0.78 | 17.5 ± 14.1 |
Material | Non-Recovered Strain (%) |
---|---|
TPS | −0.4 ± 1.5 |
TPS-A | 0.9 ± 0.7 |
TPS-B | 5 ± 0.5 |
TPS-C | 3.4 ± 2.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scognamiglio, F.; Mirabile Gattia, D.; Roselli, G.; Persia, F.; De Angelis, U.; Santulli, C. Thermoplastic Starch Films Added with Dry Nopal (Opuntia Ficus Indica) Fibers. Fibers 2019, 7, 99. https://doi.org/10.3390/fib7110099
Scognamiglio F, Mirabile Gattia D, Roselli G, Persia F, De Angelis U, Santulli C. Thermoplastic Starch Films Added with Dry Nopal (Opuntia Ficus Indica) Fibers. Fibers. 2019; 7(11):99. https://doi.org/10.3390/fib7110099
Chicago/Turabian StyleScognamiglio, Fabrizio, Daniele Mirabile Gattia, Graziella Roselli, Franca Persia, Ugo De Angelis, and Carlo Santulli. 2019. "Thermoplastic Starch Films Added with Dry Nopal (Opuntia Ficus Indica) Fibers" Fibers 7, no. 11: 99. https://doi.org/10.3390/fib7110099
APA StyleScognamiglio, F., Mirabile Gattia, D., Roselli, G., Persia, F., De Angelis, U., & Santulli, C. (2019). Thermoplastic Starch Films Added with Dry Nopal (Opuntia Ficus Indica) Fibers. Fibers, 7(11), 99. https://doi.org/10.3390/fib7110099