Next Article in Journal
Passive Vibration Reduction Analysis of the Mistuned Blisk Deposited Hard Coating Using Modified Reduced-Order Model
Next Article in Special Issue
Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability
Previous Article in Journal
Oxidation Behavior of Ta–Al Multilayer Coatings
Previous Article in Special Issue
Superhydrophobic Cerium-Based Coatings on Al-Mg Alloys and Aluminized Steel
Open AccessFeature PaperArticle

Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings

1
Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
2
Technology Partners Foundation, 5A Pawinskiego Str., 02-106 Warsaw, Poland
3
Ingeniería de Sistemas para la Defensa de España SA, Beatriz de Bobadilla No. 3, 28040 Madrid, Spain
4
Instituto Nacional de Técnica Aeroespacial, Área de Materiales Metálicos, Ctra. Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain
5
Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Americo Vespucio 49, 41092 Seville, Spain
*
Author to whom correspondence should be addressed.
Coatings 2019, 9(12), 811; https://doi.org/10.3390/coatings9120811
Received: 29 October 2019 / Revised: 27 November 2019 / Accepted: 28 November 2019 / Published: 2 December 2019
(This article belongs to the Special Issue Low-Adhesion Coatings: Fundamentals and Applications)
In this paper, hydrophobic nanocomposite coatings based on polyurethane (PUR) modified by nano-silica and silane-based compounds were manufactured by spraying. The main challenge was to assess and improve the hydrophobic as well as anti-icing properties of initially hydrophilic polymer coatings. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy (SEM), optical profilometry and X-ray photoelectron spectroscopy (XPS). The results obtained showed that in order to achieve hydrophobicity, appropriate amounts of nano-silica must be incorporated in the coating, and complete coverage by nano-silica particles is necessary for achieving hydrophobicity. Coating adhesion and the durability of the hydrophobic behaviour were also studied by scratch test and frosting/defrosting cycles, respectively. The results show that use of both nano-silica and silane-based compounds improve the hydrophobic and anti-icing properties of the coating as compared to a non-modified PUR topcoat. A synergistic effect of both additives was observed. It was also found that the anti-icing behaviour does not necessarily correlate with surface roughness and the materials’ wetting properties. View Full-Text
Keywords: icephobicity; polyurethane; nano-silica; nanocomposite coating; hydrophobicity icephobicity; polyurethane; nano-silica; nanocomposite coating; hydrophobicity
Show Figures

Figure 1

MDPI and ACS Style

Przybyszewski, B.; Boczkowska, A.; Kozera, R.; Mora, J.; Garcia, P.; Aguero, A.; Borras, A. Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings. Coatings 2019, 9, 811. https://doi.org/10.3390/coatings9120811

AMA Style

Przybyszewski B, Boczkowska A, Kozera R, Mora J, Garcia P, Aguero A, Borras A. Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings. Coatings. 2019; 9(12):811. https://doi.org/10.3390/coatings9120811

Chicago/Turabian Style

Przybyszewski, Bartlomiej; Boczkowska, Anna; Kozera, Rafal; Mora, Julio; Garcia, Paloma; Aguero, Alina; Borras, Ana. 2019. "Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings" Coatings 9, no. 12: 811. https://doi.org/10.3390/coatings9120811

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop