Electrochemical Impedance Spectroscopy Investigation on the Corrosive Behaviour of Waterborne Silicate Micaceous Iron Oxide Coatings in Seawater
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of Zinc-Rich Antirust Paint
2.2.1. Formulation
2.2.2. Preparation
2.3. Preparation of Micaceous Iron Oxide Anticorrosion Paint
2.3.1. Formulation
2.3.2. Preparation
2.4. Preparation of Studied Coatings
2.4.1. Preparation of Coating Specimen
2.4.2. Curing Mechanism of Silicate Paints
2.5. Preparation of Cross Section Specimens
2.6. Measurement and Characterization
2.6.1. Confocal Laser Scanning Microscope (CLSM)
2.6.2. Dry Film Thickness
2.6.3. Water Contact Angle
2.6.4. Basic Mechanical Properties
2.6.5. Electrochemical Impedance Spectroscopy (EIS)
3. Results and Discussion
3.1. Influence of Thickness on Film Forming Effect of Zinc-Rich Coatings
3.2. Effect of Zinc Particle Size and Film Thickness on Hydrophilicity of Zinc-Rich Coatings
3.3. Basic Mechanical Properties of Micaceous Iron Oxide Anticorrosion Coatings
3.4. Anticorrosion Performance of Composite Coatings
3.4.1. Corrosion of Composite Coatings in Seawater
3.4.2. The Protective Performance Evaluated by Coating Resistance
3.4.3. The Protective Performance Evaluated by Breakpoint Frequency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Wang, G.P. Marine Coating and Coating Technology, 2nd ed.; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Wang, N.; Cheng, K.Q.; Zhang, J.; Zhang, D.; Kang, P. Method for preparing polyaniline modified mesoporous molecular sieve anticorrosion coating. CN Patent 201210109355.5, 22 August 2012. [Google Scholar]
- Wang, N.; Wu, Y.H.; Cheng, K.Q.; Zhang, J. Investigation on anticorrosion performance of polyaniline-mesoporous MCM-41 composites in new water-based epoxy coating. Mater. Corros. 2015, 65, 968–976. [Google Scholar] [CrossRef]
- Bagherzadeh, M.R.; Ghasemi, M.; Mahdavi, F.; Shariatpanahi, H. Investigation on anticorrosion performance of nano and micro polyaniline in new water-based epoxy coating. Prog. Org. Coat. 2011, 72, 348–352. [Google Scholar] [CrossRef]
- Bagherzadeh, M.R.; Mahdavi, F.; Ghasemi, M.; Shariatpanahi, H.; Faridi, H.R. Using nanoemeraldine salt-polyaniline for preparation of a new anticorrosive water-based epoxy coating. Prog. Org. Coat. 2010, 68, 319–322. [Google Scholar] [CrossRef]
- Wang, Z.; Han, E.; Liu, F.; Qian, Z.; Zhu, L. Waterborne epoxy nanocoatings modified by nanoemulsions and nanoparticles. J. Mater. Sci. Technol. 2014, 30, 1036–1042. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhan, Z.W.; L, S.M.; Yu, M. Corrosion resistance of waterborne epoxy coating pigmented by nano-sized aluminium powder on steel. J. Cent. South Univ. Technol. 2012, 19, 46–54. [Google Scholar] [CrossRef]
- Jiang, C. A waterborne metal anticorrosion coating. CN Patent 201410488980.4, 25 February 2015. [Google Scholar]
- Yao, Z.J.; Li, L.; Zhou, J.T.; Li, T.M.; Liu, P.J. Marine anticorrosion coating. CN Patent 201410337820.X, 8 October 2014. [Google Scholar]
- Xu, J.; Rong, X.; Chi, T.; Ming, W.; Wang, Y.; Yang, D.; Qiu, F. Preparation, characterization of UV-Curable Waterborne Polyurethane-Acrylate and the application in metal iron surface protection. J. Appl. Polym. Sci. 2014, 130, 3142–3152. [Google Scholar] [CrossRef]
- Ding, Y.S.; Ding, Y.Q.; Fang, H.G.; Yang, S.Z. An ultraviolet curing waterborne epoxy-polyurethane-acrylate copolymer resin-based anticorrosion paint and preparation method. CN Patent 201410275754.8, 10 September 2014. [Google Scholar]
- Rashvand, M.; Ranjbar, Z. Effect of nano-ZnO particles on the corrosion resistance of polyurethane-based waterborne coatings immersed in sodium chloride solution via EIS technique. Prog. Org. Coat. 2013, 76, 1413–1417. [Google Scholar] [CrossRef]
- Christopher, G.; Kulandainathan, M.A.; Harichandran, G. Highly dispersive waterborne polyurethane/ZnO nanocomposites for corrosion protection. J. Coat. Technol. Res. 2015, 12, 657–667. [Google Scholar] [CrossRef]
- Rahman, O.U.; Kashif, M.; Ahmad, S. Nanoferrite dispersed waterborne epoxy-acrylate: Anticorrosive nanocomposite coatings. Prog. Org. Coat. 2015, 80, 77–86. [Google Scholar] [CrossRef]
- Lin, L.; Xu, J. Study on Synthesis of nano-SiO2/polyacrylate compound antirust emulsion. Paint Coat. Ind. 2014, 44, 19–22. [Google Scholar]
- Lewis, O.D.; Critchlow, G.W.; Wilcox, G.D.; Dezeeuw, A.; Sander, J. A study of the corrosion resistance of a waterborne acrylic coating modified with nano-sized titanium dioxide. Prog. Org. Coat. 2012, 73, 88–94. [Google Scholar] [CrossRef]
- Li, J.; Ecco, L.; Delmas, G.; Whitehouse, N.; Pan, J. In-Situ AFM and EIS Study of waterborne acrylic latex coatings for corrosion protection of carbon steel. J. Electrochem. Soc. 2015, 162, C55–C63. [Google Scholar] [CrossRef]
- Sayyedan, F.S.; Enayati, M.H. On structure and oxidation behaviour of non-stoichiometric amorphous aluminium phosphate coating. Surf. Eng. 2019, 35, 670–676. [Google Scholar] [CrossRef]
- Mokabber, T.; Zhou, Q.; Vakis, A.I.; van Rijn, P.; Pei, Y.T. Mechanical and biological properties of electrodeposited calcium phosphate coatings. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Castro, Y.; Duran, A. Control of degradation rate of Mg alloys using silica sol-gel coatings for biodegradable implant materials. J. Sol-gel Sci. Technol. 2019, 90, 198–208. [Google Scholar] [CrossRef]
- Guo, L.L.; Tao, X.; Gong, Z.; Guo, A.R.; Du, H.Y.; Liu, J.C. Preparation of MoSi2-SiC-Al2O3-SiO2 coating on mullite fibrous insulation with silica sol as binder by non-firing process. Ceram. Int. 2019, 45, 2602–2611. [Google Scholar] [CrossRef]
- Cheng, L.H.; Liu, C.L.; Han, D.J.; Ma, S.H.; Guo, W.H.; Cai, H.F.; Wang, X.H. Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings. J. Alloy. Compd. 2019, 774, 255–264. [Google Scholar] [CrossRef]
- Jolin, W.C.; Oster, C.; Kaminski, M.D. Silicate coating to prevent leaching from radiolabeled surrogate far-field fallout in aqueous environments. Chemosphere 2019, 222, 106–113. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.Z.; Zhang, J.T.; Ding, G.Q. Research and development trend of environmentally friendly anticorrosive and antifouling coatings for hulls. Shanghai Coat. 2017, 55, 24–28. (In Chinese) [Google Scholar]
- Giúdice, C.A.; Benítez, J.C. Optimising the corrosion protective abilities of lamellar micaceous iron oxide containing primers. Anticorros. Methods Mater. 2000, 47, 226–232. [Google Scholar] [CrossRef]
- Sørensen, P.A.; Kiil, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Nikravesh, B.; Ramezanzadeh, B.; Sarabi, A.A.; Kasiriha, S.M. Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments. Corros. Sci. 2011, 53, 1592–1603. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J. Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure. Prog. Org. Coat. 2011, 70, 150–156. [Google Scholar] [CrossRef]
- Yang, C.; Smyrl, W.H.; Cussler, E.L. Flake alignment in composite coatings. J. Membr. Sci. 2004, 231, 1–12. [Google Scholar] [CrossRef]
- Naser Kakaei, M.; Danaee, I.; Zaarei, D. Evaluation of cathodic protection behavior of waterborne inorganic zinc-rich silicates containing various contents of MIO pigments. Anticorros. Methods Mater. 2013, 60, 37–44. [Google Scholar] [CrossRef]
- Castela, A.S.; Simões, A.M. An impedance model for the estimation of water absorption in organic coatings. Part II: A complex equation of mixture. Corros. Sci. 2003, 45, 1647–1660. [Google Scholar] [CrossRef]
- Deflorian, F.; Fedrizzi, L.; Bonora, P.L. Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints. Corros. Sci. 1996, 38, 1697–1708. [Google Scholar] [CrossRef]
- Barranco, V.; Carpentier, J.; Grundmeier, G. Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate. Electrochim. Acta 2004, 49, 1999–2013. [Google Scholar] [CrossRef]
- Brasher, D.M.; Kingsbury, A.H. Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water uptake. J. Chem. Technol. Biotechnol. 2010, 4, 62–72. [Google Scholar] [CrossRef]
- Castela, A.S.; Simões, A.M. An impedance model for the estimation of water absorption in organic coatings. Part I: A linear dielectric mixture equation. Corros. Sci. 2003, 45, 1631–1646. [Google Scholar] [CrossRef]
- Castela, A.S.; Simões, A.M. Assessment of water uptake in coil coatings by capacitance measurements. Prog. Org. Coat. 2003, 46, 55–61. [Google Scholar] [CrossRef]
- Neshati, J.; Fardi, M.R. Evaluation and investigation of surface treatment of industrial coatings by impedance spectroscopy. Surf. Eng. 2013, 20, 299–303. [Google Scholar] [CrossRef]
- Sykes, J.M. A variant of the Brasher–Kingsbury equation. Corros. Sci. 2004, 46, 515–517. [Google Scholar] [CrossRef]
- Liu, L.; Hu, J.M.; Zhang, J.Q.; Cao, C.N. Evaluation of protectiveness of organic coatings by means of high-frequency EIS measurement. Corros. Sci. Prot. Technol. 2010, 22, 325–328. [Google Scholar]
- Wang, P.; Yang, Q.; Cheng, X.R. Study on the curing mechanism of sodium silicate inorganic zinc-rich coating. Appl. Chem. Ind. 2007, 36, 1076–1080. [Google Scholar]
- Peng, G.Y. Preparation and Properties of Waterborne Inorganic Coatings with Potassium Silicate/Silica Sol as Film-Forming Substance. Master’s Thesis, South China University of Technology, Guangzhou, China, 2012. [Google Scholar]
- Zhou, C.J. Preparation of Silicate Waterborne Inorganic Zinc-Rich Anticorrosion Coatings and Studies on Its Performance. Master’s Thesis, Shenyang University of Technology, Shenyang, China, 2014. [Google Scholar]
- GB/T 1720-1979 Method of Test for Adhesion of Paint Films; China Petroleum and Chemical Industry Federation: Beijing, China, 1980.
- GB/T 6739-2006 Paints and Varnishes-Determination of Film Hardness by Pencil Test; China Petroleum and Chemical Industry Federation: Beijing, China, 2007.
- GB/T 1732-1993 Determination of Impact Resistance of Film; China Petroleum and Chemical Industry Federation: Beijing, China, 1993.
- Qi, Y.H.; Zhang, Z.P.; Miao, M.; Zhang, X.Z. Studies on estimating methods of polarization performance for coated steel in seawater. Mater. Sci. Forum 2010, 654–656, 2418–2421. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Jiang, L.; Feng, L. Bionic Intelligent Nano Interface Material; Chemical Industry Press: Beijing, China, 2007. [Google Scholar]
- Ding, J.H.; Liu, S.; Gu, L.; Zhao, H.C.; Yu, H.B. Corrosion resistance of epoxy phosphate/waterborne epoxy coatings on steel. China Surf. Eng. 2015, 28, 126–131. (In Chinese) [Google Scholar]
- Li, Y.; Yang, Z.; Qiu, H.; Dai, Y.; Zheng, Q.; Li, J.; Yang, J. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J. Mater. Chem. A 2014, 2, 14139–14145. [Google Scholar] [CrossRef]
- Cao, C.N.; Zhang, J.Q. Introduction to Electrochemical Impedance Spectroscopy; Science Press: Beijing, China, 2002. [Google Scholar]
- Liu, H.; Liang, F.; Zhang, J.; Cao, C.; Shuqin, X.U.; Lin, H.; Dong, J.; Cai, Z. Investigation of effect of aluminium powder on performance of epoxy coatings by breakpoint frequency method. Corros. Sci. Prot. Technol. 1992, 4, 144–149. [Google Scholar]
- Haruyama, S.; Asari, S.; Tsuru, T. Corrosion protection by organic coatings. Electrochem. Soc. 1987, 87, 197–207. [Google Scholar]
Raw Materials (wt.%) | Z4S | Z5S | ZF |
---|---|---|---|
E777-2 | 30 | 30 | 30 |
Spherical zinc powder (400 mesh) | 70 | 0 | 0 |
Spherical zinc powder (500 mesh) | 0 | 70 | 0 |
Flake zinc powder | 0 | 0 | 70 |
Raw Materials (wt.%) | M16 | M14 | M12 | M10 | M8 |
---|---|---|---|---|---|
E777-2 | 64 | 64 | 64 | 64 | 64 |
Talc | 4 | 4 | 4 | 4 | 4 |
Composite calcium zinc phosphate | 5 | 5 | 5 | 5 | 5 |
Titanium dioxide | 1 | 1 | 1 | 1 | 1 |
Deionized water | 10 | 12 | 14 | 16 | 18 |
Micaceous iron | 16 | 14 | 12 | 10 | 8 |
Sample | Coating Number | Dry Film Thickness (μm) |
---|---|---|
Z4S | 2 | 19.3 |
4 | 28.6 | |
6 | 40.2 | |
Z5S | 2 | 18.7 |
4 | 30.8 | |
6 | 38.7 |
Sample | Surface Roughness (μm) |
---|---|
Z4S-2 | 1.8 |
Z4S-3 | 2.0 |
Z4S-4 | 2.7 |
Z5S-2 | 1.7 |
Z5S-3 | 1.8 |
Z5S-4 | 1.9 |
Sample | Water Contact Angle (°) |
---|---|
Z4S-2 | 87.8 |
Z4S-3 | 85.2 |
Z4S-4 | 65.1 |
Z5S-2 | 87.9 |
Z5S-3 | 86.2 |
Z5S-4 | 66.6 |
Sample | Pencil Hardness (H) | Adhesion (Grade) | Impact Resistance (kg·cm) |
---|---|---|---|
M16 | 4 | 1 | 50 |
M14 | 3 | 1 | 50 |
M12 | 3 | 1 | 50 |
M10 | 3 | 1 | 50 |
M8 | 2 | 1 | 50 |
Sample | Time (h) | Qc (μF·cm−2·Hz1−n) | n | Rc (kΩ·cm2) |
---|---|---|---|---|
Z5S + M8 | 1 | 6.499 | 0.7806 | 16.02 |
2 | 10.83 | 0.6998 | 6.308 | |
4 | 14.35 | 0.6534 | 5.526 | |
6 | 23.85 | 0.638 | 5.466 | |
8 | 24.55 | 0.5874 | 5.169 | |
Z5S+M10 | 1 | 8.873 | 0.7739 | 18.98 |
2 | 18.04 | 0.716 | 7.462 | |
4 | 36.07 | 0.6433 | 7.209 | |
6 | 70.57 | 0.5695 | 7.193 | |
8 | 87.85 | 0.5147 | 6.76 | |
Z5S+M12 | 1 | 8.665 | 0.7959 | 20 |
2 | 18.31 | 0.6991 | 9.314 | |
4 | 30.95 | 0.6603 | 8.848 | |
6 | 31.63 | 0.6042 | 8.39 | |
8 | 37.4 | 0.5914 | 7.043 | |
Z5S+M14 | 1 | 6.183 | 0.783 | 21.27 |
2 | 27.14 | 0.6761 | 11.48 | |
4 | 31.97 | 0.6557 | 9.996 | |
6 | 44.29 | 0.5945 | 9.135 | |
8 | 52.22 | 0.551 | 8.794 | |
Z5S+M16 | 1 | 7.036 | 0.7941 | 22.6 |
2 | 20.76 | 0.6675 | 12.3 | |
4 | 31.81 | 0.6464 | 10.07 | |
6 | 85.05 | 0.5575 | 9.828 | |
8 | 99.37 | 0.5084 | 9.019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Qi, Y.; Zhang, Z.; Li, K.; Li, Z. Electrochemical Impedance Spectroscopy Investigation on the Corrosive Behaviour of Waterborne Silicate Micaceous Iron Oxide Coatings in Seawater. Coatings 2019, 9, 415. https://doi.org/10.3390/coatings9070415
Zhao X, Qi Y, Zhang Z, Li K, Li Z. Electrochemical Impedance Spectroscopy Investigation on the Corrosive Behaviour of Waterborne Silicate Micaceous Iron Oxide Coatings in Seawater. Coatings. 2019; 9(7):415. https://doi.org/10.3390/coatings9070415
Chicago/Turabian StyleZhao, Xu, Yuhong Qi, Zhanping Zhang, Kejiao Li, and Zhitao Li. 2019. "Electrochemical Impedance Spectroscopy Investigation on the Corrosive Behaviour of Waterborne Silicate Micaceous Iron Oxide Coatings in Seawater" Coatings 9, no. 7: 415. https://doi.org/10.3390/coatings9070415